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Abstract: One debatable issue in traffic safety research is that the cognitive load by secondary
tasks reduces primary task performance, i.e., driving. In this paper, the study adopted a version
of the n-back task as a cognitively loading secondary task on the primary task, i.e., driving; where
drivers drove in three different simulated driving scenarios. This paper has taken a multimodal
approach to perform ‘intelligent multivariate data analytics’ based on machine learning (ML).
Here, the k-nearest neighbour (k-NN), support vector machine (SVM), and random forest (RF)
are used for driver cognitive load classification. Moreover, physiological measures have proven
to be sophisticated in cognitive load identification, yet it suffers from confounding factors and
noise. Therefore, this work uses multi-component signals, i.e., physiological measures and vehicular
features to overcome that problem. Both multiclass and binary classifications have been performed to
distinguish normal driving from cognitive load tasks. To identify the optimal feature set, two feature
selection algorithms, i.e., sequential forward floating selection (SFFS) and random forest have been
applied where out of 323 features, a subset of 42 features has been selected as the best feature subset.
For the classification, RF has shown better performance with F1-score of 0.75 and 0.80 than two other
algorithms. Moreover, the result shows that using multicomponent features classifiers could classify
better than using features from a single source.
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1. Introduction

Driving a vehicle requires dynamic adjustment of cognitive control, here, both visual and physical
tasks are crucial to keep the driving performance to an acceptable level within a comfortable effort [1].
While driving a vehicle, drivers are often occupied with many other activities such as using a mobile
phone, listening to the radio, or having a conversation with a passenger, etc. Moreover, new advanced
in-vehicle information systems embedded in the modern vehicles could create distracted driving scenarios
and may affect the driving performance [2–4]. Thus, these secondary activities, i.e., activities not related
to driving require extra cognitive processes in ways that the driver can still keep their eyes on the road
and hands on the steering wheel while being involved in other activities at the same time, and this refers
to the ‘cognitive load activities’. It is reported that more than 90% of traffic crashes are assigned to the
driver’s error, whereas 41% of them are due to inattention, distraction, and cognitive load activities [5].
Further, the risk concerning traffic safety and driving performance anticipating cognitive load activities
have been addressed in [6,7].

Many studies have been pursued to understand the consequences of secondary task or dual-task
demands while driving and different types of data such as physiological, driving behavioural,
and subjective measures have been used to evaluate the driver’s mental effort [1,8–10]. In this paper,
the attention selection model (ASM) [11], based on the n-back task has been employed to impose
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the cognitively loading secondary task while driving. The ASM is a conceptual model of attention
selection and multitasking in everyday natural driving situations. The n-back task is a continuous
performance task commonly used as an assessment of working memory load [12,13]. The n-back task
can vary on the task difficulty or complexity, such as very mild task demand (0-back), moderate task
demand (1-back), and a high level of task demand (2-back) [14]. Since it is difficult to characterise the
task demand from the invested effort on the secondary task by the drivers [1], the alternative is to use
physiological measures and this work aims to explore the classification of cognitive load activities i.e.,
the n-back task events.

Several physiological signals such as electroencephalography (EEG), electrooculography (EOG),
electrocardiogram (ECG), heart rate (HR), and heart rate variability (HRV) (the variation in the beat to
beat intervals of the heart), galvanic skin response (GSR), and respiration rate (RR) signal have become
object measures of cognitive load. Several studies have also considered the variations in drivers’
behavioural data obtained from vehicular signals for drivers’ cognitive load classification [15,16].
Machine learning methods that have been used for detecting the driver state, e.g., cognitive load
include SVM [17–25], artificial neural network [2,26–29], random forest [30,31], deep learning [32,33],
and case-based reasoning [34–37]. The performance of cognitive load classification is often poor when
there are uncertainties—such as participants failing to perform some task or, in a real-time system.
The accuracy could be improved, for example, using a suitable window size, which influences the
delay that occurs between the onset of a cognitive load task and when changes are detected in the
driver’s performance due to the higher cognitive load [2,21]. Several studies use multimodal data in
machine learning models to classify driver states [2,38,39].

This paper aims for intelligent data analytics using ML to discriminate the cognitive load task
from normal driving in different driving situations such as visual cue in traffic, incoming traffic,
and traffic environment. The cognitive load task classification based on physiological measures have
become practical and they have shown much potential because of their granularity and high degree of
responsiveness. However, in many occasions physiological measures suffer from both confounding
factors and noise [40]. Hence, this paper focuses on a multimodal approach based on multicomponent
signals to measure the cognitive load and to classify different cognitive load tasks. Here, several ML
algorithms, e.g., k-nearest neighbour (k-NN), support vector machine (SVM), and random forest (RF)
are applied for the classification. Again, two feature selection algorithms, i.e., sequential forward
floating selection (SFFS) and random forest with mean decrease accuracy (MDA) are used to identify
an optimal feature set. In this paper, physiological signals, i.e., EEG, EOG, GSR, ECG, and RR are
fused as a driver behavioural data and combined with driving context, i.e., driving conditions in the
scenarios (see Section 2). Again, a number of vehicular features, e.g., lateral speed, steering wheel
angle (SWA), yaw and yaw rate, and lateral position are also being considered. Considering the study
design, both multiclass and binary classification have been performed, where classifiers are trained
using 5-fold cross-validation on the training datasets and finally, evaluated with the test datasets.

2. Materials and Methods

2.1. Study Design and Data Set

The experimental study took place at the Swedish National Road and Transport Research Institute
(VTI), Linköping, Sweden, using a high-fidelity moving-base driving simulator (VTI Driving Simulator
III (https://www.vti.se/en/research-areas/vtis-driving-simulators/)), see Figure 1. The study was
approved by the regional ethics committee at Linköping University, (Dnr 2014/309-31) and each
participant signed an informed consent form. The simulator was a car cabin consisting of front seats
of a SAAB 9-3 with automatic transmission. It could simulate the movements and forces by moving,
rotating, or tilting the part of the simulator with projector screens. A vibration table enables the
simulation of the road surface contact. It had three liquid-crystal display systems for rear mirrors
and six projectors for visualization of the frontal view with a horizontal field of view of 120 degrees.

https://www.vti.se/en/research-areas/vtis-driving-simulators/
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The study that collected the cognitive load dataset consisted of two test series that contained recordings
from 66 participants (33 in test series 1 and 33 in test series 2). All the participants were male with no
known diseases or medications, aged between 35 and 50 (42.47 ± 4.39 years), and had held a valid
driver’s license for more than ten years. To obtain homogeneity, only males were chosen with the
aforementioned criteria. Further, participants were not professional drivers (e.g., taxi and heavy vehicle
driver), no extremes in terms of self-reported personalities (extrovert or introvert), and self-reported
normal sensitivity to stressful situations. To assess stress tolerance, each participant had to fill up a
questionnaire after the end of each driving session. The self-reported questionnaire used a scale of 0–6,
where ‘0’ means low-stress tolerance and ‘6’ means the high-stress tolerance; whereas for anxiety ‘0’
indicates low and ‘6’ indicates high anxiety. However, the personality and stress sensitivity have not
been taken into consideration in this paper.
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Figure 1. VTI simulator III and electroencephalography (EEG) electrodes setup on a participant.

The driving environment in the simulator consisted of three recurring scenarios in which the
simulated road was a rural road with one lane in each direction, some curves and slopes, and a speed
limit of 80 km/h. The three scenarios were (1) four-way crossing with an incoming bus and a car
approaching the crossing from the right (CR), (2) a hidden exit on the right side of the road with a
warning sign (HE), and (3) a strong side wind in open terrain (SW). Figure 2 represents examples of
these study scenarios. In Figure 2, the image in the left shows the CR scenario, the middle one shows
the HE scenario, and the rightmost image shows the SW scenario. Thus, these scenarios implied threats
in off-path locations without requiring the drivers to change their responses. As a within-measure
study, each scenario was repeated four times during the approximately 40 min driving session where
the participants were involved either in a cognitive load task, i.e., a 1-back or 2-back task, or were
driving to pass a scenario (baseline or no-task). In the first test series, participants performed the
normal driving and 1-back task while driving. However, in the second test series, the participants
performed all three task conditions in the hidden exit and four-way crossing scenarios. The no-task
and 2-back tasks were only performed under the side wind in the open field scenario. The 1-back
and 2-back tasks are considered as the secondary auditory tasks, where a number is orally presented
through the simulator’s speakers at an interval of 2 s. The participants had to respond whenever the
last presented number was the same as the previous one (1-back) or two steps earlier (2-back).

The physiological signals were acquired using a multi-channel amplifier with active electrodes
(g.HIamp, g.tec Medical Engineering GmbH, Austria). The electroencephalography (EEG) electrodes
were positioned based on the 10–20 system providing a 30-channel recording. The EEG signals were
band-pass filtered between 0.5 and 60 Hz using an 8th order Butterworth filter, and frequencies between
48 and 52 Hz were removed using a 4th order Butterworth notch filter. In addition, electrooculography
(EOG) (horizontal with electrodes at the outer canthi and vertical with electrodes above/below the left
eye) were also acquired. ECG was measured using disposable ECG electrodes with a snap connection
to the wiring. The respiration rate (RR) was measured using a SleepSence chest strap which was
connected to the upper body. The skin conductance was measured using reusable gold-plated cup
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electrodes with conductive cream; the electrodes were connected to a GSR sensor (g.tec g.GSRsensor).
Vehicular parameters such as lateral position (LatPos), lateral speed (LatSpeed), steering wheel angle
(SWA), land departure (LanDep), and yaw rate were recorded in the simulator control computer.
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Figure 2. Three of the study scenarios, (a): Car approaching the crossing from the right (CR); (b): Hidden
exit on the right side of the road with a warning sign (HE); and (c): Strong side wind in open terrain
(SW) scenario.

2.2. Classification Approach

The aim of the classification task was to differentiate the driving events with the cognitive load
task from normal driving. The influence of the scenarios on classification is evaluated by classifying
cognitive load tasks for all individual situations. Each scenario had a duration of 60 s where the
first 10 s of the data were discarded to adjust the stability of the driver with the cognitive load task.
Hence, a 50 s recording of each scenario was used for feature extraction. Figure 3 shows the overall
schematic diagram of the classification task. The steps include data gathering, data pre-processing,
feature extraction, feature selection, dataset creation, training classifiers, and finally evaluation of
each of the classifiers using the test dataset. Here, the data were gathered through a study with
66 participants (33 in test series 1 and 33 in test series 2) presented in Section 2.1.
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2.2.1. Data Pre-Processing

The driving task involves activities such as looking at the side and rear-view mirror, shifting
gear, and changing body position that naturally causes muscle and ocular artifacts in the EEG signals.
Therefore, it requires cleaning the EEG signal before extracting frequency component features from
the EEG signal. Hence, EEG signals were artifacts handled using an in-house developed tool called
ARTE (Automated aRTifacts handling in EEG) [41]. The median filter was used to handle noise in
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the vehicular data, respiration, and GSR signals. The median filter is particularly useful for removing
spiky noise and can separate peaks from a slowly changing signal disturbed by unknown noise
distribution [42]. A QRS detection algorithm proposed by [43,44] was used to extract inter-beat-interval
(IBI) data from the ECG signal. The obtained IBI data were filtered using the ARTiiFACT tool [45].
The collected raw dataset was in the European data format, which was converted into MATLAB
(Matlab 2017b version. https://se.mathworks.com/products/new_products/release2017b.html) data
format and all the works were done in MATLAB 2017b version.

2.2.2. Feature Extraction

Various features are extracted from both the physiological and vehicular parameters as presented
in Table 1. Here, the feature vector consists of 323 extracted features with total observations of 721,
where 306 of them are baseline or no-task, 237 observations are the 1-back task, and 178 observations
are the 2-back task.

EEG Features: From each of the 30 channel EEG signal power, the spectral density (PSD) of the
δ (<4 Hz), θ (4–7 Hz), α (8–12 Hz), β (12–30 Hz), and γ (31–50 Hz) frequency bands are extracted
as features. The Welch’s method [46] is used with 50% overlapping with the Blackman window
function. In addition, four different ratios of the PSDs, (θ+ α)/β, α/β, (θ+ α)/(α+ β), and θ/β [47],
are also estimated as features. These four ratios indicate the change of slow wave to fast wave
of EEG activities over time. According to [47], an increase in the ratio is a good indicator of EEG
activity compared to α and θ alone. Moreover, the authors found that α and θ, combined with the
ratios, could better assess the fatigue condition of the drivers. Hence, nine features from each EEG
channel resulted in 270 EEG features for each 50 s time segment driving event. The motivation of
using EEG is that as the cognitive load increases, changes in alpha and theta powers in EEG have
been observed in various studies [48–50]. It is reported that alpha and theta powers increase as
the cognitive load increases [48–50]. Another common approach in the Brain-Computer interface
is to apply the independent component analysis (ICA) to extract features from the PSDs of ICA
components [51,52]. EEG classifications for different mental workload activities have been performed
in [53,54]. However, depending on the study design and the type of cognitive load under scrutiny,
the results are often ambiguous [48,50].

EOG Features: The EOG features derived from the vertical EOG using an automatic blink
detection algorithm based on derivatives and thresholding was developed by Jammes and Sharabty [55].
The average spontaneous eye blink rate of a person is 15–20 per min [56]. The eye blink frequency
increases as the cognitive load increases [48,57,58], whereas the decrease in blink duration is observed
by [59].

ECG Features: Heart rate (HR) and heart rate variability (HRV), i.e., measure of the variations
in time between each heartbeat, are two measures that can vary with the increasing cognitive load.
HRV measures beat-to-beat (R–R interval) variations in terms of consecutive heartbeats articulated
in the normal sinus rhythm from electrocardiogram (ECG) recordings [60,61]. HR and HRV features
are obtained from the pre-processed interbeat interval (IBI) data. In time domain, statistical methods
are applied to extract the time domain features. To obtain frequency domain features, the IBI data
are transformed via FFT transformation. The PSDs of low frequency (LF) (0.04 to 0.15 Hz) and high
frequency (HF) (0.15 to 0.40 Hz), LF/HR ratio, and total power are estimated. The time and frequency
domain measures quantify the variability of the heart rate fluctuation characteristic in time scales.
On the other hand, the non-linear measures quantify the structure or complexity of the R-R intervals,
i.e., IBI data. Non-linear measures such as detrended fluctuation analysis, sample entropy, approximate
entropy, and permutation entropy methods were applied to extract complexity from the IBI data [62].
An increased HR with respect to the increasing cognitive load has been reported in several studies;
in contrast, the time domain measures of HRV such as mean RR, SDNN, RMSDD, pNN50, and HF power
band (0.15–0.50 Hz) of HRV in the frequency domain decrease [14,63,64]. An increase in the LF power
(0.04–0.15 Hz) and the LF/FH ratio of HRV have been associated with higher mental workloads [64–66].

https://se.mathworks.com/products/new_products/release2017b.html
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Table 1. List of features extracted from each signal. # represent features.

Signal #
Features Extracted Features

EEG 270 Frequency bands: δ (<4 Hz), θ (4–7 Hz), α (8–12 Hz), β (12–30 Hz), γ (31–50 Hz), and the ratio (θ+ α)/β, α/β, (θ+ α)/(α+ β), and θ/β

EOG 9 Start position of blink, blink duration calculated from the start position of blink to the end value of blink, lid closure speed, PCV (peak closing velocity), delay of eye lid
reopening, duration at 80%, PERCLOS, blink rate, blink count.

ECG 14

Time: Mean heart rate (meanHR), standard deviation of heart rate (sdHR), standard deviations of normal to normal RR intervals (SDNN), root mean square of successive
differences between adjacent NN intervals (RMSSD), number of pairs of successive NN intervals with more than 50 ms (NN50), percentage of NN50 (pNN50).
Frequency: Low frequency power (0.04–0.15 Hz), high frequency power (0.15–0.4 Hz), total power, LF/HF ratio.
Non-linear: Alpha value of detrended fluctuation analysis (dfaAlpha), sample entropy (SampEn), approximate entropy (ApEn), and permutation entropy (PeEn).

GSR 10
Time: Number of peaks, the amplitude of the peaks (maxima-minima), duration of the rise time of each peak, index of the detected peaks in the GSR signal, mean value,
standard deviation, first quartile value, third quartile value, slope value between peak and valley.
Frequency: Average power of the signal under 1 Hz.

Respiration rate (RR) 9
Time: Mean value, standard deviation, kurtosis.
Frequency: Power spectra power between the frequency ranges [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.7], and [0.7, 1].

Vehicular parameters 11

Standard deviation of lateral position, mean squared error of lateral position.
Standard deviation of steering wheel angle, steering wheel entropy, steering wheel reversal rate, high frequency component (0.3 Hz), number of zero crossings.
Lanex or fraction of lane exit from lane departure.
Standard deviation of lateral speed, yaw and yaw rate.
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GSR Features: GSR measures the electrical conductivity of the skin and can provide changes
in the human sympathetic nervous system [67]. GSR is significantly correlated with the cognitive
load task demand and usually used for the level of cognitive load classification [40,67,68]. In time
domain several estimations, i.e., number of peaks, the amplitude of the peaks (maxima-minima),
duration of the rise time of each peak, index of the detected peaks in the GSR signal, mean value,
standard deviation, first quartile value, third quartile value, slope value between peak and valley
are extracted as features [67]. One feature which is the average power of the signal under 1 Hz is
extracted in frequency domain. A comprehensive review of GSR signal interpretation can be found
in [69]. Further, relations between cognitive load and GSR features have been discussed in several
studies [68,70,71].

Respiration Features: From the respiration rate (RR) signal, arithmetic mean, standard deviation,
and kurtosis are calculated as features in time domain. Similar to EEG, Welch’s method has been
used to estimate the PSDs from the frequency ranges [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.7],
and [0.7, 1] [72,73]. The cognitive load has a distinct effect on the respiratory behaviour that
can differ in sensitivity in the parameters obtained from respiratory signals [74]. According to
Hidalgo-Muñoz et al. [72] significant increases in the respiration rate are observed while driving in
comparison to the base line condition. Moreover, the RR showed variations with a different level task
difficulty and RR accelerated with an increasing cognitive workload.

Vehicular Features: The standard deviation from five time series data namely, lateral speed,
steering wheel angle (SWA), yaw and yaw rate [75], and lateral position [15], are extracted as features.
The steering wheel reversal rate (SWRR) [15], is defined as the absolute difference between maximum
and minimum of the SWA signal. The SWRR is the number of reversals in a time period. Firstly, the raw
SWA is smoothed using the Lowess method where the linear model is used for local fitting [76].
In this case, 110 points have been used for the moving average in the linear model. Steering wheel
entropy [77,78], high frequency component (0.3 Hz), and number of zero crossings are the other features
that are obtained from the SWA signal. Lanex or the fraction of lane exit feature is extracted from the
lane departure signal which indicates the driver’s tendency to exit the driving lane. Lanex is defined as
the fraction of a given time interval spent outside driving [75]. In several studies, drivers’ behavioural
data in relation to vehicular signals such as speed, lateral position, steering wheel angle, etc. have been
used to detect and classify drivers’ cognitive load [15,16]. For example, driving performance relies on a
right speed [79]. A reduced speed as a compensatory action due to the increased cognitive load is more
often used as an indication of behaviour adaption rather than a change in driving performance [80,81].
Östlund and Nilsson [82] presented a few other parameters such as lateral position and steering wheel
reversal rate that contribute to the driver’s cognitive load. Wilschut [82] used the steering wheel angle
and lane positioning to measure the driving performance. A lane change task can be used to investigate
the effects of cognitive load on driving performance [83].

2.2.3. Feature Selection

Feature selection is conducted only on the EEG signals since 270 EEG features are extracted from
the 30 channels and many of them were neighbouring electrodes. Some overlapping and redundant
features might exist. Hence, sequential forward floating selection (SFFS) [84–86] was used to also
investigate the intra-feature relationships. SFFS is a successor of the sequential forward selection
(SFS) method, which does not suffer from the ‘nesting effect’, and is computationally more efficient
than other branch and bound methods [86]. SFFS was wrapped with an SVM classifier to obtain an
optimal feature subset. Further, the SVM classification was evaluated using 5-fold cross-validation.
For other features, random forest with the mean decrease accuracy (MDA) [87] approach was used in
the feature selection process. The idea of using MDA is to find the direct impact of each feature on the
performance of the random forest model. Here, a permutation of each feature measures the decreasing
accuracy of the model and for the unimportant features the permutation has little effect on the model
accuracy. On the other hand, removing important features should drastically decrease the accuracy.
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2.2.4. Cognitive Load Classification

For cognitive load classification, data from both the test series are combined, and both multi-class
(MSet data) and binary class (BSet data) classification are defined based on the n-back task and normal
driving events. The binary class is defined as the task group and baseline group. For the binary
classification, two data sets are created such that the first set (BSet-1) baseline consists of normal driving
and 1-back task, and the task group contains data of 2-back task. In the second set (BSet-2), the baseline
includes data from normal driving only, and the task group consists of data from both 1-back and
2-back tasks. These two binary datasets preparation was motivated by the assumption that the 1-back
task did not have much influence on the driver (e.g., on working memory) compared to the 2-back
task [88]. The MSet, BSet-1, and BSet-2 datasets are split into training and test datasets, where the
training set contains 70% and the test dataset contains 30% of the data sets. Three separate classifiers
k-NN, SVM, and RF are developed and trained using 5-fold cross-validation with the training datasets
and later evaluated with the test datasets. In addition, the binary classification was performed for
both scenario-wise and task-wise to discriminate the effect of scenarios on the cognitive load task.
Here, only the training dataset was used in the feature selection step. The training set is further divided
into two sets, where 80% of the training data is used for SFFS and MDA, and 20% of the training data
is used as a validation set.

k-NN is a simple memory-based algorithm that uses the observations in the training set to find
the most similar properties of the test dataset [89]. In this work, the Euclidean distance function is used
with a ‘squared inverse’ distance weight and K = 5 was considered. SVM finds the hyperplane that
not only minimizes the empirical classification error but also maximizes the geometric margin in the
classification [90]. SVM can map the original data points from the input space to a high dimensional
feature space such that the classification problem becomes simple in this feature space. In this study,
an SVM with a Gaussian kernel was used for the classification task. A popular ensemble algorithm in
machine learning is RF, that consists of a series of randomizing decision-trees, where the output is the
majority vote of all these decision-trees [91]. One important aspect of RF is that it does not assume
independence of features. In the driving context, data is often noisy and rarely linearly separable into a
different mental state [92]. RF is implemented using bagging, which is the process of bootstrapping the
data plus using the aggregate to make a decision. During classification, MATLAB’s fitcknn function is
used for k-NN, the fitcecoc function with an SVM template is used for SVM, and the fitcensemble function
with 4357 tree splits is used for RF. The three classifiers were evaluated considering confusion matrices,
accuracy, balanced accuracy (BACC), Matthews correlation coefficient (MCC), F1-score, sensitivity,
and specificity.

3. Results

3.1. Feature Selection

The SFFS selected θ/β, α/β, (θ+ α)/β, θ, β, and α features from seven frontal channels namely,
FP1, FP2, F7, F4, FPz, FC2, and FC5. The best classification accuracy was 66% with 11 EEG features.
Figure 4 shows the accuracy (acc), sensitivity (sen), specificity (spe), and classification score (scr) defined
as 2sin ( π.sen

2 ). sin (
π.spe

2 ) [85].
The feature subset after feature selection using SFFS and MDA is listed in Table 2. In total, from all

the signals, 42 features were selected out of 323 features.
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Table 2. List of selected features from each signal. # represent features.

Data # Extracted Features # Selected Features Features

EEG 270 11

FP1: β, FP2: θ, (θ+ α)/(α+ β)
FP2: θ, (θ+ α)/(α+ β)
FPz: β, θ/β, (θ+ α)/β
F4: θ
F7: θ
FC2: θ/β, α/β

EOG 9 5 Start position of blink, blink duration calculated from the start position of blink to the end value of blink, PERCLOS,
blink rate, blink count.

ECG 14 9
Time: sdHR, SDNN, NN50, pNN50.
Frequency: LF, HF, LF/HF ratio.
Non-linear: dfaAlpha, SampEn.

GSR 10 4
Time: The amplitude of the peaks, duration of the rise time of each peak, mean value.
Frequency: Average power of the signal under 1 Hz.

RR 9 7
Time: Mean value, standard deviation, kurtosis.
Frequency: Power spectra power between the frequency ranges [0, 0.1], [0.2, 0.3], [0.4, 0.7], and [0.7, 1].

Vehicular
data

11 6

Standard deviation of lateral speed.
Standard deviation of lateral speed yaw.
Steering wheel entropy, high frequency component (0.3 Hz), and number of zero crossings.
Lanex or fraction of lane exit from lane departure.

All 323 42 Best subset of features after feature selection.
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3.2. Classification Evaluation

The scenario wise binary classification was performed to see if there are any effects of the scenarios
in the classification performance. Figure 5 shows the performance of binary classification for each
scenario using both test datasets of BSet-1 and BSet-2. It can be seen that the balanced accuracies
(BAcc) of HE and CR scenarios are lower and higher only for the SW scenario using RF on the data of
BSet-1. It is important to mention that the ratio of the baseline and task groups in the BSet-1 is much
imbalanced than the BSet-2. For both BSet-1 and BSet-2, the BAcc is higher for the side wind scenario.
Using the test dataset of BSet-1, in the HE scenario, BAcc(s) are 47%, 58%, and 57% for k-NN, SVM,
and RF, respectively; in the CR scenario, BAcc(s) are 51% for k-NN, 50% for SVM, and 57% for RF;
in the SW scenario, BAcc(s) are 66% for k-NN, 71% for SVM, and 79% for RF.
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On the other hand, using the test dataset of BSet-2, in the HE scenario, BAcc(s) are 73%, 65%, and 64%
for k-NN, SVM, and RF, respectively; in the CR scenario, BAcc(s) are 64% for k-NN, 68% for SVM, and 63%
for RF; in the SW scenario, BAcc(s) are 72% for k-NN, 64% for SVM, and 72% for RF.
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As observed in Figure 5, the classification may have some influence on the driving scenario,
hence a categorical feature is incorporated with the existing features presented in Table 2. Afterwards
the multiclass classification was performed using the MSet dataset and the binary classification was
performed using both BSet-1 and BSet-2 datasets.

Multiclass classifications with k-NN, SVM, and RF are performed to investigate how each
class contributed to the classification performance. On the training dataset of MSet, using 5-fold
cross-validation, k-NN achieved 53% classification accuracies, whereas both SVM and RF achieved
59% classification accuracies. Table 3 shows the confusion matrices for the test dataset. RF shows
better performance than k-NN and SVM considering the number of correct classifications of each
target group.

Table 3. Confusion matrix of k-nearest neighbour (k-NN), support vector machine (SVM), and random
forest (RF) multiclass classification on the test dataset. The grey cells represent the true positive (TP)
value. TP represents the number of observations that were correctly classified, and the precision value
in percentage.

Predicted Class
Actual Class

k-NN SVM RF
Baseline 1-back 2-back Baseline 1-back 2-back Baseline 1-back 2-back

Baseline 60
(65%)

18
(20%)

14
(15%)

66
(72%)

13
(14%)

13
(14%)

70
(76%)

15
(16%)

7
(8%)

1-back 24
(34%)

39
(56%)

7
(10%)

22
(31%)

39
(56%)

9
(13%)

24
(34%)

36
(51%)

10
(14%)

2-back 13
(25%)

19
(35%)

21
(40%)

16
(30%)

12
(23%)

25
(47%)

13
(25%)

8
(15%)

32
(60%)

Table 4 represents the classification summary on the test dataset of MSet considering true positive
(TP), true negative (TN), false positive (FP), false negative (FN), precision, sensitivity, specificity,
and balanced accuracy (BACC). Here, one-vs.-rest was used to determine the target groups in the
positive (P) and negative (N) classes. The positive class is the target group that corresponds to either
baseline, 1-back, or 2-back task in each column. The negative (N) class consists of the other two target
groups, i.e., 1-back + 2-back, baseline + 2-back, and baseline + 1-back. Overall, RF shows better
performance considering the balanced accuracy.

Table 4. Classification summary of multiclass classification for k-NN, SVM, and RF on the test dataset.
Where the target classes are baseline (BL) or no-task, 1-back, and 2-back task. SEN: Sensitivity; SPE:
Specificity; PRE: Precision; ACC: Accuracy; and BACC: Balanced accuracy.

Criteria
k-NN SVM RF

BL 1-back 2-back BL 1-back 2-back BL 1-back 2-back

TP 60 39 21 66 39 25 70 36 32
FP 32 31 32 26 31 28 22 34 21
FN 37 37 21 38 25 22 37 23 17
TN 86 108 141 85 120 140 86 122 145
PRE 0.65 0.56 0.40 0.72 0.56 0.47 0.76 0.51 0.60
SEN 0.62 0.51 0.50 0.63 0.61 0.53 0.65 0.61 0.65
SPE 0.73 0.78 0.82 0.77 0.79 0.83 0.80 0.78 0.87

BACC 0.68 0.65 0.63 0.70 0.69 0.67 0.73 0.68 0.75
F1-score 0.63 0.53 0.13 0.67 0.58 0.50 0.70 0.56 0.63

MCC 0.35 0.30 0.44 0.40 0.39 0.35 0.46 0.37 0.51

Binary classifications were performed using BSet-1 and BSet-2. The observed classification
accuracies for k-NN, SVM, and RF with 5-fold cross-validation on the training dataset of BSet-1 are 79%,
81%, and 82%, respectively. On the training dataset of BSet-2, the achieved classification accuracies
are 67% for k-NN, 72% for SVM, and 75% for RF. The prediction performance of k-NN, SVM, and RF,
on the test dataset of each of BSet-1 and BSet-2 is presented in Table 5.
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Table 5. Performance summary of the classifiers for binary classification on the test dataset.

Criteria
BSet-1 BSet-2

k-NN SVM RF k-NN SVM RF

Task group (P) 52 52 52 126 126 126
Baseline group

(N) 163 163 163 89 89 89

TP 20 27 38 116 104 107
FP 8 10 11 47 43 36
FN 32 25 14 10 22 19
TN 155 153 152 42 46 53

Sensitivity 0.38 0.52 0.78 0.92 0.83 0.84
Specificity 0.95 0.86 0.91 0.47 0.52 0.60
Accuracy 0.81 0.84 0.88 0.73 0.70 0.74

BACC 0.67 0.73 0.85 0.70 0.67 0.72
F1-score 0.50 0.61 0.75 0.80 0.76 0.80

MCC 0.43 0.52 0.68 0.45 0.36 0.46

4. Discussion

Cognitive loading activities on traffic safety and its relation to driving performance has drawn an
increasing attention to the traffic safety research issue. Here, the cognitive load dataset was acquired
and analysed to understand the effect of cognitive load on traffic safety. Driving a vehicle is an
anticipatory task where a driver needs adaptation concerning the road users’ behaviours and their
actions which are dynamic in nature. Driving is often considered as a process that is nearly automated,
partially self-paced, and a satisficing task [93]. A driver can somewhat distribute the load of the driving
task by deciding when, where, and what they do. This holds true not only for driving-related tasks
but also for secondary tasks such as talking on a mobile phone or conversing with a passenger while
driving. Most of the time this works well, but sometimes it does not [6,7,94–96]. In the cognitive
load theory, working memory is considered as an executive function that holds information and
mentally processes that information [97]. Hence, in this paper the cognitive load is considered as
the amount of cognitive resources (i.e., mechanisms necessary for cognitive control) used at a certain
time [11]. The effect of cognitive load on traffic safety is considered utilizing the attention selection
model (ASM) [11]. According to the ASM model, the cognitive load does not affect the automatic
performance but impairs subtasks that rely on cognitive control.

Among the physiological signals, the EEG is one accessible technique to measure cognitive
load and the EEG signal analysis can detect changes in an instantaneous load and the effects of
cognitively loading secondary tasks. The EEG feature selection in cognitive load classification showed
the best feature subset selected by the SFFS algorithm, containing θ/β, α/β, (θ+ α)/β, θ, β, and α

features from only the frontal electrode. Features from the frontal region might suggest only motor
function, and attention affected the cognitive loading activities. HRV from ECG, GSR, and RR features
might be better indicators for cognitive load classification, a finding also supported by other studies.
HRV features can be an important indicator for classifying cognitive load because cognitive load
modulates the sympathetic and parasympathetic nervous systems inversely to driver sleepiness [98].
The time domain GSR, i.e., the peak amplitude, the duration of the rise time of each peak, and the
mean GSR value were found to be useful indicators for cognitive load detection when a person is
under the influence of different stress levels [99]. Furthermore, the states depend on the experimental
design, driving environment, confounding factors, etc., and hence, multi-variate data and data fusion
considering the driving context are needed to accurately assess the cognitive load. It should be
noted that subjective measures, for example, the NASA-TLX [100] or the DALI (driving activity load
index) [101], require understanding the importance of physiological features and vehicular features.

In this paper, the cognitive load classification was performed based on the baseline (just driving)
and n-back task (1-back and 2-back). This approach could have affected the classification performance
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because the influence of a cognitive loading task (e.g., on working memory) might not be the same
for everyone, especially for the 1-back task. It is noteworthy to mention that the cognitive load
classification distinguishes among different levels of cognitive-level tasks and does not imply how
cognitively loaded participants are performed during the n-back task. In terms of classification,
the problem lies in the class noise in the dataset. Apart from the analysis presented in this paper,
several other classification experiments [102] have been conducted considering features according
to (1) cerebral activities recorded via EEG, (2) cerebral activities recorded via EEG and eye blink
waveform via EOG, (3) non-cerebral physiological signals recorded via HRV, GSR, and respiration,
and (4) driving behavioural data based on vehicular parameters obtained from the control computer.
The results showed poor performance than combining all features as the results presented in this
paper. By using only the EEG features from BSet-1 (i.e., baseline = normal + 1-back task, and the
task group = 2-back task) dataset, the height accuracy of 74%, 46% sensitivity, and 78% specificity
was obtained by the RF algorithm. The performance was decreased using only the EEG features
from the BSet-2 (i.e., baseline = normal, and the task group = 1-back task + 2-back task) dataset.
Again, RF showed the best performance with 57% accuracy, 61% sensitivity, and 49% specificity.
When features from both the EEG and EOG signals were combined, a slight improvement was observed
in the classification performance using both the BSet-1 and BSet-2 datasets. Here, k-NN showed the
best performance for both BSet-1 and BSet-2 datasets and the accuracy, sensitivity, and specificity
were around 75%, 59%, and 81%, respectively. It has been observed that using only the vehicular
features classification perform similarly as using the EEG features only. However, a combination of
features from non-cerebral physiological signals, i.e., HRV, GSR, and respiration, was found to perform
better for the classification compared to using only EEG, vehicular, and a combination of EEG and
EOG features. The RF algorithm obtained the best performance using the BSet-1 dataset considering
78% accuracy, 70% sensitivity, and 82% specificity. Similarly, RF showed the best performance using
the BSet-2 dataset considering 73% accuracy, 75% sensitivity, and 69% specificity. In all the cases,
i.e., using only the EEG feature, a combination of features from EEG and EOG, features from vehicular
signal, and combination of features from ECG, GSR, and RR signals the obtained classification accuracy
was not more than 50%, and the sensitivity and specificity were around 55% and 60%, respectively.

Overall, a 10% improvement in the classification performance was observed by using a combination
of all multivariate features compared to the performance observed when using only the features from
the EEG signals. A 20% improvement in the classification performance for multiclass classification
was observed by using a combination of all multivariate features compared to that observed using
only the feature based on the vehicular data. The current classification approach implies that
it is not individualised; that is, the response pattern is assumed to be the same for all drivers.
The scenario-wise classification shows that there is an effect of driving condition on the cognitive
load. Thus, integrating contextual information as features can be beneficial to the classification.
However, in this work, it was not fully comprehending the consequence of adding contextual features.
The limitation of this approach can be overcome by incorporating subjective measures into the study
design and adding a wide range of contextual information.

5. Conclusions

The objective of this paper was to provide analytics on multivariate data for driver cognitive load
classification. The multiclass classification results portray the difficulty to correctly classify when there
are imbalance classes in the dataset, which leads to performing the binary classification. These analytics
emphasize the study design with a wide range of contextual information and subjective measure to
predict or identify the level of cognitive load during driving. It is also found that multicomponent
features could improve the overall classification performance. Another important issue of this study
was the imbalanced class in the dataset. Hence, in this study, BACC, MCC, and F1-score were
considered along with accuracy, sensitivity, and specificity. It should be noted that though for some
occasions F1-score, sensitivity, and specificity showed reasonable measures but looking at MCC it is
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evident that the models tend to bias towards the class with higher observations. Though the inclusion
of contextual feature is inconclusive, yet it is believed that contextual information not only can improve
the classification performance but also can provide insights when it requires interpretation of the ML
model. It is argued that the n-back task is an efficient task to measure the individual working memory
capacity [103]. The scenario wise classification with a BSet-2 could better discriminate between normal
driving and n-back task compared to the binary classification with BSet-1. It can be concluded from
the result of the scenario wise classification that the cognitive load impairs the driving subtask that
depends on cognitive control which is also the suggestion by ASM. Although studies [103,104] found
more discriminatory EEG activity patterns between the n-back tasks, those studies only considered
the n-back task as the main discriminatory factor. However, in this study the n-back task is adapted
for ASM that may influence the classification performance and supports the idea of ASM that the
automatic performances of the driving task are unaffected by the cognitive load.
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