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Abstract: Brain tumors, such as low grade gliomas (LGG), are molecularly classified which require
the surgical collection of tissue samples. The pre-surgical or non-operative identification of LGG
molecular type could improve patient counseling and treatment decisions. However, radiographic
approaches to LGG molecular classification are currently lacking, as clinicians are unable to reliably
predict LGG molecular type using magnetic resonance imaging (MRI) studies. Machine learning
approaches may improve the prediction of LGG molecular classification through MRI, however,
the development of these techniques requires large annotated data sets. Merging clinical data from
different hospitals to increase case numbers is needed, but the use of different scanners and settings
can affect the results and simply combining them into a large dataset often have a significant negative
impact on performance. This calls for efficient domain adaption methods. Despite some previous
studies on domain adaptations, mapping MR images from different datasets to a common domain
without affecting subtitle molecular-biomarker information has not been reported yet. In this paper,
we propose an effective domain adaptation method based on Cycle Generative Adversarial Network
(CycleGAN). The dataset is further enlarged by augmenting more MRIs using another GAN approach.
Further, to tackle the issue of brain tumor segmentation that requires time and anatomical expertise
to put exact boundary around the tumor, we have used a tight bounding box as a strategy. Finally,
an efficient deep feature learning method, multi-stream convolutional autoencoder (CAE) and feature
fusion, is proposed for the prediction of molecular subtypes (1p/19q-codeletion and IDH mutation).
The experiments were conducted on a total of 161 patients consisting of FLAIR and T1 weighted with
contrast enhanced (T1ce) MRIs from two different institutions in the USA and France. The proposed
scheme is shown to achieve the test accuracy of 74.81% on 1p/19q codeletion and 81.19% on
IDH mutation, with marked improvement over the results obtained without domain mapping.
This approach is also shown to have comparable performance to several state-of-the-art methods.

Keywords: CycleGAN; 1p/19q codeletion; IDH genotype; domain mapping; brain tumor; deep learning

Brain Sci. 2020, 10, 463; doi:10.3390/brainsci10070463 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
https://orcid.org/0000-0002-8018-1387
https://orcid.org/0000-0003-4759-7038
https://orcid.org/0000-0002-9597-673X
http://www.mdpi.com/2076-3425/10/7/463?type=check_update&version=1
http://dx.doi.org/10.3390/brainsci10070463
http://www.mdpi.com/journal/brainsci


Brain Sci. 2020, 10, 463 2 of 20

1. Introduction

Diffuse gliomas are the most common type of cancer originating from the brain. Based on
histological and molecular features, they have been graded by the World Health Organization from
grade II-IV and classified as either astrocytomas and oligodendrogliomas [1]. Diffuse low grade gliomas
(WHO grade II) can consequently be classified on the basis of IDH mutation and 1p/19q codeletion
and this has a major impact on prognosis and response to therapy [2]. Oligodendrogliomas contain IDH
mutation and 1p19q codeletion, while astrocytomas have no codeletion and are further subclassified
if they are IDH mutated or not. IDH wild-type gliomas are molecularly similar to GBMs and have
poor prognosis. Low grade gliomas (LGGs) tend to present with seizures and typically involve
the frontal lobes, and these tumors usually do not show significant contrast enhancement while some
of the oligodendrogliomas contain radiographically detectable calcification. The molecular information
would be of practical value since oligodendrogliomas harbor better prognosis than the other LGG
subtypes and also seem to be more sensitive to oncological treatment [3,4]. This molecular information
requires a tissue diagnosis, but recently several advanced machine learning techniques have been
shown to predict molecular subtypes in gliomas based upon preoperative imaging [5–8]. Non-invasive
diagnostic tools are attractive in identification since it may assist in prognostication and would
significantly enhance patient counseling and shared decision making. However, major challenges still
remain before putting these tools into clinical use.

Related Work

Machine learning methods for classifying gliomas are either based on hand-crafted features
or automatic learning of features. Kang et al. [9] introduced a method using diffusion weighted
MRIs based on histogram analysis of diffusion coefficient maps over the entire volume of tumor
for glioma grading. Zhou et al. [7] used histogram, shape and texture features combined with
age information to a random forest algorithm for IDH mutation and 1p/19q codeletion prediction.
Han et al. [5] performed an analysis to generate radiomics signature by extracting 647 MRI based
features for predicting 1p/19q codeletion status. Another radiomics based approach was studied
by Yu et al. [10] on IDH mutation prediction. Van der Voort et al. [11] extracted 78 MR image features
and applied support vector machine (SVM) on them together with age and sex information for 1p/19q
status prediction. Zhang et al. [12] also used SVM based approach for prediction of IDH mutation.
These methods are based on conventional machine learning methods without automatic feature
learning from brain MRIs.

The recent development of deep learning methods has drawn much attention for brain
image analysis [13–15]. These methods may provide solutions for predicting molecular subtype
gliomas by automatic feature learning. Matsui et al. [6] proposed a residual network-based model
using multiple scans from MRI, positron emission tomography (PET) and computed tomography
(CT) along with different characteristics of patients as numeric data for predicting three categories
of molecular subtype. Liang et al. [16] applied 3D DensNets using multi-modal MRIs for IDH
mutation prediction. However, deep models often require large amount of annotated data, and the
dimension of features is rather high due to the complexity of the high dimensional input data
(e.g., 3D medical images). Although convolutional neural networks (CNNs) are frequently used
for characterizing visual objects in computer vision, deep autoencoder (AE) is often adopted
as well. Deep AE is another type of deep learning method for characterizing images, however,
the principle of AEs is different from that of CNNs and is based on applying codebooks (encoder
and decoder) and generating codes. Additional advantages of AEs can include, e.g., noise robustness
and feature reduction (depending on codebook size). It can also be used for both supervised
and unsupervised learning. Further, the trained encoder part of the convolutional AE (CAE) [17,18]
could also be used as a CNN. Such a setting can be benefited by first applying pre-training using a CAE
for learning the manifold of dataset in a self-supervised way, followed by further refining the learning
of network by learning complex features through supervised refinement. Such an approach has shown



Brain Sci. 2020, 10, 463 3 of 20

an improved generalization performance as compared to training the networks from the scratch with
a small dataset [19]. Observing these advantages of CAEs along with considering our application,
where MRI data could be noisy, we decided to select CAEs as the method for deep learning of brain
tumor features in our study.

One practical challenging issue of using clinical dataset for glioma subtype classification is that
the available medical datasets are often rather small, as they are usually collected by a local
hospital from a region of a country. It might be desirable to learn a model on a specific subset
of data [20,21]. For example, a hospital may require a model to be deployed that might perform
well only on the hospital’s patient population. However, using the limited data from a single
hospital might not be well enough to learn an accurate model causing generalization problem
and achievements made for one hospital is not true progress unless it can be disseminated to other
settings as well. Recently, a new data augmentation technique and its variations have gained
popularity, known as Generative Adversarial Networks [22]. The GAN frameworks have been used
in various medical imaging applications [23,24]. Most studies have proposed image-to-image translation
such as label-to-segmentation [23], segmentation-to-image [25] or cross-modality translation [24,26].
Inspired by the above, we have decided to investigate deep convolutional GAN for augmenting
synthetic training data in addition to existing data to improve the generalization performance
(i.e., on the test set).

Another very challenging issue encountered in the real clinical application is that when there
are many small glioma datasets, simply merging them into one dataset would not lead to significant
increase of the generalization performance (i.e., on the test set) of the classifier. This is probably due
to many reasons, for example, the MR image settings depend on the applied magnetic field, the radio
pulse sequence frequency, the algorithm that the device follows for image reconstruction and so on.
Hence the scanner dependent distribution of MRIs from different devices under different settings
therefore tend to be creating feature mismatch [27]. This mismatch has been overcome majorly by two
methods: global histogram-matching methods [28,29] and joint histogram registration method [30,31].
However, these methods work on paired-MRIs from source to target domains which are difficult
and expensive to obtain. Recently, domain adaption using deep learning techniques gain much
attention in the areas of computer vision [27,32]. However, for medical image datasets, especially
for glioma datasets, such studies are in their infant stage. A particular challenging issue is whether
one may obtain an effective domain mapping method that is able to map between MRI datasets, in the
meantime, retaining the molecular-subtype information after the mapping.

Our work is mainly motivated by the following issues: molecular marker-information in low
grade gliomas (LGGs) are rather recently integrated and most datasets are small; the mismatches that
arise when multiple datasets from different sources are combined together to enlarge the data size.
Considering these challenges, our work is focused to propose a robust method by domain mapping
to overcome the scanner dependent mismatches that preserves the molecular structural originality
of gliomas. In this paper, we propose a novel approach based on CycleGAN [33] and multistream
convolutional autoencoder framework [34] as a classifier. Although CycleGAN has been applied
for non-medical applications [33] and cross-modality translation of MRIs [26], to the best of our
knowledge this is the first work used for domain mapping that retains molecular-subtype information
in low grade gliomas. Moreover, the data used in this work is raw clinical data for the prediction of
1p/19q codeletion and IDH genotype without annotations (tumor segmentation masks) obtained from
multiple hospitals. The main contributions of this paper include:

• Propose a domain adaptation method based on unpaired-CycleGAN that maps several small
datasets into a common one while preserving molecular biomarker information of brain tumors.

• Propose to enlarge the training dataset after mapping, using deep convolutional GAN (DCGAN)
to produce augmented multi-modality MRIs (T1 weighted with contrast enhanced (T1ce), FLAIR).
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• to tackle the crucial and time consuming task of accurate tumor segmentation which needs
time and anatomical expertise to put soft tissue boundaries, a rectangular tight bounding box
is used instead.

• Propose a multi-stream convolutional autoencoders (CAEs) and feature fusion scheme for deep
learning of molecular-level information from MRIs in the mapped domain, where pre-training
is applied on GAN augmented MRIs, while refined training is applied on MRIs from
mapped domain.

• Extensive empirical tests and performance evaluation on the effectiveness of the proposed scheme
and comparison with some state-of-the-art methods.

It is worth mentioning that although a part of this work has been presented in [34] which was
based on classification of low and high grade gliomas, however, this paper applies to classify molecular
subtypes in LGGs instead of tumor grading. Furthermore, this paper differs in terms of: mapping
multi-source data to a common domain; dealing with the clinical MRIs that are not uniform in size
in all 3D directions; avoiding laborious task of defining soft tissue boundaries; and lastly, including
empirical tests and evaluation on two clinical datasets from different hospitals.

2. Overview of the Proposed Method

We propose a novel approach based on unpaired-CycleGAN to overcome the scanner dependent
domain mismatches while preserving the subtitle molecular-biomarker information of MRI data.
The basic idea is to overcome the problem of LGG MRI data scarcity and make the small raw clinical
data usable from multiple institutions for improved performance of subtype glioma classification,
which consists of: (a) using unpaired-CycleGAN to map source domain MRIs (FLAIR, T1ce) to target
domain MRIs. (b) The combined MRI data are still small in size because of (i) still less number of
subjects, (ii) poor resolution of 3D MRI at sagittal and coronal views, (iii) large class imbalance in IDH
genotype. Therefore, deep convolutional GAN (DCGAN) is used to augment synthetic MRIs across
different modalities to enlarge the training data. The fake generated MRIs cover more tumor statistics
that offer more robustness to its distribution although they look similar to real MRIs visually [22].
(c) Extracting high-level glioma features through applying 2-streams of convolutional autoencoders
(CAEs) from multi-modality MRIs (T1ce, FLAIR) that is followed by information fusion with 2-stage
training strategy. The augmented MRIs are used for pre-training to capture the glioma features while
the real MRIs are used for refined training.

Figure 1 shows the block diagram of the proposed scheme for LGG-subtype glioma prediction
based on clinical MRI data from two hospitals. Input 2D images from multi-modality MRIs (T1-contrast
enhanced (T1ce), FLAIR) are fed into CycleGAN for mapping from source domain A to target domain
B to generate mapped 2D images Ã for each modality. These mapped data are added to the target
domain to obtain total data D. To further enlarge the size of training data Dtrain for each modality,
image augmentation is done by employing deep convolution GAN (DCGAN) [35]. As the datasets
have no tumor masks, the tumor regions are extracted by fixing a tight rectangular bounding box
around ROI of images. These images with only tumor regions are used in a two step training
strategy by 2-streams of convolutional autoencoder (CAE) [34]. During pre-training, phase features
are learned from augmented images D̃train (T1ce-MRI and FLAIR-MRI). In refined training stage,
features are fine tuned from Dtrain MRIs in two streams which are further followed by feature fusion
and two fully connected layers for prediction. Once the model is trained (green dashed box in Figure 1),
the prediction is made on test data Dtest (yellow dashed box). In the remaining of this section, we shall
give further details to explain the block from the blue dashed box (CycleGAN for domain mapping
in Section 2.1) and the green dashed box (data augmentation in Section 2.2 and multi-stream CAE
classifier in Section 2.3) from Figure 1 with their corresponding architectures. Section 3 describes
the experimental setup, obtained results and comparison with the existing methods. Finally, in Section 4
conclusions are drawn from discussion.
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Figure 1. The pipeline of the proposed method. Blue dash box: domain mapping of dataset; Green
dash box: feature learning and training process; Yellow dash box: testing process.

2.1. Unpaired Cyclegan for Domain Mapping

Among many Generative Adversarial Network (GAN) models for image-to-image transformation,
we selected CycleGAN [33] for mapping realistic images from source domain to the target domain
aiming to increase the data size by combining the datasets from multiple sources. A conventional
GAN consists of two-sub networks: a generator and a discriminator. A generator learns to produce
fake image distribution similar to the real image distribution while discriminator learns to distinguish
between both distributions. Both the networks are trained simultaneously to reach an optimal solution
by minimizing the adversarial loss. In contrast, a CycleGAN uses two inputs in two streams, different
from GAN that consists of one stream of input. In addition to adversarial loss, CycleGAN aims to also
minimize the cycle-consistency losses.

2.1.1. Formulation of the Unpaired Cyclegan

The idea is to learn the two mappings between the two unpaired sources of data A and B
respectively.

As shown in Figure 2, MRIs (FLAIR, T1ce) from two datasets are inputs to their corresponding
generators GB and GA. The two output discriminators DB and DA are to compare the corresponding
real images from the synthetic ones. The objective of the unpaired CycleGAN is given as:

L(GA, GB, DA, DB) = LGAN(GB, DB, A, B)+

LGAN(GA, DA, B, A) + λLcyc(GA, GB)
(1)

where

LGAN(GB, DB, A, B) = Eb∼pdata(b)[(DB(b)− 1)2]

+Ea∼pdata(a)[D
2
B(GB(a))]

(2)

Similarly, LGAN(GA, DA, B, A) can be defined as in (2),

Lcyc(GB, GA) = Ea∼pdata(a)[‖GA(GB(a))− a‖1]

+Eb∼pdata(b)[‖GB(GA(b))− b‖1]
(3)

We denote the data distribution as a∼pdata(a) and b∼pdata(b) respectively given the training
samples {ai}N

i=1 from domain A and {bj}M
j=1 from domain B. GB is the generator that takes {a} an input

dataset and generates the mapped dataset {ã}, DB is the discriminator and aims to discriminate
between the real {b} and augmented {ã} images. For estimating cycle-consistency and reversible
mappings between the two domains, it uses explicit reconstruction error to ensure the cycle-consistency
and to reduce Lcyc in (3), where λ is the regularization parameter. For stable training, the least square
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loss is used in LGAN compared to the conventional negative log likelihood. The optimized generator
and discriminator are obtained by training on the total loss in (1):

GA
∗, GB

∗ = arg min
GA ,GB

max
DA ,DB

L(GA, GB, DA, DB) (4)

The unpaired CycleGAN learns to map realistic MRIs from the source domain A to the target
domain B without any correspondence from small datasets at both ends therefore it is named as
unpaired. The mapped domain Ã is now in the desired domain B that has overcome the scanner
dependent differences and matches the sample distribution of target domain B preserving the tumor
characteristics on molecular level. The total data D = {Ã ∪ B} are used for further processing
in the pipeline as shown in Figure 1.

Figure 2. Example of unpaired Cycle Generative Adversarial Network (CycleGAN) used for mapping
images from domain A to domain B for FLAIR-MRIs. The generators are GA and GB and the
discriminators are DA and DB.

2.1.2. Architecture of Unpaired Cyclegan

The architectures of both the discriminators and the generators are shown in Figure 3.

Figure 3. Architecture of the generator and discriminator of unpaired CycleGAN. Conv: 2D Convolutional
filter, s: Stride, ReLU: Rectifier linear unit.
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The input image to the generator is fed to a series of three convolutional layers which shrink
the representation with increasing number of channels. The numbers of filters are set to 32,
64 and 128, respectively. It is then followed by a series of 9 residual blocks each set with 128 filters.
The stream is further expanded using transpose convolutional layers to enlarge the representation
for generating the final image. The numbers of filters selected are 64, 32 and 3, respectively.
Each layer is followed by an instance normalization and ReLU as the activation function except
Tanh in the last layer for reconstruction. This setup has been taken from [33] and adjusted accordingly
for this specific application. For the discriminator, Markovian discriminator (PatchGAN) [36] is used
to distinguish whether the image patches are real or fake. It has fewer parameters, less computational
cost and can handle arbitrary image size compare to the full-image discriminator. For its stable
and better training results, the least square loss function is used rather than the conventional negative
log likelihood function. The discriminator consists of five layers with number of filters set to 64, 128,
256, 512 and 1, respectively. The first four convolutional layers have filter size 4 × 4 and LeakyReLU
as activation function to introduce a small positive gradient when a neuron is not active. The last layer
ends with a sigmoid function.

2.2. Data Augmentation by Deep Convolutional GAN

This part explains the data augmentation block in the pipeline from Figure 1 to generate
augmented synthetic data D̃train. In medical imaging, insufficient training dataset is partially resolved
by slicing the 3D-MRIs to 2D slices with the maximum number covering tumor regions. Usually if data
has enough resolution in all directional views, 2D slices are extracted from all directions of 3D volume
(e.g., axial, coronal and sagittal). However, this strategy helps to some extent to increase diversity
in training set and prevents the model from over-fitting. Since, the size of the datasets A and B are quite
small which is still not sufficient to train a good predictive model. In this regard, we have used deep
convolutional GAN (DCGAN) [35] for enlarging the training data size by generating augmented
images for both modalities T1ce-MRIs and FLAIR-MRIs. Although the CycleGAN generated data
are also considered as synthetic but because it preserves the anatomy of brain image from molecular
level of tumor to the whole brain image unlike DCGAN, we call it here as mapped data. While
the augmented distribution of data from DCGAN presents some differences, for instance; size of tumor,
tumor location and introduce other structural differences. A detail description of the architecture
is given in Table 1.

Table 1. Deep convolutional GAN (DCGAN) architecture.

Layer Filters Output Size

Discriminator D:
Conv-1 + stride 2 + BN + LeakyReLU(0.2) 5× 5× 128 32× 32× 128
Conv-2 + stride 2 + BN + LeakyReLU(0.2) 5× 5× 256 16× 16× 256
Conv-3 + stride 2 + BN + LeakyReLU(0.2) 5× 5× 512 8× 8× 512
Conv-4 + stride 2 + BN + LeakyReLU(0.2) 5× 5× 1024 4× 4× 1024
Dense + sigmoid - 1

Generator G:
Dense + ReLU + reshape 2,662,144 16× 16× 1024
ConvTranspose-1 + stride 2 + BN + ReLU 4× 4× 512 32× 32× 512
ConvTranspose-2 + stride 2 + BN + ReLU 4× 4× 256 64× 64× 256
ConvTranspose-3 + stride 2 + BN + ReLU 4× 4× 128 128× 128× 128
Conv-5 + Tanh 4× 4× 3 128× 128× 3

Unlike CycleGAN from Section 2.1 which accepts input as an image, here, the generator G learns
a mapping from an input vector z (typically from a uniform distribution pz) and maps to an image
y in the target domain pg. While discriminator D learns to distinguish between the true images y
and the fake images G(y). While training, both G and D learn simultaneously where G aims to generate
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images with high probability to achieve the goal pg = pdata and look more real. Conversely, D learns
aiming to discriminate the fake and true images. This is obtained by optimizing the given adversarial
loss function in Equation (5):

LGAN(G, D) = Ey∼pdata logD(y) + Ez∼pz log(1− D(G(z))) (5)

where G tries to minimize the loss function LGAN for images with y�pdata and D tries to maximize
LGAN for images with y∼pdata simultaneously. The aim is that G learns to produce more realistic
augmented images that D might not differentiate from the real ones. For each MRI-modality, DCGAN
is trained separately to synthesize the augmented images from the corresponding modality. A vector
of 100 random samples drawn from a uniform distribution is given to the generator network as input
to generate the augmented MR images and the discriminator compares the original and augmented
images to output a decision: real or fake?

2.3. Review of Multi-Stream Convolutional Autoencoder and Feature Fusion

For the sake of convenience to the readers, a brief overview of the classifier is given in Figure 4.
After overcoming the possible mismatches between the two domains A and B, we have obtained data
D in total. Moreover, both the datasets are available without the tumor masks so to allow the network
to focus on learning the tumor characteristics, we have fixed a rectangular tight bounding box on the
ROI (region of interest) of each image. This step is further proceeded with a two-stage training strategy
based on our previous work on Multistream Convolutional Auoteoncder [25] as a classifier. By doing
so, a noticeable performance is obtained from our empirical test results. A detailed architecture of
one stream of classifier is described in Table 2. For the 2 modalities of MRIs, we train 2 convolutional
autoencoders denoted as CAE-I and CAE-II. In each CAE, the encoder part consists of 6 convolutional
layers for extracting high dimensional feature maps followed by the decoder with 5 convolutional
layers for reconstruction. Since, this overcomplete representation gives the CAE possibility to learn
the identity function. To prevent over representation, max-pooling is used to enforce the learning of
plausible features.

We use two stage training strategy for our classifier network. In pre-training stage, both streams
are unsupervisedly trained on GAN augmented data D̃train with the corresponding MRI modalities.
The aim of this training phase is allowing the encoders learn generic features from augmented
data D̃train. In refine training stage, features learned by encoder layers from 2 streams are proceeded
further by feature fusion for prediction where it has access to the data Dtrain and the class labels.
For the refinement of fused features and compact representation, aggregation and bilinear layers
are used on fusion layers [37]. Let f1 and f2 denote the features from the last encoder layers of size
h× w× c, where h is the height, w is the width and c shows the number of channels. The aggregated
feature vector is obtained by element-wise multiplication as f = f1 � f2 and hence the spatial
relationship of features from both streams are maintained. The bilinear feature layer captures
the interaction of features with each other at spatial locations by computing H = fTf, where H
is the final refinement map. Finally, fully connected layers are introduced each with 256 number of
neurons with random initialization and dropout regularization. Then, a softmax layer is added that
determines the class labels. This way of two stage training has been seen effective in learning generic
features and fast convergence.
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Figure 4. 2-stream convolutional autoencoder (CAE)-based classifier for LGG-subtype classification.

Table 2. Architecture of CAE for a single stream.

Layer Filters Output Size

Encoder layer:
Conv-1 + BN + ReLU 3× 3× 64 64× 64× 64
Conv-2 + Maxpool + BN + ReLU 3× 3× 128 64× 64× 128
Conv-3 + Maxpool + BN + ReLU 3× 3× 128 32× 32× 128
Conv-4 + BN + ReLU 3× 3× 256 16× 16× 256
Conv-5 + Maxpool + BN + ReLU 3× 3× 256 8× 8× 512
Conv-6 + BN + ReLU 3× 3× 512 8× 8× 512

Decoder layer:
Upsample + Conv-7 + BN + ReLU 3× 3× 256 16× 16× 256
Conv-8 + BN + ReLU 3× 3× 256 16× 16× 256
Upsample + Conv-9 + BN + ReLU 3× 3× 128 32× 32× 128
Upsample + Conv-10 + BN + ReLU 3× 3× 128 64× 64× 128
Conv-11 + BN + ReLU 3× 3× 1 64× 64× 1

3. Experimental Results

3.1. Setup, Datasets, Metrics

3.1.1. Setup

Implementation of our network was done using KERAS library [38] with Tensor Flow backend
on a workstation with Intel-i7 3.40 GHz CPU, 48 G RAM and an NVIDIA Titan Xp 12 GB GPU.
By tuning the network carefully through experiments, hyperparameters of CycleGAN were selected
on an average of 150 epochs. The size of the mapped generated images was selected as 128*128.
The learning rate was set to 2.0× 10−4 that was linearly decayed after 100 epochs with Adam optimizer.
For DCGAN network, again Adam optimizer was used but with a learning rate of α = 0.002
and a binary crossentropy loss function. The training of GAN was continued until the output
probability of discriminator approached to 0.5 called the Nash Equilibrium point. The mini batch
size was set to 64. Finally for training the classifier, in pre-training stage of each stream of CAE,
Adam optimizer with mean square error loss function, learning rate of α = 0.002 and mini batch
size of 16 were used for 200 epochs. The performance was evaluated by the loss vs. epochs curve.
We used L2-norm regularization with the parameter value of 1.0× 10−4 for convolutional layers of
each stream of CAE. In the refined-training stage, the categorical cross-entropy was used as a loss
function for evaluating the final performance. Here, we adapted early stopping strategy when the best
validation performance was achieved. The random dropout rate was set to 0.5 for two fully connected
layers. Simple data augmentations such as horizontal flipping and random rotation (maximum at 10◦)
were used as well during this real time training.
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3.1.2. Datasets

The datasets used in the evaluation are provided by two different hospitals for patients with
known 1p/19q codeletion/non-codeletion and IDH mutation/wild-type status: USA dataset from
University of California San Fransisco and France dataset from Department of Neurosurgery,
University of Paris, GHU Paris, Sainte-Anne Hospital. Note that the data are unpaired which means
that both the data sources are from two different institutions having no subject in common. Unlike other
MRI open datasets, the patient’s tumor mask annotations and other demographic characteristics are not
available for both datasets. Based on the availability of modalities, class labels and quality of scan,
82 subjects were selected out of 87 from France dataset and 79 subjects out of 95 were used from
USA dataset. The data consists of 3D brain volume but we have used slices from only axial views
as the number of slices were not sufficient in the coronal and sagittal views in majority of subjects.
The summary of the datasets is given in Table 3a.

Table 3. Datasets. (a) Description of the datasets. (b) Description of data for two case studies.

(a)
Dataset #3D Scans in T1ce #3D Scans in FLAIR # of Patients Selected

USA 85 79 79
France 82 84 82

(b)
Case-A: 1p/19q Codeletion Information

USA Dataset France Dataset # Patients # 2D Slices T1ce/FLAIR

1p/19q codeletion 44 33 77 77× 10 = 770
1p/19q non-codeletion 35 49 84 84× 10 = 840

Case-B: IDH genotype information

IDH mutation 68 69 137 137× 10 = 1370
IDH wild-type 11 13 24 24× 30 = 720

Partition of Dataset for Multiple Runs: Since deep learning requires heavy computation, we adopted
the commonly used approach by averaging several test runs as the performance index (rather than
cross-validation in conventional machine learning). This is done as follows: for each new run, a new
partition is performed to split the dataset into subsets of training (60%), validation (20%) and testing
(20%), where strictly patient-separated partition is applied (i.e., MRI slices from each patient would
only be used in one of the subsets). Then, the training process is repeated, i.e., applying GAN
data augmentation on the new training subset, followed by pre-training of GAN augmented data
and refined-training of multi-stream CAE with mapped MRIs (using the same hyperparameters
and network architecture in all runs). After that, the testing process is applied by using data from
the new test subset for feature extraction and classification. The test performance obtained from such
5 runs are then averaged for the final performance evaluation.

Based on the confirmed histological identification of subjects as LGGs, we considered two case
studies as shown in Table 3b. Two modalities of images, T1ce-MRI and FLAIR-MRI were used
in the tests.
Case-A: This case was applied for classifying subtype-LGG 1p/19q codeletion and non-codeletion.
From Table 3b, one can see that 77 patients are 1p/19q codeleted and 84 patients are non-codeleted.
Observing that the tumor size varies in each subject, 10 slices for each glioma were extracted from each
3D scan for training the multi-stream CAE classifier.
Case-B: This case was designed for classifying IDH genotype. From Table 3b, one can see that
137 patients are labeled as IDH mutated and 24 patients as IDH wild-type. Unlike Case-A, the same
datasets have large class imbalance for IDH genotype. Therefore, 3 time slices have been extracted
for patients from IDH wild-type class.



Brain Sci. 2020, 10, 463 11 of 20

3.1.3. Metrics for Performance Evaluation

To evaluate the performance of diffuse LGG-subtype classification, objective metrics were used
based on the following four kinds of samples.

True positive (TP): the 1p/19q codeletion/IDH mutation gliomas, and were correctly classified as
1p/19q codeltion/IDH mutation.
False positive (FP): the 1p/19q non-codeletion/IDH wild-type gliomas, but were incorrectly classified
as 1p/19q codeltion/IDH mutation.
True negative (TN): the 1p/19q non-codeletion/IDH wild-type gliomas, and were correctly classified
as 1p/19q non-codeltion/IDH wild-type.
False negative (FN): the 1p/19q codeletion/IDH mutation gliomas, but were incorrectly classified as
1p/19q non-codeletion/IDH wild-type.

The metrics computed were defined as accuracy, precision, recall/sensitivity and F1-score given
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, Precision =

TP
TP + FP

Recall =
TP

TP + FN
, F1-score = 2× (Recall× Precision)

Recall + Precision

3.2. Pre-Processing and Tumor Bounding Box

3.2.1. Pre-Processing

This step has an impact on the performance. The clinical 3D volume scans in both the datasets
were unregistered. Thus, the anatomical images from FLAIR and T1ce scans were registered to 1 mm
MNI space template. In addition to this, the bias field correction and skull-stripping steps were
performed using FSL [39] and ANTs [40] tools. To save computation, slices were rescaled to a 128× 128
size and then normalized to range [0, 1]. For training CycleGAN, we used all the axial cross sections
that contained artifact-free brain tissue from each subject. While training DCGAN for generating
augmented images, all images with tumor regions were selected. However, for refined training only
10 slices with tumor parts were used.

3.2.2. Tumor Bounding Box

A tight bounding box of rectangular shape was used by allocating the tumor region on each
image. Images of tumor regions were then used as the input for more efficient tumor feature learning.
Figure 5 shows an example of tumor regions used for feature learning. After that, all tumor regions
were normalized to 64 × 64 pixels.

Figure 5. Example of allocated tumor regions by rectangular bounding boxes for tumor feature learning.
Left to Right: FLAIR, T1ce and FLAIR.
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3.3. Results and Discussions

3.3.1. Performance Evaluation on the Impact of Individual Parts

The purpose of this study is to establish a framework that can enable data to be used from multiple
domains for improved performance. To investigate the effectiveness of our approach on each case
study, first we had to choose which dataset should be mapped to the other. In this regard, we did
a primarily test using multi-stream CAE classifier [34] on the USA and France datasets separately
and then combined them without applying domain mapping. Then we compared the performance
with combined dataset obtained from after domain mapping. Furthermore, we also examined the effect
of using GAN augmented data for pre-training. Finally we applied all these methods in the proposed
scheme and evaluated the overall performance of the pipeline.
Test Performance Comparison on Data without Domain Mapping on the Effect of Pre-training:
Figure 6 shows the test performance from using individual dataset (USA dataset, France dataset)
and the simply combined two datasets (USA+ France). Noting in this set of experiments, we also
compared results from with and without using GAN augmented data for pre-training (shown in blue
and red bars in Figure 6).

Figure 6. Comparison of test performance on individual dataset and on combined dataset (without
domain mapping). Further the effect of using GAN augmented data for pre-training is also examined
(red bars) as compared with those without using GAN augmented data (blue bars). Left: Case-A:
pre-training effect on classification of 1p/19q codeletion/non-codeletion has shown improvement
by about 3%. Right: Case-B: pre-training effect on classification of IDH mutation/wild-type has shown
improvement by about 5%.

Observing the results from Case-A in Figure 6 (Left), it is found that the USA dataset gives
better prediction of 66.87% on test data as compared to the France dataset which is 61.47%.
After, when data were combined without mapping, the performance increased slightly up to 67.03%
but not to a noticeable extent compared to the size of second dataset added, possibly because of
the domain mismatches. Note that the pre-training effect increased the performance by nearly 3%.

Observing the results from Case-B in Figure 6 (Right), one can see a similar trend of behavior but
additionally improved performance is observed for IDH1 mutation/IDH1 wild-type classification.
Again for this case, USA dataset gave better test result which is 70.24% and increased up to 72.38%
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when combined with France dataset. Note that the pre-training effect increased the performance
efficiently by 5%. In this experiment, the reported test results were averaged over 3 runs for both cases.
Hence, USA dataset was set as the target domain and France dataset as the source domain in training
the unpaired CycleGAN.
Effect of Domain Mapping: Domain adaption was then applied by mapping the French dataset
to the USA data domain. Figure 7 shows an example of visual effect of images before and after
the mapping. The domain mapped dataset has also been visually inspected by medical doctors,
where domain mapped French dataset showed consistently more similar distribution as that of USA
dataset. Moreover, the impact of domain mapping on yielding improved test performance has been
discussed in detail in Section 3.3.2.

Figure 7. Visual inspection of image slices before and after the domain mappings. Top: Examples
of FLAIR-MRIs and T1ce-MRIs from USA dataset. Bottom left: 3 original 2D slices of FLAIR-MRIs
(1st row) and T1ce-MRIs (2nd row) from France dataset. Bottom right: Domain mapped 2D slices of
FLAIR-MRIs (1st row) and slices from T1ce-MRIs (2nd row) from France to USA domain.

Impact of GAN Augmented Data: Two issues were studied here: One is how big the size of
augmented data, another is whether one should use augmented data for pre-training or mixed
training with the mapped measured data. To evaluate the quality of augmented images generated
by DCGAN, a single stream of CAE was trained with FLAIR-MRIs for both molecular-subtype
LGGs. After testing the pre-training and the mixed training approaches, we adopted a two-stage
training strategy: pre-training on GAN augmented data, refined training on domain mapped data.
We then tested on adding different sizes of augmented images on training set (60%) in both Case-A
and Case-B studies. Figure 8 depicts the total size of data (augmented + mapped data) used for our
evaluations in both cases.

Considering Case-A, in which 2 classes are well balanced, we took equal number of
augmented images for each class. Different size of augmented images were tested for pre-training.
Observing Figure 9 (Left), the test results shows that the performance did not improve much after
the size (1500 + 1500) of the augmented images for the 2 classes. This indicates the limit of diversity
which augmented images offered during pre-training. A best of 73.44% test accuracy was obtained
after refine training with 460 and 500 images for 1p/19q-codeletion and non-codeletion. The total data
used for both classes are shown in Figure 8.
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Figure 8. Total number of data (GAN augmented + Mapped MRI) for one modality of training set,
i.e., 60% in both case studies.

Figure 9. Test accuracy vs. number of augmented data used for pre-training. Left: Case-A: equal
number of augmented images are used for each class. Noting in the horizontal axis, (1500 + 1500)
is the augmented data size selected. Right: Case-B: more number of augmented images are added
to the class with smaller set to balance the data and (1500 + 2000) is the selected augmented data size.

In Case-B, as the 2 classes were not well balanced, we took more augmented images for the class
with smaller set. Observing Figure 9 (Right), test results show that increasing the augmented image size
beyond (1500 + 2000) for 2 classes that gave 78.57% accuracy showed no any noticeable improvement.
The accuracy was obtained after the refined training stage with 820 and 420 MRIs for IDH mutation
and wild-type, respectively. The total data used are shown in Figure 8. In other sets of experiments,
these selected sizes of augmented MRIs were used.
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3.3.2. Overall Performance of the Proposed Scheme

In this set of experiments, we evaluated the overall performance of the proposed pipeline
(see Figure 1) for both Case-A and Case-B. The final results from 2-stream feature fusion and CAE
classifier on the combined dataset after mapping are shown in Table 4. Columns 3 and 4 show the test
results from applying a single modality from mapped dataset, while column 5 shows the test accuracy
from fusion of 2 modality information. Noting that the test accuracy on FLAIR-MRIs is better as
compared to that on T1ce-MRIs in both case studies, probably due to better contrast of tumor regions
against the background tissues. Observing the results from using 2 modality inputs, the features
learned from both scans were combined through feature fusion layers which increased the prediction on
test accuracy. In Table 4 (columns 6–8) and Figure 10 (Left), we also show the performance by applying
3 metrics: precision, recall and F1-score, for further evaluation purpose comprehensively. The results
are reported on 5 runs where for each run the three sets of data (training, validation and test) were
selected randomly.

Observing the results of Case-A for the performance comparison of with/without domain
mapping from Figure 10 (Right), the test accuracy reached to an average of 74.81% (improved by 7.78%)
that shows a noticeable increase in the accuracy for prediction of 1p/19q codeletion. Observing
the refine training curve in Figure 11 (Left), the validation accuracy (78.44%) was obtained at epoch = 95
with the training accuracy (83.54%) that gave the best test accuracy (76.09%). Precision (71.95%)
indicates here that how many patients predicted as 1p/19q codeleted are actually codeleted.
Recall (75.93%) indicates correctly predicted 1p/19q codeleted patients out of all codeleted ones.
As class distribution is nearly equal, accuracy (74.81%) can be considered a better metric compared
to its F1-score (74.50%).

Figure 10. Left: Test performance of the proposed scheme (averaged over 5 runs) for both case studies.
Right: Test performance of with/without domain mapping for both case studies.
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Figure 11. Training and validation performance as a function of epochs from the refined training
(green) and validation (red) curves. Early stopping strategy was applied, where blue dot points
to the epoch whose parameters were used for test set. Left: Case-A: the validation curve converged at
epoch = 95 and then stabilizes. Right: Case-B: the validation curve converged smoothly at epoch = 74
and then stabilizes.

Table 4. Average test results of 2 datasets with domain mapping for Case-A and Case-B for 5 runs.
The highest value obtained in each run is displayed in bold text.

Case-A: 1p/19q Codeletion/Non-Codeletion

Run Dataset T1ce FLAIR 2-Modality 2-Modality 2-Modality 2-Modality
Acc. (%) Acc.(%) Acc. (%) Precision (%) Recall(%) F1-Score(%)

1 69.37 72.19 75.16 70.67 80.33 75.19
2 USA 70.63 71.56 76.09 72.48 79.00 75.60
3 + 69.69 73.44 73.44 70.57 74.33 72.39
4 France 69.69 72.81 75.47 74.07 73.33 77.00
5 70.00 73.13 73.91 71.95 72.67 72.31

Mean ± | σ | 69.87 ± 0.43 72.63 ± 0.67 74.81 ± 0.98 71.95 ± 1.29 75.93 ± 3.12 74.50 ± 1.85

Case-B: IDH mutation/wild-type

1 71.67 75.24 81.43 79.81 95.18 86.82
2 USA 73.33 78.57 85.71 86.21 92.59 89.28
3 + 69.05 74.76 78.57 76.47 96.29 85.24
4 France 75.00 71.90 75.71 78.66 95.56 86.28
5 73.81 72.62 84.52 88.68 87.03 87.85

Mean ± | σ | 72.57 ± 2.06 74.62 ± 2.34 81.19 ± 3.70 81.96 ± 4.67 93.33 ± 3.39 87.09 ± 1.38

Unlike the previous case, the class distribution in Case-B for IDH mutation and IDH wild-type
is uneven. The test accuracy reached to 81.19%. Precision (81.96%) indicates here that how many
patients predicted as IDH mutated are actually mutated. Recall (93.33%) indicates the correctly
predicted IDH mutated patients out of all mutated ones which is an increased positive classification rate.
In this case, F1-score proves to be a better metric for evaluation with an average value of 87.09% due
to imbalance classes. Again, observing Figure 10 (Right) for performance comparison of with/without
domain mapping, a noticeable increase in accuracy (81.19%, improved by 8.81%) was achieved. Noting
the refine training curve from Figure 11 (Right), where best test accuracy (85.71%) was obtained at
epoch = 74 with training accuracy (92.60%) and validation accuracy (86.25%).

A summary of the overall performance, where different metrics are shown in Figure 10 (Left)
and the effect of domain mapping to the overall performance improvement in Figure 10 (Right), shows
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that the proposed scheme is effective, and could be a useful approach for further research on molecular
subtypes prediction from MRIs.

3.4. Comparison with State-of-the-Art and Discussion

To further evaluate the proposed scheme, we compare our performance with several
state-of-the-art results on prediction of 1p/19q deletion/non-codeletion and IDH1 mutation/wild-type.
There exists some reported work on these molecular-subtype gliomas using open datasets [41,42],
but we have mostly selected few ones for comparison that have used clinical datasets as shown
in Table 5.

Table 5. Comparison with some existing state-of-the-art performance. It is worth noting that different
datasets with different data size mostly from one source, different modalities and scan types were
applied, hence these methods can be used as an indication or reference for “good” performance
reported so far.

Case Study Method # of Patients Test Accuracy (%)

Case-A

Zhou [7] 281 71.60
Han [5] 277 72.00

Van der Voort [11] 413 72.30
Matsui[6] 217 75.10

Proposed Scheme 161 74.81

Case-B

Yu [10] 140 80.00
Zhang [12] 103 80.00
Matsui[6] 217 82.90

Proposed Scheme 161 81.19

It is worth mentioning that these comparisons can only be used just as an indication because they
were applied to different datasets with different scan types, MRI modalities and patient’s characteristics.
For instance, Matsui et al. [6] used residual network-based deep network that required more
modalities of data (FLAIR, T1ce, T1, T2), including PET and CT scans in addition to other side
information of patients as numeric data. Zhou et al. [7] used hand-crafted features such as
histograms, shape and texture from data that was collected from single institution combined with age
information for a random forest classifier. Han et al. [5] used an analysis to generate radiomics
signature by extracting 647 MRI-based features from T2-MRIs and side information of patients.
Van der Voort et al. [11] used support vector machine classifier to extract features from T1 and T2-MRI
along with age and sex information on 284 patients and validated results on 129 patients from TCIA.
Yu et al. [10] used radiomics based approach on FLAIR-MRI data from single hospital. However,
the method required segmented tumor masks, tumor characteristics (tumor location and volume)
and other numeric data of patients. Zhang et al. [12] introduced a method on 103 patients from
TCGA and TCIA data based on the availability of their quantitative texture, histogram features
and scan type (T1, T1ce and T2, FLAIR) availability. All these methods were based mostly on using
a single and relatively large dataset. Observing the last row for each case in Table 5, our proposed
scheme indicates relatively good performance on using moderate data size of 161 patients with
two MRI modalities obtained from two institutions, provided with no segmented tumor masks or other
patient’s/tumor’s side information for assisting classification. This also supports that the performance
is comparable to the state-of-the-art.
Limitation and Future Work: Despite the method is promising in domain mapping and molecular-
subtype classification, some challenges remain before putting this tool into clinical usage.
Further improvement is required to increase the test performance, for example, to make the network
work more robustly, more datasets from multiple institutions should be added through domain
adaptation to enlarge the training data. The imbalance between the classes needs to be mitigated
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by seeking more augmented data. As a future work, we can compare the strategy of bounding box
with true tumor mask segmentation. Moreover, increasing the number of classes by combining IDH
genotype and 1p/19q codeletion status into one classifier would also be desirable for the clinical usage.

4. Conclusions

Since the introduction of molecular-markers in LGGs was implemented recently in the WHO
2016 classification, the data availability is quite low. The proposed scheme has been tested to enlarge
the clinical datasets from independent sources and to overcome the domain mismatches of the datasets
for the prediction of molecular-subtypes for LGGs. The results obtained on the test dataset have
shown a noticeable increase in the performance compared to when the dataset was not mapped
(74.81%, improved by 7.78% on 1p/19q codeletion status) and (81.19%, improved by 8.81% on
IDH mutation status). It shows that unpaired CycleGAN has maintained the subtitle-molecular
information while mitigating the domain differences. The effect of pre-training and its effect with
GAN augmented images has both resulted in increased generalization performance of multi-stream
CAE classifier. In addition, instead of time consuming and laborious task of putting exact tumor
boundary, the method of using bounding box around the tumor proved to be effective. Although test
results obtained by the proposed scheme indicate promising performance compared to the state-of-the-art,
but this comparison should be considered just as an indication because different methods have used
different data size and scan types. Further, we discussed limitations of the method and some possible
future work.
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