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Abstract: Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results
in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic
task for researchers. For this, machine learning and deep convolutional neural network (CNN)
based approaches are readily available to solve various problems related to brain image data
analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate
classification of dementia stages, we need highly discriminative features obtained from MRI images.
Recently advanced deep CNN-based models successfully proved their accuracy. However, due to
a smaller number of image samples available in the datasets, there exist problems of over-fitting
hindering the performance of deep learning approaches. In this research, we developed a Siamese
convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to
classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using
augmentation approaches. Experiments are performed on a publicly available dataset open access
series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of
99.05% is achieved for the classification of dementia stages. We compared our model with the
state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art
models in terms of performance, efficiency, and accuracy.

Keywords: Alzheimer’s disease; dementia; convolutional neural network; classification;
deep learning; batch normalization

1. Introduction

Alzheimer’s disease (AD or Alzheimer’s) causes the loss of tissues and death of nerve cells
throughout the brain, resulting in memory loss of humans and imposing a bad impact on the
performance of routine life tasks such as writing, speaking, and reading. Sometimes AD Patients may
have problems in the identification of their family members. Mild cognitive stage patients behave
very aggressively, but patients in the last stage of AD suffer from heart failure and respiratory system
dysfunctionality leading to death [1]. Early and accurate diagnosis of AD is not possible due to the
improper medication that has been specified [2]. However, the early-stage diagnosis of Alzheimer’s
and treatment can improve the patient’s life [3]. All the indicators of AD usually grow slowly but
affect severely with the passage of time, when the disorder of the human brain starts [4]. Every year
a large number of people suffer from this disease. As per an estimation, one out of 85 persons would
be suffering from AD in the world till 2050 [5]. The global deterioration scale (GDS) is commonly
used for dementia scaling. This scale further divides AD into seven stages, which depend on the
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value of cognitive decline. In GDS, stage 4 is considered as early dementia; however, stage 5 and
stage 6 are treated as middle dementia. On the other hand, the clinical dementia rating (CDR) scale
is also used in dementia research because it is easy for communication between the families and
medical professionals [6]. CDR scores assigned to test six different parameters such as problem-solving,
orientation, hobbies, memory, and judgment [7].

In AD patients, the cerebral cortex and hippocampus sizes shrink in the brain, but the size of the
ventricles increases in the brain. Spatial memory and episodic memory are part of the brain that is
damaged when the hippocampus size is reduced [8]. It also provides connectivity between the brain
and body. Hippocampus reduction causes cell loss and impairment of the synapses and neuron ends [9].
Due to the uncertainty between neurons, communication defects in the short-term memory, planning,
and judgment have been observed [10]. Researchers have established many Computer-Aided Diagnosis
Systems (CADS) for the accurate detection and classification of the extracted features related to AD [11].
To process the extracted features, more effort and time by human experts is required otherwise.

Recently, the researchers are developing deep learning models/techniques to extract the features
directly from medical images [12]. Deep learning models have achieved major conquest in medical
images such as CT, MRI, X-ray, microscopy, and mammography [13]. These models or methods mainly
focused on binary classification, which shows only that whether the patient is suffering from AD or
not [14]. However, proper diagnosis of the patient requires the classification of different dementia
stages. MCI stage is a highly defective stage as compared to AD because 10% to 16% of patients convert
MCI sharply to AD per year [15]. MCI stage is highly variable for patients to stabilize or reverts into the
healthy stage [16]. However, for prediction, the conversion from MCI to AD important biomarkers are
Magnetic Resonance images (MRI) because they are less expensive as compared to positron emission
tomography (PET) and cerebral spinal fluid (CSF). MRI based images contain multi-modal information
regarding the function and structure of the brain, which is suitable for clinical purposes.

A large number of datasets produced massive progress in object detection and image classification
because most datasets are labeled. A common example is an ImageNet database, which has millions of
better images for model learning. Convolutional neural networks (CNNs) gave a robust performance
on large image datasets [17]. In deep learning, CNN is widely known for its ability to perform
high accuracy in terms of medical image classification. There are different models that are utilizing
CNN for AD scan categorization. However, the most important advantage of CNNs as compared
to conventional machine learning techniques is that CNNs do not require manual feature extraction
because CNNs are capable of extracting the effective features automatically and then categorizing the
stages of AD [18]. However, existing machine learning and deep learning models are trained from
scratch but have some limitations such as, (1) to train the deep learning model on huge number of
images requires massive computational resources; (2) for the proper training of the model, we need
magnificent amount of standard training datasets, which is the biggest problem for medical imaging
where standard data can be expensive and ethically privacy issues arises; (3) during training the model
on medical imaging requires more attentive and tedious tuning of a number of parameters, which cause
overfitting problems and affect the overall performance of the model.

Our current research towards the development of the Siamese convolutional neural network
(SCNN) inspired by the VGG16 architecture [19] is implemented for the improved diagnosis and
classification of multiple stages of Alzheimer’s from no dementia to moderate AD. The model is
completely identical but joins two modified VGG16 parallel layers, “Siamese”. We insert a concatenation
that joins every single layer. The key objective of the proposed technique is to reduce the dependency
on large datasets. We acquired the 3-D views of the human brain dataset from the OASIS repository
and achieved better performance as compared to the state-of-the-art performances on small MRI
images. In this study, our key contributions are given below:

• We formed an SCNN model for the multi-class classification of Alzheimer’s disease.
• We presented an efficient model to overcome the data shortcoming complications for

an imbalanced dataset.
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• We developed a regularized model that learns from the small dataset and still demonstrates
superior performance for Alzheimer’s disease diagnosis.

Recently several researchers have developed techniques for AD diagnosis. The techniques are
categorized based on machine learning and deep learning models. These techniques are briefly
discussed in the following section.

1.1. Machine Learning-Based Technique

Several machine learning-based models have been proposed to extract the features and perform
multiple operations on AD MRI images [20]. Kloppel et al. [21] developed a dimensional reduction
model to detect AD patients by using a linear support vector machine on T1-weighted MRI images.
Gray et al. [22] used a random forest classifier to develop a multimodal classification for AD classification
on positron emission tomography (PET) and MRI data. Morra et al. [23] introduced different models’
comparison to detect AD on MRI scans such as SVM and hierarchical AdaBoost models. Neff et al. [24]
developed an algorithm for feature extraction and reduction by using downsized kernel principal
component analysis (DKPCA) and support vector machine (SVM) for AD MRI images. They tested
the model on the OASIS datasets and obtained 92.5% accuracy using a multi-support vector machine
(MSVM) kernel. Wang et al. [25] used wavelet entropy and biography-based optimizers to extract the
features in MRI data and classified them. They obtained 100% accuracy by applying a six-fold CV
model on 64 brain images. Ding et al. [26] have improved the feature extraction and feature selection
accuracy on AD and NC patient’s datasets. They used gray level occurrence matrix and voxel based
morphometric (VBM analysis for feature extraction and SVM for classification purposes. Performance
checked on the Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset showed an accuracy of
92.86%. Dashan et al. [27] proposed systems for feature extraction and reduction on T2-weighted MRI
images produced by Harvard medical school. Two classifiers are being tested on the same dataset
and obtained an accuracy between 97% to 98%. Hinrich et al. [28] obtained samples from the ADNI
database and applied the proposed technique on the multi-classification of Alzheimer’s. The overall
accuracy obtained was 79.8% for all stages. Yue et al. [29] also developed a voxel-based hierarchical
feature extraction technique that finds the correlation between subjects. In the second step, feature
vectors were used for processing the feature and placed into the classifier to check the effectiveness.
Ahmed et al. [30] designed a simpler CNN model using the patch-based classifier to diagnosis the
AD multi-stages. The model reduced the computational cost and produced a great improvement in
accuracy. They generated the patches on a three-view of MRI image and obtained an overall 90.05%
accuracy. However, utilizing machine learning models with the hand-crafted features, most studies
showed accuracy that depended on how well the feature was defined. For this purpose, the domain
experts are required to achieve maximum performance. For such a limitation, one of the solutions is
deep learning as it is familiar to capture arbitrary features automatically and then achieve relatively
high accuracy [31].

1.2. Deep Learning-Based Technique

Several deep learning-based models have been proposed to extract the features directly on input
data and perform multiple operations on MRI images [32]. These models based on multiple layers
and hierarchical structure, which rapidly increased the ability of feature representation on different
datasets. Liu et al. [33] have adopted a zero-masking strategy (ZMS) to develop a model that has
the ability to prevent the maximum data loss of the MRI image data. Gupta et al. [34] introduced
a sparse auto-encoder based model for the classification of three AD stages. The respective accuracy
obtained on the ADNI dataset for multi-classification is 95%. Dou et al. [35] presented the improved
performance model on 3D CNN and 2D CNN approaches. They used 3D CNN model to detect cerebral
micro-bleeds. They applied the extensive experiment to validate the purposed model and obtained
the sensitivity result of 93.16%. Suk et al. [36] proposed another technique to classify AD and MCI
converter stages by using an auto-encoder network. They obtained an accuracy rate of 95.9% over these
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MCI stages. Hong et al. [37] predicted Alzheimer’s disease using long short-term memory (LSTM)
because it was able to connect the patient’s previous information to the current task. They process
the time series data in three layers, such as pre-fully connected, cells, and post-fully connected
layers. The accuracy is still limited because to get traditional features from temporal information
due to the lack of data. They obtained the 82.05% overall performance for multi-classification of
AD patients. The authors obtained at best 98.78% multiclass—classification accuracy on the OASIS
data using ResNet50 and gradient boosted machine [38]. In [39], the researchers proposed a deep
learning model using inceptionV3 architecture for the early diagnosis of Alzheimer’s disease to test
on the ADNI dataset. They analyzed the accuracy rate on receiving operating characteristic (ROC)
is 95% and sensitivity 100%. One such recent method developed [40] for Alzheimer’s diagnosis and
multi-classification from MRI images with the help of intelligent data selection. They used the popular
CNN architecture VGG on the ADNI database. They also deployed the transfer learning and showed
very high classification performance, such as for AD vs. NC 99.36%, MCI vs. NC 99.04%, and 99.20%
overall accuracy for multi-classification. In [41] researcher proposed CNN based model and acquired
94.54% classification accuracy for early mild cognitive impairment (EMCI) and late mild cognitive
impairment (LMCI). The exiting studies using deep learning for medical images and text classification,
the CNN provides improvement in results by automatically learning the features on the given task.
However, if we compare RNN, CNN has a smaller number of parameters, so CNN is more suitable for
a small number of datasets [42].

2. Materials and Methods

In the proposed approach, the algorithm depends on three steps. The first step is data preprocessing
and augmentation, the second stage is feature extraction from input images, and the third step is
the classification of dementia classes. We developed a CNN-based approach inspired by VGG16 for
the classification of dementia stages. We modified the VGG16 and inserted one extra Conv layer in
the model which was effective to grasp maximum features on a small dataset [43]. In the algorithm,
two modified VGG16 layers were working parallel with 14 Conv layers, five max-pooling, three batch
normalization, and three Gaussian noise. The reason for the model is the parallel work to extract the
more important features. Consecutive parallel layers improved the classification accuracy [44]. Table 1
shows the complete details about the pool size and the number of kernels in our proposed model.
The experimental dataset is based on the clinical dementia rating (CDR) score. The work-flow of the
proposed model is shown in Figure 1.
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Table 1. Feature extraction and classification layers in the proposed SCNN model.

Layer No. Layer Name Kernel Size Pool Size No. of Filters

1 Conv1 + ReLU 3 64

Batch Normalization

2 Conv2 + ReLU 3 64

Maxpooling1 2

3 Conv3 + ReLU 3 128

Gaussian Noise

Batch Normalization

4 Conv4 + ReLU 3 128

Maxpooling2 2

5 Conv5 + ReLU 3 256

Batch Normalization

6 Conv6 + ReLU 3 256

7 Conv7 + ReLU 3 256

Gaussian Noise

8 Conv8 + ReLU 3 256

Maxpooling3 2

9 Conv9 + ReLU 3 512

10 Conv10 + ReLU 3 512

11 Conv11 + ReLU 3 512

Maxpooling4 2

12 Conv12 + ReLU 3 512

Gaussian Noise

13 Conv13 + ReLU 3 512

14 Conv14 + ReLU 3 512

Maxpooling5 2

15 Flatten1

16 Flatten2

17 Concatenate

18 FC1 + ReLU 4096

19 FC2 + ReLU 4096

20 Softmax

2.1. Data Selection

In our research work, we used OASIS open-access dataset. These datasets investigate during
preparation by Daniel S. Marcus from Neuroimaging Informatics Analysis Center (NIAC) at Washington
University School of medicine. We have 382 images obtained from the OASIS database. We create four
classes (Table 2) based on CDR score such as CDR-0 (No Dementia), CDR-0.5 (Very Mild Dementia),
CDR-1 (Mild-Dementia), and CDR-2 (Moderate AD). Available Alzheimer’s disease patients have aged
in the range of 20 to 88 years. We apply the augmentation approach to create balanced data to improve
the model learning rate. The data preprocessing is the major part to extract efficient and accurate
results for those algorithms based on the CNN model. The OASIS [45] dataset image size is 256 × 256
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but the proposed CNN model requires an image size of 224 × 224. For this purpose, image dimension
setting scaling is applied to the OASIS dataset.

Table 2. Summary of the global clinical dementia rating (CDR).

Clinical Dementia Rate (RATE) No. of Samples

CDR-0 (No Dementia) 167

CDR-0.5 (Very Mild Dementia) 87

CDR-1 (Mild-Dementia) 105

CDR-2 (Moderate AD) 23

2.2. Image Preprocessing

For the proposed model, the training and testing on medical images go through the preprocessing
steps. MRI images during the process of their forming endure deterioration, such as low variation
due to bad brightness produced by the visual devices. To overcome this issue for the improvement
of MRI scans, image enhancement approaches were applied for the upgrade of the distribution of
pixels over an extensive range of intensities, linear contrast stretching was applied on the images.
During the image acquisition process, some undesirable information was added to the image due to
nonlinear light intensity conceded as noise. Specifically, non-linear light intensity affects the overall
performance-accuracy of the image processing [46]. Due to the improper setting of the lens slit of the
scanning devices, non-linear light was mostly introduced and the uneven distribution of light was
normalized by image enhancement techniques. The dynamic range of light intensity was increased by
using contrast stretching because the output images after this process were the ones having improved
contrast and appropriate light distribution. Images in the OASIS repository to get better performance
on the latter stages were enhanced using the linear contrast stretching. MRI images were obtained
from the public OASIS repository and were segmented by extracting the differing intensities of the
white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) by using the K-mean clustering.
Segmented images were resized to 224 × 224 as per model requirements.

2.3. Data Augmentation

In neuroimaging, a large number of scans related to AD patient’s availability are a major issue
because few hundreds of image samples are available. It is a common thing for a deep learning model
to provide more effective results on more data. In medical research, due to privacy concerns, the access
to large data is a big problem [47], especially, the classification of cancer and AD are problematic due to
lack of availability of data. The small imbalanced dataset creates overfitting problems during training
of the model which affects the model efficiency. To overcome this issue, we need more data to enhance
the effective accuracy in our proposed model. We used the augmentation technique to create 10 more
images on each available MRI image [48]. In Table 3, data augmentation is described for the parameters
used for augmentation.

Table 3. Data augmentation.

Rotation Range 10 Degree

Width shift range 0.1 Degree

Height shift range 0.1 Degree

Shear range 0.15 Degree

Zoom range 0.5, 1.5

Channel shift range 150.0
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2.4. Convolutional Neural Networks

In the core, the convolutional neural network number of layers extracts local feature on large
dimensional data. Each layer consists of distinct nodes with learnable bias and weights; in the
convolutional layer’s connection, weights are shared and called a convolution kernel. All the operation
results are decided by a different number of activation functions. For the dimensionality reduction
and moderation, the sample data used the pooling layer. In CNN, the output of the previous layer
is convolved with a learnable kernel and weight-sharing plays a key role in training to reduce the
number of weights. The general formula for a convolutional layer is given by:

Height =
Image hegiht − kernel height + 2(padding)

strides
+ 1, (1)

Width =
Image width − kernel width + 2(padding)

strides
+ 1, (2)

C =
W − K + 2P

S
+ 1 , (3)

The convolution layer W denotes the image height and width, K represents the filter size, P is
the padding, and S refers to the strides. The pooling layer inserted between convolution layers to
reduce the computational complexity by a down sampling operation, mostly the max-pooling layer
is commonly used. The output of the feature map by convolutional layer further divide into small
regions, and each region described the value of the region. CNN is commonly based on the number
of pairs of convolutional and pooling layers, successfully connected and finally, softmax to produce
the final output labels. In CNN’s training, backpropagation [49] is used in order to reduce the cost
function and each layer’s weights are iteratively updated. In our model, we define a kernel initializer
as “random uniform” and bias initializer “zeros”. We used the sequential to create a layer by layer
model with Rectified Linear Unit (ReLU) activation function. VGG16 refers to the layers that have
weights, more detail is shown in Table 1.

2.5. Improved Learning Rate and Regularization

Training the CNN model is very difficult because the input of each layer changed when we change
the parameters of the previous layer. On the other hand, activation functions such as sigmoid and
ReLU lose their gradient rapidly, which creates a problem for learning in deep neural networks. Due to
this issue, the learning rate of the model slows down gradually. To overcome this issue, we used in our
proposed model batch normalization [50]. Batch normalization produced a high learning rate on the
model and also reduced the parameter initialization [51]. During data reduction, the internal covariant
is shifted and the mean and variance values are fixed in the input layers.

yi = BNγ,β(xi), (4)

µb =
1
n

∑n

i=1
xi, (5)

σ2
b =

1
n

∑n

i=1
(xi − µb)

2 , (6)

xi =
xi − µb√
σ2

b + ∈
, (7)

yi = γ ∗ xi + β, (8)

where n represent the number of batches and µ, σ2 mean and variance, xi represent each row.
By using Equations (4)–(6), the mean and variance of each activation across a mini-batch are calculated.
In Equation (7), there are two hyper-parameters, γ and β, which produced the learnable scale parameters
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for each input dimension. On the other hand, we inserted Gaussian noise [52] to improve the robustness
and regularization of our model. Gaussian noise produces very effective results during the training of
the deep model and also helps to decrease the training loss.

2.6. Alzheimer’s Disease Detection and Classification Architecture

In our model, 14 convolutional layers with the ReLU activation function were working in parallel
with three batch normalization, three Gaussian noise, and five max-pooling layers with two stride
sizes. We used the Adamax optimizer with 0.002 learning rate, and categorical cross-entropy as a loss
function was used in our model, as shown in Table 1.

3. Results

We used Keras library for the implementation of our model on Z840 workstation Intel Xeon
(R) CPU E5-2630v3 @2.40GHz*32 with 64 GB memory. To validate the effectiveness of the proposed
CNN based approach with an extra convolutional layer, which is inspired by VGG16 architecture,
was used to classify Alzheimer’s disease. We extracted the feature from the 3820 data samples after
preprocessing. We divided the dataset for training 80% and testing 20% which belonged to four classes,
more detail is shown in Figure 2. We used full test data as validation data and validated the model,
so the final epoch result of the validation accuracy could be said, as test accuracy or validation accuracy.
To stop the overfitting, we used early stopping. The classification results obtained by the proposed
model were evaluated using the different evaluation metrics [6], and we obtained 99.05% test accuracy.
We used the Monte Carlo method to check the significance of the classification results under optimal
parameters. We performed the analysis on the different number of epochs (5, 10, 15, and 20) with
varying classification results such as (0.97, 0.98, 099, and 0.98), we noticed that the average performance
results were achieved on 15 epochs and confusion matrix of our model is shown in Table 4.
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Table 4. Proposed model confusion matrix on the OASIS data.

Actual Class Predicted Class

ND VMD MD MAD

No Dementia (ND) 334 0 0 0

Very Mild Dementia (VMD) 0 170 4 0

Mild Dementia (MD) 0 3 207 0

Moderate AD (MAD) 0 0 0 46

In our proposed approach, we used CNN based parameters for training the model parallel on
the same input and extract the features on the images to find the desired output. Figure 3 shows
that training and validation accuracy with data augmentation and Gaussian noise on MRI data.
Our proposed model achieved a 99.05% test accuracy. Figure 4 shows a blue line for training loss
and an orange line for validation loss. In proposed model validation data attained 67.13% accuracy
on first epoch, 86.35% on second, 89.16% on third, 85.29% on fourth, 91.19% on fifth epoch and last
epoch attained 98.19%. Validation epochs show the accuracy decrease 1.02% on 13 epoch size and 1%
decrease for epoch size 17.

Figure 5 shows the results for three normalizations, such as Batch Normalization (BN),
Group Normalization (GN), and Switch Normalization (SN) used in the proposed model.
For Alzheimer’s disease multi-class classification, we compared the training loss achieved from
three normalization types on a different number of epochs. Switch normalization produced the
maximum loss on each epoch. However, group normalization performance increased to maximum on
epoch size 16, but Batch normalization produced the best results in terms of training loss during the
whole model training process.

In Figure 6, we show the validation accuracy using three types of normalizations in our model.
In a multi-classification of Alzheimer’s disease stages, group normalization produced 80% on epoch 4
and epoch 5 as compare to other normalization. Switch normalization produced a maximum of 96.05%
in terms of validation accuracy. On the other hand, batch normalization attained high performance on
validation accuracy 98.17% on 19 epoch and 98.19% on 20 epoch.
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4. Discussion

In this research work, two pipelines working parallel and joint on end are used to predict the
multi-class classification results on dementia stages. In the four-way classification of no dementia (ND),
very mild dementia (VMD), mild dementia (MD), and moderate AD (MAD) from the OASIS dataset,
and overall accuracy obtained is 99.05%. We compared our results based on the proposed SCNN
model that applies deep learning on OASIS and ADNI datasets with five state-of-the-art methods.
We discovered that the accuracy of our technique with four stages data significantly exceeded state
of the art. Especially for mild dementia and moderate AD classification problems, we obtained a 5%
improvement over 3D CNN. We can see in Table 5 the accuracy of approaches is above 90% generally.
Our method produced more improvements in the results to train the model parallel, to reduce the
overfitting and regularize on small datasets. Although an increased number of samples would improve
the accuracy of the model to obtain the annotated data for medical images is very difficult. Using data
augmentation, we are able to train our model because augmentation approaches produced effective
results for clinical applications. Further, we used batch normalization and distinguished with Gaussian
noise. Figure 6 shows the comparison, where we utilize three types of normalizations in our model
to check the validation accuracy, such as Batch normalization, group normalization, and switch
normalization. However, batch normalization outperformed the rest of the others.

Table 5. Comparison of accuracy values with state-of-the-art techniques applied to diagnose Alzheimer’s
disease stages.

Paper Method Dataset Accuracy

Islam et al. [53] ResNet, CNN OASIS (MRI) 93.18%
Hosseini et al. [54] 3D-DSA-CNN ADNI (MRI) 97.60%

Evign et al. [55] 3D-CNN ADNI (MRI) 98.01%
Farooq et al. [56] GoogLeNet OASIS (MRI) 98.88%
Khan et al. [40] VGG ADNI (MRI) 99.36%

Proposed Method SCNN OASIS (MRI) 99.05%

In Islam et al. [53], five approaches were introduced for multi-classification; as reported in the
paper, strong gradient flow in the training data increased the performance by using inception-v4 and
ResNet. On the other hand, the remaining three approaches generate poor performance. The author
used ResNet with MRI scans on OASIS and produced 93.18% accuracy. Hosseini et al. [54] used the
3D-DSA-CNN technique and generated the 97.60% accuracy value for each group. Besides, researchers
in [55] introduced the Sobolev gradient-based stochastic optimizers used in 3D-CNN to diagnose the
AD and obtained the 98.01% accuracy. Another study by Khan et al. [40] solved the issue with transfer
learning and optimized the VGG architecture for the multi-classification of AD. They introduced the
new method for layer-wise tuning, to find out the more informative slices in the data they applied
the image entropy. Feature selection without overfitting is a big challenge to improve the model
classification accuracy. Bijen et al. [14] introduced the fine-tuned pre-trained CNN for feature extraction
purposes. They applied the simpler machine learning model and obtained the time-efficient and
desirable results in the sense of classification accuracy on the whole-brain model.

Finally, it can be seen that for the multi-classification problem our proposed model achieves state
of the art results when we compared it with the existing models. We also provide a deeper analysis of
our proposed technique to extract useful information from MRI slices. The work had a lot of limitations
which affect accuracy result. First, there is a smaller number of annotated data. Second, preprocessing
steps such as skull stripping, segmentation and normalization have convoluted parameters, which are
the big problems to deal with a number of parameters correctly.
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5. Conclusion

In this research article, we proposed a deep learning model to predict the multi-class classification
of stages of Alzheimer’s disease. Our proposed SCNN model is inspired by VGG-16. We approve our
model with detail experiments on the OASIS dataset, where MRI image belongs to four categories such
as no dementia (ND), very mild dementia (VMD), mild dementia (MD), and moderate AD (MAD) is
used to obtain the highest accuracy of our proposed approach. We also investigate the reduction of
overfitting and regularization of the model effect on our application performance. For this purpose,
we used three types of normalizations and Gaussian noise. Finally, we compare our proposed technique
to the existing five state-of-the-art approaches, where our proposed model significantly performed
better than the others. We can see our proposed approach providing a 3% to 6% improvement for
multi-class classification as compared to the state-of-the-art techniques.

In the future, we will examine whether the same model can be employed on the other
computer-aided diagnostic problems. We will also investigate further improvement by an intelligent
splitting of training data for classification.
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