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Abstract: Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome
involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency
of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial
anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a
specific gene. We report a systematic review of the literature and included two novel cases. Because
deletions are highly variable in size, we defined three groups of patients considering the PSS-genes
involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three
with PHF21A only. Among the latter, we describe a novel male child showing developmental delay,
café-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS
cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given
their subtle presentation these may be overlooked and if left untreated could lead to a severe type
or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may
ameliorate PSS phenotype and improve patients’ outcomes. Our analysis also shows PHF21A is a
candidate for the overgrowth phenotype.

Keywords: Potocki-Shaffer; infantile spasms; PHF21A; SCNA; LSD-CoREST; epileptic encephalopathy;
west syndrome; intellectual disability

1. Introduction

Structural genetic variation is a class of sequence alterations typically spanning more than 1 kb [1].
They include quantitative variations such as copy number variations (CNVs), the most prevalent type
of structural variation, and other alterations, including chromosomal rearrangements. They can span
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from thousands to millions of bases whose copy number varies between different individuals, and are
the result of DNA gains or losses [2,3].

CNVs can be responsible for genomic disorders, Mendelian diseases associated with large gains,
and losses of genetic material [4]. A number of well-delineated genomic disorders are presently known
and can be divided into two main categories: recurrent genomic disorders, which span the same region
and originate independently de novo in different patients, and the non-recurrent genomic disorders,
whose extension is different in each patient although the disease-associated gene(s) is/are always
included. Recurrent rearrangements are caused by nonallelic homologous recombination (NAHR)
between flanking low-copy repeats (LCRs), or repetitive elements such as LINE and HERV elements [5,6].
Non-recurrent rearrangements are caused by more complex mechanisms, such as non-homologous
end joining (NHEJ), fork stalling, and template switching (FoSTeS)/microhomology-mediated BIR
(MMBIR) [7]. Their breakpoints are therefore variable hampering the identification of the causative
gene associated with the disease.

Genomic disorders can include both (i) contiguous gene deletions or duplications as seen in
Williams-Beuren syndrome (MIM# 194050), where more than one causative gene is present [8] or (ii)
CNVs of genes or portions of genes (exons) leading to Mendelian disorders (e.g., Rubinstein-Taybi
syndrome; MIM# 180849) [9].

The main molecular mechanism is related to changes in dosage sensitive genes, in other
words, genes whose dosage is critical to determine a healthy phenotype. Both deletions leading
to haploinsufficiency or duplications leading to triplosensitivity can lead to a phenotype [10].
The identification of causative genes within the critical region of a genomic disorder is complex.
It can rely on the availability of haploinsufficiency scores provided by the GnomAD consortium [11],
and the detection of several affected subjects with a deleted/duplicated region showing overlap on a
few candidate genes.

We focused our attention on the Potocki-Shaffer syndrome (PSS), a rare non-recurrent contiguous
gene deletion syndrome mapping on 11p11.2 (MIM# 601224) [12,13]. The classical phenotype
comprises multiple exostoses, biparietal foramina, and neurodevelopmental delay as cardinal features.
Craniofacial abnormalities, epilepsy, tapering fingers, eye and hearing abnormalities, hypothyroidism,
immunodeficiency, and genital malformations in males have also been reported [14].

Current literature implies a critical minimal region with haploinsufficiency of three genes:
aristaless-like homeobox 4 (ALX4, MIM* 605420), exostosin 2 (EXT2, MIM* 60821), and PHD finger
protein 21A (PHF21A, MIM* 608325). In rare cases, the deletion extends centromerically causing
overlap with the WAGR syndrome (Wilms’ tumor, aniridia, genitourinary anomalies/gonadoblastoma
and mental retardation) [15–17]. Haploinsufficiency for PAX6 (causing aniridia, MIM# 106210) [18] and
WT1 genes (predisposing Wilms’ tumor, genital abnormalities, and nephropathies, MIM# 194072) [19]
lead to the main WAGR features.

Here, we report a critical revision of the literature grouping describing patients in three categories
based on the presence of the PSS-associated genes within the deletion (ALX4, EXT2, and PHF21A;
EXT2-ALX4; and PHF21A only). We also describe a novel PSS female patient (Decipher 286390) and
the third smallest de novo 11p11.2 microdeletion spanning PHF21A (Decipher 415213) in a male with
developmental delay (DD), intellectual disability (ID), café-au-lait spots, liner postnatal overgrowth,
and West-like pharmacoresistant epilepsy. These latter cases are instrumental to better define the role
of PHF21A in the phenotype.

2. Materials and Methods

Genomic DNA was isolated from peripheral blood using a standard procedure (Qiagen,
Hilden, Germany) and quantified by Nanodrop spectrophotometer (Thermo Scientific, Waltham,
MA, USA). We performed array-CGH with a 60 K whole-genome oligonucleotide microarray
following the manufacturer’s protocol. Slides were scanned using a G2565BA scanner (Agilent
Technologies, Santa Clara, CA, USA) and analyzed using CytoGenomics version 5.0.2.5 (Agilent
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Technologies, Santa Clara, CA, USA) with the statistical algorithm ADM-2 and a sensitivity threshold
of 6.0. At least three consecutive aberrant probes identified significant copy-number changes.
We compared our findings to known CNVs listed in the Database of Genomic Variants (DGV,
http://projects.tcag.ca/variation) and in the DECIPHER database (https://decipher.sanger.ac.uk/).
TaqMan real-time quantitative PCR (qPCR) analysis (was used to measure copy number variants at
11p11.2 in genomic DNA on the gene PEX16 (NM_057174.3, exon 11), primers 5′-cagagcctggtgaacagtga;
5′-aggatgcagggcttaaagtg; #36 UPL probe (Roche Diagnostics, Risch-Rotkreuz, Switzerland); with
RnaseP reference gene, VIC-labeled pre-designed TaqMan gene expression assays (P/N 4316844,
Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). We carried out the reaction with an
ABI 7500 Fast real-time PCR machine using the ABI TaqMan Universal PCR master mix according to the
manufacturer’s instructions (Applied Biosystems, Thermo Scientific, Waltham, MA, USA). Efficiencies
of the assays were similar and in a range of 90–110%. Samples from affected individuals and unrelated
healthy controls were run in triplicate. The mean Ct value was used for calculations using the ∆∆Ct
method [20].

All subjects gave their informed consent for inclusion before participation. The study was
conducted in accordance with the Declaration of Helsinki.

We identified all potentially relevant articles, limited to English-language studies by searching
PubMed (https://pubmed.ncbi.nlm.nih.gov/), and an additional hand search of the reference lists from
the obtained articles. We considered abstracts at international conferences only if they reported relevant
cases. If some crucial information were not provided or they were not feasible at the time of writing
the article, all eligible authors were contacted, with a second mail as a reminder if responses were
not received. The search was performed up to December 2019 with an up-to-date e-alert from each
search platform.

We extracted the characteristic and additional phenotypic elements from each study. Furthermore,
we concentrated on describing the dysmorphology traits, reporting the most frequent features. If the
growth parameters [21] were accessed in several time periods after birth, only the last one was included.
An array-CGH and newer data were preferred over FISH examinations.

In order to construct one scheme of all reported PSS deletions, we have converted the FISH-BAC
clones in the GRCh37/hg19 using their distal coordinates as a minimal zone of the deletion (further
details in Supplementary Table S1).

3. Results

3.1. Case Report 1 (Decipher 286390)

She is the unique child born by caesarian section from non-consanguineous European parents
(father from France and mother of Spanish origin). Her prenatal course was uncomplicated. The family
history was negative for other individuals with neurodevelopmental disorders except for a cousin of
the mother who had a son with mild to moderate intellectual disability. At birth, neonatal hypotonia
was noticed and a cerebral CT-scan revealed a thin corpus callosum. Multiple exostoses were reported.
Epilepsy started at the age of 8 years, and it was initially treated with lamotrigine. At the age of
12 years, she presented a status epilepticus secondary to Haemophilus influenzae septic shock associated
with acute respiratory distress syndrome (ARDS) (detailed description in Supplementary File S1).
On the last visit (patient is now in her twenties) the epilepsy was under control with a cocktail of
anti-epileptic drugs.

She had a severe global developmental delay. She crawled on all four limbs but did not master
chair-to-floor transfers and the use of the wheelchair. She could walk with difficulty using a walker.
She has a quick and efficient prehension, but she does not have the resources for instrumental use of
objects. In terms of language, she can say several single words but not structured sentences. She has
sleep apnea and an IgA immune deficiency treated by injection of gamma globulins, discovered

http://projects.tcag.ca/variation
https://decipher.sanger.ac.uk/
https://pubmed.ncbi.nlm.nih.gov/
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at 12 years old during her hospitalization. No known gene in the deleted interval is associated
with immunodeficiency.

At birth, her growth parameters were weight 2970 g (−0.87 SD), height 51 cm (+0.56 SD), and
occipoto frontal circumference (OFC) 34 cm (−0.54 SD). At 12 years, weight 31 kg (−3 SD), height 134 cm
(−2 SD), body mass index (BMI) 17 kg/m2 (25–50th centile). At 20 years, weight 37 kg (−3 SD), height
141 cm (−3.4 SD); BMI 18.6, 17 kg/m2 (10–25th centile), and OFC 53 cm (−1.20 SD). Her dysmorphic
features are described on Figure 1.
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Figure 1. Photography of patient 1 (Decipher 286390) at 20 years old. She has a high and broad
forehead, sparse lateral eyebrows, long nose with prominent nasal bridge, short and smooth philtrum,
thin lips, prominent chin with horizontal crease, quite large mouth, and a short neck. There is a large
abduction and an external rotation of the two hips.

The array-CGH detected a deletion overlapping the PSS critical region with a min-max
size of 8–9.1 Mb (array (GRCh37) 11p11.12 (42272129x2, 42333416_50378802x1, 51379160x2)).
The inheritance of the deletion could not be tested. FISH analysis confirmed a deletion 11p11.2p11.2
(RP11-70A9-RP11-465I24), in line with previous array-CGH data.

3.2. Case Report 2 (Decipher 415213)

Patient was a male born at term (Apgar 9/9, 42nd gestational week with vaginal delivery;
birth weight 4070 g (>85th centile); length 52 cm (50th centile); head circumference 33 cm (<15th
centile)) from non-consanguineous healthy parents. He was hospitalized at 10 months of age due to
apyretic convulsive crises followed by hypotonia, somnolence, and developmental delay. His mother
reported daily episodes of short duration with quick muscle contraction of the arms, and a fixed look as if
the “child was scared”. There was no family history of malformation, epilepsy, or developmental delay.

The electroencephalography (EEG) (awake/sleep) in the first days of his hospital admission
demonstrated an interictal hypsarrhythmia characterized by slow chaotic high voltage delta and theta
activity (prominent in the right temporo-parietal region), mono/polymorphic preceded by multifocal
frequent bouffés type PO, PPO spike complexes (Figure 2). Due to an EEG pattern indicative of
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West syndrome, the patient was administrated ACTH, cortisone, and phenobarbitone. After the
arterial hypertension, most likely a side effect from the ACTH, a diuretic and calcium-antagonist
were prescribed.
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Beside the Magnetic Resonance Imaging (MRI) signs of benign external hydrocephalus and bilateral
mastoiditis with modest micellar sinusopathy and minimal pericardial effusion on electrocardiogram.
All other examinations were in normal ranges (sensory evoked potentials, metabolic profiles, echo and
computer tomography (CT) scan).

Currently (5 years of age), the patient presents a linear postnatal overgrowth with severe intellectual
disability (weight 23 kg (90–97th centile), height 121 cm (>97th centile; father 176 cm, mother 170 cm),
and head circumference of 53.5 cm (90–97th centile)).

Using array-CGH, we detected a de novo 323–472 kb microdeletion, partially overlapping the PSS
critical region (arr(GRCh37) 11p11.2(45553929x2,45670806_45993729x1,46027199x2)dn) The deletion
was confirmed by real-time quantitative PCR (qPCR), and encompassed eight protein coding genes:
C11orf94, CHST1, CRY2, GYLTL1B, MAPK8IP1, PEX16, PHF21A, and SLC35C1.

3.3. Review of Reported PSS Cases

We selected 18 published articles for a total of forty 11p11.2 deletions, including the two reported
here [12,13,15–17,22–34]. All are represented in Figure 3 using the UCSC Genome Browser custom
track (Supplementary Table S1). In three, the WAGR critical region was included [15–17]. We excluded
all PSS cases carrying an additional pathogenic deletion or duplication [35,36]. Reports of the patients
with heterozygous deletions which appeared as early as 1977 [37] or those where no sufficient data
was provided even after contacting the authors [38] were also excluded.

Detailed clinical data including dysmorphology was obtained for each patient when available
(Supplementary Tables S1–S3).

We noted that the deletions described are highly variable. To perform a better genotype-phenotype
correlation, we divided cases into three groups based on the involvement of the three PSS critical
genes. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three
with only PHF21A. The minimal deletion reported by Chuang et al. [24] did not affect ALX4/EXT2;
however, the patients had biparietal foramina and multiple exostosis, and thus were classified as
complete PSS deletion.
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region. In red, the extension of the minimal deleted region. Vertical light blue lines indicate the borders
of the critical PSS region, spanning the PHF21A, ALX4, and EXT2 genes. Black vertical lines indicate
the redefined critical region for ID/DD in PSS: a ~1.1 Mb region containing 12 annotated genes between
markers D11S554 and D11S1319 [22]. On the left side, the PAX6 and WT1 genes associated with Wilms’
tumor, aniridia, genitourinary anomalies/gonadoblastoma and mental retardation syndrome (WAGR).
Note that some of the red bars indicate more than one case in the same family.

Half of the patients (20/40) had reports of their birth parameters (Table 1). The majority had
weight/height or head circumference adequate for their age (15/20); three were small, and two were
large for their gestational age at birth (>90th centile or 2 SD above the mean weight, length, or both).
Postnatal overgrowth was observed in four patients, and two did not catch up to expected parameters
despite the normal parameters at birth.

Developmental delay was noted in half of the patients (22/40); isolated language delay in one,
additional autistic traits in patient 3 by Wuyts et al. [25], and in the follow-up of patient III-1 by
Shaffer et al. [13] (Table 1; Supplementary Table S1).

At the neurologic examination, hypotonia was the most prevalent finding detected in 16 patients,
although the definition was not consistent. We found epilepsy in 14 cases, clinically very heterogeneous
by etiology and definition (Table 1). Notably, all except one showed severe deterioration on the
developmental plateau and intellectual disability (Table 1).

Various brain anomalies were seen on MRIs such as thin (n = 5), absent (n = 2), or hypoplastic
corpus callosum (n = 1) (Table 1; Supplementary Table S1). Prominent cerebrospinal fluid spaces
were detected in six patients (Table 1). Other brain anomalies were dysplasia/hypoplasia of the
cerebellar cortex/vermis (five patients), choroid plexus cyst (two patients), and an unusual report of
meningoencephalocele (Table 1; Supplementary Table S1).

Genitourinary anomalies such as micropenis (9/28) and cryptorchidism (8/28) were frequent
findings in males. Strabismus (12/40) and nystagmus (5/40) were prevailing from the ocular anomalies
(Table 1; Supplementary Table S1).

Among 28 patients with dysmorphic features, brachycephaly was commonly reported in 17 patients
(61%), followed by broad forehead and epicanthus present in 12 (43%), followed by downturned mouth,
prominent nasal bridge, high forehead, sparse lateral eyebrows, and short philtrum (Table 2). Tapering
fingers and brachydactyly were hand anomalies reported in a minority (Supplementary Table S3).
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Table 1. Clinical characteristic of PSS cases reported in the literature.

Decipher
286390

Decipher
415213 McCool Labonne Sohn Kim GC14361 Montgomery Palka Romeike Bremond Chuang

Patient 1
Chuang
Patient 2 Chuang Patient 3 Wakui

PSS03
Wakui
PSS04 Wakui PSS08

PSS + + + + + + & + & + & + +

ALX/EXT4 + + +

PHF21A + + +

Birth parameters

SGA/Undergrowth - - - - + n.a - - n.a n.a n.a n.a n.a n.a n.a n.a

Appropriate + + + - - n.a - + n.a n.a n.a n.a n.a n.a n.a n.a

LGA/Overgrowth - - - + - n.a + - n.a n.a n.a n.a n.a n.a n.a n.a

Postnatal growth

Undergrowth + - - - + n.a - - n.a - † n.a n.a n.a + + n.a

Appropriate - - - - - n.a - + n.a + n.a n.a n.a - - n.a

Overgrowth - + + + - n.a + - n.a - n.a n.a n.a - - n.a

Neurodevelopment

Developmental
delay + + + » + + + + + + - + - - - + +

Intellectual
disability + + - - + - + + + + - + + - - -

Language delay - - - - - - - - - - - - - - - -

Neurological
findings

Hypotonia + - - - + + + - - - - - - - + -

Epilepsy + + - - - - ◦ - + + * - - + + - - -

MRI findings

Corpus callosum + - - - - - - - + - - - - - - +

Prominent CSF
spaces - - - - - - - - + - - - - - - -

Other brain
anomalies - + - - - - - - + - - - - - - -

Genitourinary

Micropenis - - - + - - - - - - + - - - + -

Cryptorchidism - - - - - + - - + - - - + - + -

Ocular anomalies

Cataract - - - - - - - - - + - - - - - -

Strabismus - - + - + - - - - - + - - - - -

Nystagmus - - - - + - - - - + - - - - - -

Hearing anomalies

hearing loss - - - - - + - - - - - - - - - -
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Table 1. Cont.

Decipher
286390

Decipher
415213 McCool Labonne Sohn Kim GC14361 Montgomery Palka Romeike Bremond Chuang

Patient 1
Chuang
Patient 2 Chuang Patient 3 Wakui

PSS03
Wakui
PSS04 Wakui PSS08

Other
IgA

deficiency;
sleep apnea

Café-au-lait
spots

Recurrent
infections Ptosis

Pectus excavatum.
Recurrent otitis

media

Pectus
excavatum.

Cardiomyopathy;
Osteochondromas;

Anemia

Bilateral
aniridia;
Kidney
tumor;

Obesity

Umbilical
hernia

Bowing
of lower

extremities

Umbilical
hernia;

Myopia;
Recurrent
infections

Wilms’ tumor;
Aniridia

Wakui
PSS10

Wakui
PSS12

Wakui
PSS13

Wuyts
patient

1

Wuyts
patient

2
Wuyts patient 3 Chien 3

patients
Hall 3

patients
Wuyts 4
patients

Bartsch
Patient 2

Bartsch
Patient

6–8
Potocky McGaughran Shaffer III-1 Shaffer

III-2
Shaffer

II-4

PSS + + + + + + + + + + + +

ALX/EXT4 + + + +

PHF21A

Birth parameters

SGA/Undergrowth n.a - + - - - n.a n.a n.a - - - - + ˆ n.a -

Appropriate n.a + - + + + n.a n.a n.a + + + + - n.a + ˆ

LGA/Overgrowth n.a - - - - - n.a n.a n.a - - - - - n.a -

Postnatal growth

Undergrowth - - + - - + n.a n.a n.a - - - - + ˆ n.a -

Appropriate + + - + + - n.a n.a n.a + + + + - n.a + ˆ

Overgrowth - - - - - - n.a n.a n.a - - - - - n.a -

Neurodevelopment

Developmental
delay - + + + + + + - - - - + - + ˆ - -

Intellectual
disability - - - + + + + - - + - + + + + +

Language delay + - - + - - - - - - - - - + ˆ - -

Neurological
findings

Hypotonia - - + + + + + - - + - - - + + +

Epilepsy - - - + - + - ◦ - +
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Table 1. Cont.

Decipher
286390

Decipher
415213 McCool Labonne Sohn Kim GC14361 Montgomery Palka Romeike Bremond Chuang

Patient 1
Chuang
Patient 2 Chuang Patient 3 Wakui

PSS03
Wakui
PSS04 Wakui PSS08

Cataract - - - - - - - - - - - - + - - -

Strabismus + - + - + + + - - + - + - + - +

Nystagmus - - - - + + - - - + - - - - - -

Hearing anomalies

hearing loss - + + - - - - - - - - - - - + ˆ

Other

Deceased
from

multiorgan
failure

Small
testis

VSD;
Recurrent
infections

High
myopia;
Obesity

Anal atresia and fistula;
VSD

Myopia;
Acrocephalosyndactyly;
Adipose

7625
Asthma;
Hyperactivity

Adipose
appearance

Café-au-lait
spots

Capillary
hemangioma

Bilateral
ptosis

Aniridia;
Wilms’
tumor;
Short

stature

Borderline
hypothyroidism;

Simian crease

borderline high TSH;
Simian crease;

Obese

Adipose
appearance;
Aggressive

behavior

Notes: SGA, small for gestational age; LGA, large for gestational age; n.a, not available; VSD, ventricular septal defect; », history of developmental delay; ◦, history of static encephalopathy;
*, information for antiepileptic drugs; †, height 2.4 SD; &, minimal deletion does not affect the ALX/EXT4; º, micropenis only in the index case; report of mother’s two brothers of febrile
seizures and epilepsy; the older had right-side cryptorchidism, whereas the younger umbilical hernia;
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Table 2. Dysmorphology of PSS reported patients in the literature.

Dysmorphology n % PSS ALX/EXT4 PHF21A

Brachycephaly 17 61 14 2 1
Broad forehead 12 43 9 1 1

Epicanthus 12 43 9 1 2
Downturned mouth 11 39 11 0 0

High forehead 10 36 8 2 0
Prominent nasal bridge 10 36 10 0 0
Sparse lateral eyebrows 9 32 8 1 0

Short philtrum 9 32 7 1 1
Microcephaly 8 29 8 0 0

Hypoplastic nares 6 21 5 1 0
Broad nasal tip 5 18 5 0 0

Low set ears 5 18 4 1 0
Large/protuberant ears 5 18 3 1 1

Telecanthus 4 14 4 0 0
Upslanting palpebral fissures 4 14 4 0 0

Thin lips 4 14 3 0 1
Micrognathia 4 14 2 1 1
Turricephaly 3 11 2 0 1

Broad nasal bridge 3 11 2 0 1
Short neck 3 11 3 0 0
Small nose 2 7 2 0 0

Small mouth 2 7 1 0 1
Full cheeks 2 7 0 1 1

Prominent chin 2 7 1 1 0
Downslanted palpebral fissures 1 3 0 1 0

TOTAL 28

Notes: PSS is Potocki-Shaffer syndrome.

4. Discussion

In contiguous genes syndromes, the identification of the causative genes responsible for the
phenotype relies on the availability of patients with different but overlapping deletions/duplications and
on functional or genetic data of the genes spanning the CNV. In Potocki-Shaffer syndrome, three genes
are reported to be causative: ALX4, ELX2, and PHF21A. We aimed at improving genotype-phenotype
correlation on the syndrome and revised literature data collecting a total of 40 cases.

Patients with a deletion involving ALX4, ELX2, and PHF21A genes had the cardinal PSS features:
biparietal foramina, multiple exostosis, and intellectual disability and craniofacial anomalies associated
with ALX4, ELX2, and PHF21A, respectively. The haploinsufficiency of ALX4 [39] was also suggested
to explain the micropenis in some of the males with PSS.

SLC35C1 [23], PEX16 [23], and GYLT1B [40,41] have been proposed as candidate genes for the
hypotonia reported in most of the PSS patients. Actually, these genes are not haploinsufficient
(pLI scores close to 0 [42]), and they unlikely can contribute to this condition.

We were particularly interested in the role of PHF21A in PSS. Disrupting variants hitting PHF21A,
such as balanced translocations [22], truncating [43], or missense variants [44] are reported in patients
with intellectual developmental disorder and craniofacial dysmorphism. Notably, PHF21A disruption
has also been associated with hypotonia, and different types of epilepsy among which West-like
epileptic encephalopathy [43]. West syndrome (WS) [45] includes a triad composed of infantile spasms
(epilepsy) [46], hypsarrhythmia (EEG pattern), and intellectual disability. The infantile spasms of WS
are subtle and short, they disappear by the age of 2 years and are often overlooked if not recognized by
trained and experienced eyes. Their early diagnosis and a shorter delay to treatment are essential for
evading their long term morbidity such as intellectual disability or a more severe type of epilepsy [47].
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We noted that West syndrome was also diagnosed in patient 1 (Decipher code 415213), at the
initial stage of disease (10 months of age), suggesting this feature is present in early phases of PSS.
We analyzed the reports of epilepsy/seizures in the whole PSS literature cohort, but we were unable
to find further cases with infantile spasms/WS. We think that the age of the probands at diagnosis is
likely the most relevant explanation, because of the early onset of infantile spasms and subtle clinical
presentation [13,34]. In some cases, a poor clinical description [23], or different deletion sizes [29] may
have hidden the WS features. On the other hand, we found two neonates, while searching infantile
spasms among cases with PHF21A point mutations (one truncating and one missense variant) [43,44].
Our observation needs future clinical confirmation; however, if infantile spasms are truly present in
the early phases of PSS and remain untreated, they could lead to intellectual disability or to more
severe types of epilepsy described in this disease. Since PHF21A strongly correlates with intellectual
disability, we suggest that it could also be the leading gene for the infantile spasms and epilepsy.

The histone methyl reader protein (BHC80) [48] encoded by PHF21A is best known for its role in
regulation of a huge number of neuronal genes during embryogenesis [49,50], and it is particularly
important in the development of nerve cells [51] and bone structures of the face [22]. It is a well
conserved gene and is highly intolerant to variation (pLI = 1.0; Z-score = 2.86, GnomAD ver.2.1.1
http://gnomad.broadinstitute.org/). This reader protein is part of LSD-coREST [52] complex and
recognizes the epigenetic marks on core H3K4 through specialized motifs [53], which researchers
speculate helps keep the histone demethylated and the genes turned off (repressed) [53,54]. These target
genes have a specific cis-regulatory elements known as repressor element-1 (RE1) or neural restrictive
silencer (NRS) [55]. Among them are SCN2A [52] or SCN3A [22,56], sodium channel encoding
genes, strongly associated with epileptic encephalopathy [57]. The PHF21A haploinsufficiency is
indeed altering the expression of these genes, as it was demonstrated in patients’ derived PHF21A
haploinsufficient cell lines [22,56].

Concerning dysmorphological traits such as brachy/microcephaly and mild micrognathia, the role
for PHF21A was supported by the generation and rescue of a zebrafish model, where PHF21A
orthologous suppression produced abnormalities in the development of the head, face, and jaw [22].
Yet, these features were not present in all patients with a deletion affecting PHF21A, suggesting
incomplete penetrance.

Birth/postnatal overgrowth, present in some of the PSS cases, could also be associated with
PHF21A haploinsufficiency. A recent report on disorders associated to overgrowth with intellectual
disability (OGID) showed that 14 genes were involved [58]. Perturbation of epigenetic regulation was
the main pathogenic mechanism. Interestingly, most of these genes have motifs recognized by the
LSD-coREST complex where PHF21A is taking part [59,60].

5. Conclusions

We are presenting a detailed systematic review of all reported PSS cases, including two novel
ones. The phenotype is confirmed heterogeneous, but we highlighted the possibility that infantile
spasms are present before 2 years of age. We highlight the importance of confirming this observation
by prompt examination of PSS cases. An early diagnosis of infantile spasms may shorten the delay to
treatment and subsequently lower or even abolish the risk of intellectual disability [61,62]. This goal
could be achieved in case of a suspect or in families at risk by:

- a detailed clinical examination of neonates, particularly focused on getting a full
neurological assessment

- a complete video-EEG recording
- a magnetic resonance (MR) study of the brain

We also suggest the inclusion of PHF21A into gene panels for infantile spasms, performing prompt
genetic testing and EEG in suspected patients, and in probands from at-risk families.

http://gnomad.broadinstitute.org/
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Decipher: http://decipher.sanger.ac.ukWorkings
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