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Abstract: In this paper we compared different visual feedback methods, informing users about
classification progress in a steady-state visual evoked potential (SSVEP)-based brain–computer
interface (BCI) speller application. According to results from our previous studies, changes in stimulus
size and contrast as online feedback of classification progress have great impact on BCI performance
in SSVEP-based spellers. In this experiment we further investigated these effects, and tested a
4-target SSVEP speller interface with a much higher number of subjects. Five different scenarios were
used with variations in stimulus size and contrast, “no feedback”, “size increasing”, “size decreasing”,
“contrast increasing”, and “contrast decreasing”. With each of the five scenarios, 24 participants had
to spell six letter words (at least 18 selections with this three-steps speller). The fastest feedback
modalities were different for the users, there was no visual feedback which was generally better
than the others. With the used interface, six users achieved significantly better Information Transfer
Rates (ITRs) compared to the “no feedback” condition. Their average improvement by using the
individually fastest feedback method was 46.52%. This finding is very important for BCI experiments,
as by determining the optimal feedback for the user, the speed of the BCI can be improved without
impairing the accuracy.

Keywords: brain–computer interface (BCI); steady-state visual evoked potential (SSVEP); user
feedback; electroencephalography (EEG)

1. Introduction

Brain–computer interfaces (BCIs) use brain signals to control computer applications or external
devices. By measuring the normal electrical brain response, i.e., to specific stimuli, an application can
be controlled without the need for hand-movements [1]. Electrical brain activity can be measured, for
example, by electroencephalography (EEG), which is non-invasive and relatively cheap. These facts,
combined with the simple setup using an EEG cap allows BCI experiments with larger subject groups;
because the procedure does not involve surgery, just simple and easy setup, the used consumables are
cheap to replace, and the price of the equipment allows even using multiple recording stations.

One of the commonly used methods in BCIs are steady-state visual evoked potentials (SSVEPs)
which can be detected from the occipital area of the brain when the users are looking at a light source
flickering with a constant frequency between 4 and 90 Hz [2]. Flickering light sources are easily
realisable, for example, on a computer monitor. The constant frequency of the visual stimulation can
then be set based on the vertical refresh rate of the monitor, which further improves the quality of the
visual stimuli [3]. There have been tests with a wide variety of flickering objects, from checkerboard
stimuli, through simple squares, to human faces [4,5]. Differently coloured stimuli were also tested on
multiple occasions [6–8].
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While most other BCI modalities require training before the first use of the system, SSVEP-based
BCIs can be operated with little to no training [9], although training may improve performance. On the
other hand, constant flickering can cause visual fatigue or discomfort for some users.

Commonly, BCIs are developed for people with motor disabilities, who have restricted means for
communication. While BCIs are a viable solution for communication without muscle use, their speed
is still lower as compared to other methods of communication. Therefore, BCIs can benefit greatly from
improvements in performance. Several solutions exist targeting BCI performance, such as changes
in classification algorithms, or personalising the parameters of the system. In some cases, these
personalised parameters result in a faster or an overall more accurate system, for example, bigger
stimuli can result in stronger brain responses [10].

Several other BCI parameters can also be adjusted, for example, the flicker frequencies of the
stimuli, which manifest in faster or slower flickering. On the one hand, faster flickering can be
more user friendly, on the other hand, the brain response is weaker, which can result in inferior
performance [11,12]. Another adjustable parameter is the time the flickering stops after selections,
usually called gaze shifting time. This defines how much time users have to find the next target,
usually the next letter to be spelled via BCI. Longer times make the system slower; however, too
short times may result in erroneous classifications. The classification threshold can also be adjusted,
as this has an effect on the accuracy and the speed of the BCI; this parameter benefits the most from
personalisation [13].

Some stimulus parameters that can influence the amplitude of the evoked neural response are the
size [14], contrast [15], and colour [6–8] of the stimuli, as well as their distance from one another [16].
Previously, we examined the use of size, contrast, and duty-cycle changes as methods for feedback,
as well as a combination of them. According to our results, size and contrast changes resulted in
performance increase [17].

As it can be seen from this multitude of parameters, BCIs require, or at least function better with,
personalisation. Apart from classification parameters of the BCI, the users themselves influence the
performance greatly. This can be the consequence of fatigue, lack of attention, or even the attitude of
the user, not to mention muscular activity which can cause noise in the recorded EEG data. Therefore,
it seems reasonable to involve the users more in the use of the BCI. In our previous experiments [10,17],
we attempted to improve BCI performance by changing these parameters according to the classification
results in an online SSVEP-based BCI speller. We found that informing the users about the progress
of the target selection can greatly improve performance. We investigated several different feedback
methods and found that spelling time can be reduced to 12%–77% of the “no feedback” condition using
the personalised feedback. The number of participants in these studies was low, however, already
with this lower number of subjects we noted only minor effects due to duty-cycle changes. For this
reason, and to limit the overall duration of the experiment, in the current study we focused on size
and contrast changes.

Although using auditory feedback and not visual, [18] found that their protocol using pitched
sound as real-time feedback outperformed classic SSVEP BCIs. In [19], the authors provided real-time
feedback for users by changing the colour of the characters in the stimuli every 0.04 s. Tested together
with their new classification method based on canonical correlation analysis, they achieved increased
performance metrics.

The user comfort was also taken into account during the design phase of the experiment. For some
of these stimulus parameters, a better brain response is associated with a lower user comfort [4,15].
To address this issue, we asked the users to rate the different methods on a scale of one to ten,
and compared their subjective opinion with the performance results.

In this experiment, we further investigated the effects encountered in our previous studies,
by testing an interface with less stimuli (4-target Kleve speller [20–22]). We investigated the practical
use cases of the feedback mechanisms, therefore, some parameters of the stimuli, such as their size,
or the distance between them were set to result in an overall practical BCI system. These settings were
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already successfully evaluated in many previous studies. We also aimed to get more reliable results by
involving more participants in this online BCI experiment.

2. Materials and Methods

2.1. Subjects

24 subjects (11 female), with a mean (SD) age of 25.2 (4.1) years participated in this study.
All participants were healthy adult volunteers. They all gave written informed consent prior to
the study in accordance with the Declaration of Helsinki. Information needed for the analysis was
stored anonymously; results cannot be traced back to the participants. This study was approved by the
Ethical Committee of the Medical Faculty of the University Duisburg-Essen, the ethical approval code
is 17-7693-BO. Participants had the opportunity to opt-out of the study at any time. Subjects received a
financial reward for their participation in this study.

2.2. Hardware

Participants were seated in front of a LCD screen (BenQ XL2420T, resolution: 1920 × 1080 pixels,
vertical refresh rate: 120 Hz) at a distance of about 60 cm, the setup is shown in Figure 1. The used
computer system operated on Microsoft Windows 7 Enterprise running on an Intel processor (Intel Core
i7, 3.40 GHz). Eight standard Ag/AgCl EEG recording electrodes were used in addition to a ground and
a reference electrode to acquire the signals. The ground electrode was placed over AFZ, the reference
electrode over CZ, and the eight signal electrodes were placed at PZ, PO3, PO4, O1, O2, OZ, O9, and O10

in accordance with the international 10/10 system of EEG electrode placement. Standard abrasive
electrode gel was applied between the electrodes and the scalp to bring impedances below 5 kΩ.
An EEG amplifier, BrainAmp (Brain Products GmbH, Gilching, Germany), was utilized. The sampling
frequency was 5000 Hz, but for classification, the collected EEG data were down-sampled in real time
to 250 Hz. A digital band pass filter (between 4 and 40 Hz) was applied on the down-sampled data
before classification.

Figure 1. The setup of the experiment with the used 4-target interface. The amplifier, BrainAmp, is
located to the right of the monitor.
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2.2.1. Interface

The Graphical User Interface (GUI) of the 4-target interface is shown in Figure 2. For this GUI
implementation, each letter required three selections. We have found 4-target systems very robust and
controllable by nearly everyone [13]. However, at the same time its drawback is the limited speed,
as for each character with this 4-target speller three selections are necessary.

Figure 2. The 4-target interface. The word “LITTLE” notes the target word to be spelled by the subject.
The text written by the users was shown at the bottom of the screen, in the line below the target word.

The speller logic was implemented as follows: when a box was firstly selected, its content was
spread over three boxes and resulted in three characters per box. After the next selection phase,
the three boxes contained only one letter each. With the third selection the selected letter or special
character was selected. In the second and the third phases, the fourth, “Delete” target changed to
“Back” to give the option to go back to a previous layer in case of an error. For more details of this
4-target speller logic please refer to [20].

2.2.2. Stimulation Frequencies

The list of frequencies displayed was (in Hz): 6.10, 7.15, 8.39, 9.84. The flickering on the monitor
screen was generated using the method proposed in [23]. In short: this approach approximates the
frequency by utilising two easily realisable (dividers of the monitor vertical refresh rate) neighbouring
frequencies and altering between them. The arrangement of the stimuli did not require position
randomisation, since there were no differences in the number of neighbouring stimuli. The words to
be written by the participants were selected in a way that all three targets containing letters had to be
selected equally, six times to spell each word without errors. Additionally, to make the classification
more robust, three additional frequencies were considered in the calculations (but these were not
shown to the participants) with the frequencies: 6.80, 7.98, and 9.36 Hz. The classification results of
these “virtual frequencies” were simply ignored, this resulted in a much more reliable classification of
the true stimulation frequencies displayed on the computer screen. For more details on the additional
frequencies please refer to [10], where they were originally introduced.
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2.2.3. Feedback Methods

For each feedback parameter, minimum and maximum values were determined. The size limits
for the stimuli were between 225 × 225 pixels and 340 × 340 pixels.

For the contrast, only the stimulus RGB values were modified, the black background remained
constant. The stimulus colour values ranged from RGB (128, 128, 128), which corresponds to dark grey,
to RGB (255, 255, 255), which is white, and the R, G, and B values always remained equal to each other,
i.e., these three RGB values were always changing simultaneously. This resulted in colour changes
from dark grey through light grey to completely white according to the probability for that stimulus,
as calculated by the classifier.

For the contrast changing, the sizes of the stimuli were kept constant (282 × 282 pixels). Similarly,
for the size changing the contrast was constant, the colour of the stimuli was constantly set to RGB
(255, 255, 255), white.

This different visual feedback was realised by using the probabilities calculated by the classifiers
after each incoming block of EEG data (every 0.5 s). The exact values for the changing parameters
were calculated as in our previous study, with the formula:

Fi = pi/βi, (1)

where Fi is the feedback factor, pi is the overall probability of user looking at the stimulus (as calculated
by the classifier), and βi is the threshold. If the probability was higher than the threshold, Fi was set
to 1.0. Fi was then multiplied by the range of the feedback scale, e.g., in the case of “size” changes
340 pixels − 225 pixels = 115 pixels. If the feedback was “increasing”, the product of Fi and the range
was added to the min. value to get the size/contrast of the stimulus each frame, if the feedback was
“decreasing”, the calculated value was subtracted from the max. value. Figure 3 explains all four used
feedback methods.

Figure 3. The four used feedback methods: (a) “size increasing”; (b) “size decreasing”; (c) “contrast
increasing”; (d) “contrast decreasing”. The left column depicts how stimuli with a low assigned probability
were displayed, the middle column shows stimuli with a probability about half of the threshold, and the
right columns shows stimuli with probability at or above the threshold.

2.3. Classification

Minimum energy combination method (MEC) [10,24] was used for online SSVEP signal
classification. SSVEP power estimations for all of the frequencies were normalized into probabilities.
As mentioned above, three additional frequencies were used in the calculations to make the estimations
more robust. The MEC method is used to calculate relative probabilities for all frequencies, and if
one of the probabilities is higher than the corresponding pre-set threshold, the frequency is classified.
Brain signals contain noise, which can influence the probabilities calculated by MEC, even though it is
designed to remove a high percentage of the noise. With four frequencies to classify, the thresholds
need to be higher, because the chance level is higher, i.e., noise has a greater impact. By adding the
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three additional frequencies to classify, the effect of noise is partially mitigated. For more details
please refer to [10,25]. These additional frequencies were not presented to the users, and could not be
selected either.

The classifier did not require training; however, a classification threshold (ranging from 0 to 1.0)
was determined individually for each subject before the experiment. For the thresholds (separate
threshold for each stimulus), users were instructed to select each target twice, and the thresholds were
adjusted until this was achieved without misclassifications and with a reasonable speed. An automated
method could be utilised to set up thresholds, such as described in [13]. Since the manual setup required
only a few minutes maximum, as only 4 thresholds needed to be set, no automatic method was used
in this experiment.

The EEG data were transferred to the PC in blocks of 2500 samples (0.5 s recordings with the
sampling rate of 5000 Hz). Down-sampling resulted in blocks of 125 samples (same 0.5 s with 250 Hz
sampling rate). The classifications were performed by four separate classifiers. These were of fixed
length (2.0 s, 3.0 s, 4.0 s and 5.0 s long, respectively). When enough data were available (more than
5.0 s) all of them were running concurrently classifying after each incoming block of data (every 0.5 s).
As an example, after 4.5 s recording the first three classifiers were active, analysing the last 2.0, 3.0 and
4.0 s of data, respectively. The probabilities calculated by the classifiers were combined by weighted
averaging, with weights assigned to the classifiers based on the amount of data processed, as more
data usually yield more accurate results [25]. For more details please refer to [17].

The probabilities used for overall classification were calculated from the individual classifier
results, by calculating the weighted average. If none of the probabilities exceeded the threshold,
the output was rejected. If one of the probabilities exceeded the threshold, the following classifier
outputs were rejected for a short duration, in order to negate the effect of the previous stimuli on the
EEG data, and to allow users to find the next target. The duration of this gaze shifting period was set
to 1.5 s. During this period the targets did not flicker, allowing the users to find the desired target and
change their focus. As movements cause artefacts in the recorded EEG data, the gaze shifting time also
lowers the chance of false classifications. False classifications caused by movements could only occur
if the movements lasted long enough, exceeding the allocated gaze shifting time. The length of the
gaze shifting time was set based on our previous experience. For more details please see [10].

Moreover, an audio file of the spelled character was played after the third selection step to inform
the user what character was selected. The audio file “Select” was following the previous selections or
alternatively “Back” and “Delete” when those commands were selected. Compared to visual feedbacks,
which were used continuously, audio feedback occurred only after selecting one of the targets (when
the classifier output was higher than the threshold). Moreover, the audio feedback was executed
during the gaze shifting period; therefore, it only helped users decide on the next target (whether the
next letter or “Delete” had to be selected). The users had to correct any mistakes in the written text
using the last box, labelled “Delete” or “Back”, which removed the last character of the user-written
string or returned to the previous step, respectively.

2.4. Experimental Protocol

In this experiment users had to spell altogether five words, each with five different feedback
methods: “no feedback”, “size increasing”, “size decreasing”, “contrast increasing”, and “contrast decreasing”.
The order of the spelling tasks was randomised to avoid bias.

As indicated by the name, in the “no feedback” condition no information was given to the users
regarding classification progress. In the “size increasing” and the “size decreasing” conditions, the stimuli
were getting bigger or smaller, respectively, as the stimulus was assigned a higher probability by
the classifier. “Contrast increasing” and “contrast decreasing” were realised through changing the
intensity/shade (RGB values) of the stimulus, which in the off phase was always black, and in the on
phase a shade of grey. For a more detailed description please refer to the Section 2.2. Figure 4 shows
an example time line of target selection using the “contrast increasing” scenario.
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Figure 4. An example time line of target selection using the “contrast increasing” scenario, accomplished
in 5.5 s. ‘p’ notes the probability calculated by the classifiers, while β notes the corresponding threshold.

After signing the consent forms, users were prepared for the EEG recording. For each user the
individual thresholds for classification were set. The values set this way were not altered throughout
the rest of the experiment. If no selection was made with a scenario for several minutes, caused by the
probabilities calculated by the classifiers not reaching the corresponding threshold, or the classification
accuracy was insufficient to continue, the scenario in question was marked as not finished.

The spelling tasks all required six letters, which could be written, in case of no errors, using
3 × 6 = 18 selections. Mistakes had to be corrected. After each spelling task users were asked to
rate the used scenario on a Likert scale from 1–10, where 1 noted a very negative impression, and 10
corresponded to a very positive impression. The experiment lasted approximately one hour. This
included informing the users about the experiment as well as electrode preparation. Usually these
steps took about 20–25 min. The time for the spelling tasks varied greatly, as some scenarios were
more difficult to complete (shown by the lower ITRs). The fastest users took a few minutes only to
complete all spelling tasks, while in the slowest took 17.15 min. Additionally, users had to rate each
scenario and they were allowed to have short breaks between the spelling tasks. As in most cases no
breaks were requested, the time between spelling tasks was only 1–3 min long.

The complete word list, from which the five spelling tasks were randomly selected: “COVERS”,
“HORSES”, “STRIKE”, “STORES”, “MISTER”, “RUBBER”, “SOLELY”, “LITTLE”, “BUFFER”,
“TIMING”, “REFUSE”, “FORCES”, “LIKELY”, “MODIFY”, “FLAVOR”, “LIKING”, “MOSTLY”,
“POLICE”, “LOSING”, “CLOSER”, “MERITS”, “OFFICE”, “WIDELY”, “COUPLE”. These were selected
according to the criteria described in Section 2.2.

3. Results

The achieved accuracies and ITRs are presented in Tables 1 and 2. The used settings enabled a
maximum of 35.12 bit/min ITR (fastest possible selections using minimum classifier length of 2.0 s,
100% accuracy, including gaze shifting times of 1.5 s). For the selection of a single letter, following the
previous selection, the minimum time of 10.5 s is necessary (1.5 + 2 + 1.5 + 2 + 1.5 + 2 = 10.5 s). The
gaze shifting time was not necessary for the first selection, reducing the time for the first letter by 1.5 s.
These result in the maximum spelling speed of approx. 5.7 characters per minute. An online tool for
ITR calculation can be found at https://bci-lab.hochschule-rhein-waal.de/en/itr.html.

The mean (SD) ITR was 23.9 (7.1) bit/min, while the mean accuracy was 95.2 (6.3)%. These values
show that the BCI was working with high accuracy and reasonably fast most of the time.

Statistical analysis was conducted to investigate performance differences between the different
feedback scenarios. By using d’Agostino–Pearson tests for checking the normality of the results
we found that ITR results can be used for parametric tests; however, accuracy results require
non-parametric equivalents. Therefore, for ITR comparisons repeated measure one-factor ANOVA
was used, while for accuracy comparisons Friedman’s test was used. These were followed by
pairwise comparisons with paired t-tests and Wilcoxon signed ranks test, respectively, when necessary.
Sphericity for ITR results was also considered; however, the sphericity assumption was not violated
(Mauchly test p value was 0.327). Bonferroni correction was used for multiple comparisons.

https://bci-lab.hochschule-rhein-waal.de/en/itr.html
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Table 1. The accuracy results with the interface. S1–S24 notes the subjects, and the different columns
refer to different feedback methods (as compared to the no feedback condition, shown as ‘No FB’).

Subjects Accuracy [%]
No FB Size Incr. Size Decr. Cont. Incr. Cont. Decr.

S1 95.0 100 100 95.5 100
S2 100 100 100 100 100
S3 95.0 100 95.0 90.9 100
S4 100 100 91.7 83.3 95.0
S5 90.9 83.3 85.7 70.8 90.9
S6 100 100 95.0 90.9 100
S7 100 95.5 100 100 95.0
S8 90.5 100 91.7 100 86.7
S9 100 90.9 87.0 100 100

S10 100 88.5 100 100 100
S11 100 100 100 100 100
S12 95.0 95.0 100 87.5 100
S13 100 100 100 95.0 100
S14 94.7 87.5 94.7 91.7 91.7
S15 100 95.0 100.0 90.9 100
S16 100 100 92.3 100 100
S17 95.0 95.0 100 100 95.0
S18 91.7 95.5 94.7 100 100
S19 100 100 91.7 90.9 100
S20 100 100 85.2 87.5 91.7
S21 100 100 95.0 100 90.9
S22 100 100 100 95.0 100
S23 78.6 81.5 76.3 84.4 90.9
S24 85.7 76.6 95.0 79.4 95.0

Mean 96.3 95.2 94.6 93.1 96.8

Table 2. The ITR results with the interface. S1–S24 notes the subjects, and the different columns refer to
different feedback methods (as compared to the no feedback condition, shown as ‘No FB’). Lowest and
highest ITRs are marked bold for each feedback method. The subject-wise ratio of the fastest method
and the “no feedback” condition is shown with the ITR results. p-values show the significance of the
subject-wise comparisons, described in Section 3.1. Significant differences are marked with an ‘*’.

Subjects ITR [bit/min]
No FB Size Incr. Size Decr. Cont. Incr. Cont. Decr. p-Value Fastest/No FB [%]

S1 26.5 29.0 30.0 20.5 30.7 0.411 115.8
S2 31.1 33.3 34.4 32.5 32.3 0.038 110.6 *
S3 22.7 28.7 24.6 18.5 27.9 0.181 126.4
S4 32.1 27.7 22.5 13.0 26.0 - 100.0
S5 19.1 12.0 11.1 5.1 15.6 - 100.0
S6 32.5 31.4 26.7 20.0 31.8 - 100.0
S7 25.0 22.5 30.9 29.4 23.8 0.003 123.6 *
S8 22.3 27.9 12.8 23.9 16.4 0.441 125.2
S9 27.7 13.2 16.1 24.4 27.9 0.452 100.7

S10 31.8 19.0 30.3 28.7 32.3 0.445 101.6
S11 33.6 28.7 32.5 25.9 32.1 - 100.0
S12 25.9 24.9 34.1 19.1 34.1 0.015 131.7 *
S13 28.3 24.7 34.4 20.5 32.8 0.001 121.6 *
S14 15.6 14.9 19.8 11.2 14.1 - 100.0
S15 32.1 23.9 30.3 17.7 29.6 - 100.0
S16 27.4 26.4 15.5 27.7 25.2 0.272 101.1
S17 23.8 25.0 31.1 27.8 23.2 0.153 130.7
S18 16.0 20.0 21.4 24.7 23.4 0.097 154.4
S19 28.5 30.3 23.0 15.5 29.5 0.090 106.3
S20 22.1 23.3 13.2 13.3 16.0 0.471 105.4
S21 27.4 26.7 26.4 26.4 19.7 - 100.0
S22 33.3 29.2 29.0 22.6 30.7 - 100.0
S23 7.2 10.7 7.4 11.1 17.4 0.001 241.0 *
S24 16.6 12.4 24.7 12.0 25.0 0.035 150.6 *

Mean 25.4 23.6 24.3 20.5 25.7 - -
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ITR showed significant difference p = 0.002 with the ANOVA. After pairwise comparisons the
“contrast increasing” scenario proved to be slower than all other scenarios, the “no feedback” (p = 0.002),
the “size increasing” (p = 0.041), the “size decreasing” (p = 0.021), and the “contrast decreasing” (p = 0.002)
scenarios. All other pairwise comparisons showed no significant differences. Accuracy, on the other
hand showed no significant differences using the Friedman test (p = 0.142).

3.1. Subject Specific Results

To further investigate our hypothesis, we organized for each subject the ITR from fastest to
slowest, and compared the fastest methods to the no feedback condition for that subject. To be able to
compare the results statistically, we calculated the ITR value for each step of writing the target word.
This means that 18 values were calculated, three for each letter. ITR was used for comparisons as it
incorporates accuracy as well as selection times, therefore, it is a practical measure of performance.

To calculate ITR values for each stage, the following methods were used. Firstly, the gaze
shifting time was included in all selection times, in order not to generate outliers in the statistical
analysis. Regarding accuracy, the same logic was utilised as for the whole words, error corrections
were considered correct. ITR values were calculated for each stage. E.g., with the word “COVERS”,
an ITR value was calculated upon selecting the target with “ABCDEFGHI” letters, also when selecting
“ABC” and when selecting “C” with the 4-target interface. If a letter was accidentally deleted afterward,
it had to be rewritten and the next stage reached to calculate the next ITR value.

Paired t-tests were used to compare the ITR values between the fastest and the “no feedback”
spelling tasks. It is noteworthy, that for some cases the amount of samples is lower than optimal.
Therefore, these statistical tests are weaker. This means that there is an increased chance of accepting
the null hypothesis, no difference between the feedback methods in our case, while in truth there is a
difference. In turn, this means that any differences found significant here would remain significant
with more samples. Furthermore, as the highest ITR values are expected to be the same or higher than
the “no feedback” ITR values and never lower, the one-tail tcrit and p-values were used. p-values are
shown in Table 2, and significant cases are marked with a ‘*’.

Table 3 shows for each feedback method the number of subjects for whom that was the best
method. There was a case where the best ITR and the second best ITR did not differ in the first two
decimals: S12. As it can be seen from the table the ”contrast increasing” scenario is the least often
marked as best.

Table 3. The number of subjects for whom the specific feedback method resulted in the highest ITR.

Cont. Decr. Cont. Incr. Size Decr. Size Incr. No FB

Fastest modality 6 2 6 4 6

The subjective user opinions are shown in Figure 5. The scores were compared with Friedman’s
test, p = 0.38. Therefore, the subjective opinions do not significantly differ for the feedback modalities.
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Figure 5. The subjective opinions of all participants. The answers were given on a Likert scale from 1
to 10, where 1 corresponded to a completely negative opinion, while 10 corresponded to a completely
positive opinion. Percentage values on the graph note the ratio of scores lower than or equal to 5 for the
left side, noting negative opinions, and from 6 to 10 on the right side, representing positive opinions.

4. Discussion

We investigated the effects of different feedback methods on online BCI performance.
This experiment was conducted to examine the effects of different visual feedback with a different
number of stimuli. Therefore, we used a 4-target spelling interface with four different feedback
scenarios and the “no feedback” condition. Our results confirm our hypothesis and the findings of our
previous studies, that the effect of user feedback can hugely impact BCI performance. With the used
scenarios, the fastest feedback method was found to be significantly faster for 6 users, for them 46.52%
faster on average than the “no feedback” scenario. Additionally, since differences between ITR values
are low, the length of the spelling tasks is not always sufficient, and the statistical analysis became
weak, resulting in a high chance of a Type II error. This means possibly more significant differences
would have been found with a larger sample size.

We did not find any effect of the visual feedback on classification accuracy, the users were able to
complete all tasks with approximately the same amount of mistakes, which confirms the robustness
of 4-target spellers. Contrary to our previous studies, with more users even the generalised results
showed significant differences, marking the “contrast increasing” scenario as significantly slower than
most others. That said, there were a few users, for whom this feedback resulted in the fastest selections.
This means that even though it is generally slower than other methods, this mechanism should also be
considered for further implementations.

As mentioned, the experiments utilising real-time feedback methods in a similar manner are very
rare in the literature. There are many occasions when feedback methods are used in another sense,
such as in [26], where after each selection the users are provided a visual or auditory representation of
the consequences of the selection. In [26] these are representations of robot movements. These types of
feedback modalities are similar to the auditory feedback in this paper, in a way that they occur after
each target selection and not before.

Feedback methods similar to the ones employed in this paper were used by [18]. They used
closed-loop subject-specific selection of the stimulation frequencies together with the closed-loop
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auditory feedback (the pitch changing with distance from the pre-set threshold) as real-time feedback.
This lead to increased BCI ITR performance. The achieved median ITRmax with this system was
17.38 bit/min. In [19], the authors used colour changes of the characters as real-time feedback. They
tested together with their new classification method and with dynamic optimisation reached a PITR
(SD) value of 41.08 (7.43) bit/min. However, all comparisons should be taken with extreme caution as
there are multiple differences between the used systems. Not to mention the different performance
metric, PITR, the results of [19] were gotten not solely by feedback methods, but also by using the
new classification method. Moreover, in both examples the classification method, and the parameters
of classification are different, which creates further difficulties when trying to compare performance
metrics. As an example, by setting the gaze shifting time in our paper lower (1.5 s is a really long time
and is usually selected for BCI-naive subjects only), all ITR values would increase substantially. As there
are multiple different parameters that can influence the end results, the most reliable comparisons
can be made within a paper, by looking at the differences between the control condition and the
novel methods.

Stimulus parameters can influence the amplitude of the evoked neural responses [6–8,14,15] and
it is possible that for some of the differences we discovered, the parameters of the stimuli are partially
responsible. As an example, for the “contrast increasing” scenario, it is possible that the low contrast
at the start of the flickering had a negative effect on the performance for some users. Investigating
these effects requires an experiment with multiple different constant contrasts and also with changing
contrasts (as feedback); however, due to the amount of tests necessary for both size and contrast
changes, this would have likely doubled the duration of our experiment, and would have likely
introduced bias from fatigue or lack of attention from BCI users. Nevertheless, these effects require
further investigation. Furthermore, we suggest that the stimulus parameters such as size and contrast
should be also investigated individually for users, as it could also prove to be user dependent whether
they improve or degrade BCI performance. If this is true and the optimal feedback methods/stimulus
parameters are determined, they could be adapted for each user for reaching an optimal speed with
the BCI.

The number of users for whom the “no feedback” condition proved to be the fastest, was six.
This value is higher than in our previous study, and this could be the consequence of excluding
duty-cycle changes (where the feedback was realised by increasing/decreasing the ratio of the on/off
phases of the stimuli while keeping the frequency the same), which could have been faster for these
users. Moreover, additional mechanisms of feedback could be used, such as changing not the contrast
but the colour of the stimuli (e.g., turning from darker to brighter green), or changing the shape of them.
Another possibility is that for the 4-target speller the effects of the feedback methods are diminished.

The feedback modalities used in this experiment were chosen according to their simplicity in
implementation, as size and colour changes are easily realisable on a computer screen. This makes the
ideal for implementation in various SSVEP BCI systems. However, the possible feedback modalities
are not limited to these. Changes in shape, colour (not grey-scale), opacity and any other method could
be tested as a feedback modality in the future, to hopefully find effective and user-friendly solutions.

Interestingly, although the “contrast increasing” scenario was found to be performing significantly
worse than the other methods, the user’s subjective scores do not reflect this. This could be a
consequence of better user-friendliness or mean that slower performance is not perceptible by the
participants. The topic could be further investigated with elaborate questionnaires for more detailed
user opinions.

We utilised the same classification method as previously; however, the effect of these
feedback modalities with different classification methods is still not investigated, and requires
further experiments.

We utilised a 28-target interface with the same feedback methods; however, as explained above,
the amount of samples was too short, resulting in a high chance of a Type II error (in statistical
hypothesis testing, a type II error is the non-rejection of a false null hypothesis, also known as a
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“false negative”). This means we missed significant differences because of the low sample count,
in the case of this interface only 6 samples. In these results we found for two users significant
differences, where the improvement in ITR was 25% and 53.7%, respectively. By employing longer
spelling tasks in the future, more robust statistics could be expected, which will likely result in more
significant differences discovered. As this would have quite substantially expanded this experiment
and would have introduced bias based on user fatigue/user motivation, we refrained from using
longer spelling tasks.

5. Conclusions

In this experiment we aimed to investigate the effects of feedback methods with 4-target BCI
spelling interface, as well as to confirm our previous results, that visual feedback about the classification
progress improves online BCI performance of SSVEP-based BCI spellers [17]. We used four feedback
methods based on size and contrast changes of the stimuli and compared the best to the control
condition (no feedback). Based on our findings, the changes are statistically significant for six users.
The average improvement of ITR in these cases was 46.52%. With longer spelling tasks the chances of
Type II errors would be lowered, and more significant differences could be discovered.

When the effects of different feedback modalities are averaged for users, the beneficial effects are
not noticeable. However, by checking the results individually, the optimal feedback can have a huge
impact on ITR. By determining the optimal feedback method for the user, the speed of the BCI can be
improved without affecting the accuracy negatively.

This topic needs to be investigated further, most importantly to check whether the optimal method
is consistent over time (if the best method is the same after a couple of days or weeks). Methods that
are different from those presented here, such as colour or shape changes, could also be investigated,
as well as interfaces with more targets.

Our results suggest that by determining the optimal feedback method and using it for the BCI
system, ITR can be greatly improved for many users.
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