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Abstract: Post-hypoxic myoclonus (PHM) and Lance–Adams syndrome (LAS) are rare conditions
following cardiopulmonary resuscitation. The aim of this study was to identify functional activity
in the cerebral cortex after a hypoxic event and to investigate alterations that could be modulated
by deep brain stimulation (DBS). A voxel-based subtraction analysis of serial positron emission
tomography (PET) scans was performed in a 34-year-old woman with chronic medically refractory
PHM that improved with bilateral globus pallidus internus (Gpi) DBS implanted three years after the
hypoxic event. The patient required low-frequency stimulation to show myoclonus improvement.
Using voxel-based statistical parametric mapping, we identified a decrease in glucose metabolism
in the prefrontal lobe including the dorsolateral, orbito-, and inferior prefrontal cortex, which was
suspected to be the origin of the myoclonus from postoperative PET/magnetic resonance imaging
(MRI) after DBS. Based on the present study results, voxel-based subtraction of PET appears to be
a useful approach for monitoring patients with PHM treated with DBS. Further investigation and
continuous follow-up on the use of PET analysis and DBS treatment for patients with PHM are
necessary to help understanding the pathophysiology of PHM, or LAS.

Keywords: deep brain stimulation (DBS); globus pallidum internus (Gpi); Lance–Adams syndrome
(LAS); PET/MRI co-registration; post hypoxic myoclonus (PHM); voxel-based subtraction analysis

1. Introduction

Post-hypoxic myoclonus (PHM) is a rare disorder occurring in survivors of profound hypoxic
episodes following cardiopulmonary resuscitation [1]. PHM commonly manifests as multifocal,
generalized muscle jerks that increase during movement and usually disappear with body and limb
relaxation [2]. Chronic PHM, or Lance–Adams Syndrome (LAS), develops days or weeks after hypoxia
when the patient has regained consciousness [3]. Myoclonus may be positive, defined as sudden
involuntary muscular contracture, or negative, characterized by interruptions of tonic activity of
voluntary muscles [4–6]. Myoclonus is classified as cortical, subcortical, or spinal, according to the
presumable generator site [7]. Patients with cortical myoclonus usually show involuntary movements
consisting of both positive and negative myoclonus [8]. The pathophysiology of PHM remains
unknown. Recent imaging studies have suggested that modalities such as cerebral single-photon
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emission computed tomography (SPECT) or positron emission tomography (PET) may provide
insights into disease pathophysiology. There is some heterogeneity regarding PET and SPECT findings,
including hypermetabolism in the ventrolateral thalamus and hypometabolism in the frontal lobes,
indicating a heterogeneous mechanism of myoclonus in patients with LAS [9,10]. Treatment for
chronic myoclonus requires a combination of multiple antiepileptic medications, such as levetiracetam,
piracetam, clonazepam, and valproate [11,12]. Medical treatment with antiepileptic drugs may not
satisfactorily improve the myoclonus, and deep brain stimulation (DBS) has been suggested in patients
with medically-refractory chronic PHM [4,13–16]. However, DBS either targets the thalamus or uses
high-frequency stimulation of the globus pallidus internus (Gpi). In the present study, the patient’s
myoclonus responded better to low-frequency than high-frequency LAS. Therefore, functional changes
after DBS were evaluated in this patient using PET/magnetic resonance imaging (MRI) co-registration
and voxel-based serial PET subtraction.

2. Materials and Methods

2.1. Patient Data

A 34-year-old woman was found unconscious in deep water while snorkeling and was transported
to a hospital. After successful cardiopulmonary resuscitation, she remained comatose for several days.
Remarkably, she regained consciousness 14 days later. The patient’s condition improved after 1 month
and she was able to follow simple commands. However, her action myoclonus aggravated, occurring at
rest and worsening with movement of her hands and legs. Two months after CPR, neurological
examination of the patient showed an alert, cooperative state and orientation to person, place, and time.
A Mini Mental Status Examination (MMSE) yielded 29 points on a 30-point scale. She reported
no family history of movement disorders. She underwent a tracheostomy that was reversed after
17 months. MRI taken two months after the hypoxic event was normal. Her electroencephalogram
(EEG) showed very frequent bilateral, generalized, high-voltage polyspike discharges, mainly from
prefrontal and frontal areas, accompanied by jerking movements in the legs and slow-wave complexes
with 2–4-Hertz (Hz) intervals (Figure 1). She showed periodic involuntary movements of both arms
and legs precipitated by action. Action myoclonus appeared in her outstretched arms and increased to
myoclonic jerks during finger-to-nose movements. She could not hold a cup because of her action
myoclonus (Supplementary Materials Video S1). She needed assistance to stand, which triggered
negative myoclonus in her legs, and the shock-like involuntary negative myoclonus caused postural
lapses (Supplementary Materials Video S2). She was unable to walk due to the myoclonus and needed
a wheelchair to ambulate. The patient’s clinical features including positive and negative myoclonus
with EEG findings indicated generalized cortical myoclonus. Based on her clinical examination results,
LAS was diagnosed. The patient received intensive rehabilitation and antiepileptic treatment for three
years after the hypoxic event. A regimen of levetiracetam (1500 mg twice a day), valproic acid (600 mg
three times a day), topiramate (100 mg twice a day), and clonazepam (1 mg three times a day) provided
only limited control of her rest and action myoclonus and further medication increases could not
reduce the severity or frequency of her myoclonus.

The patient provided written informed consent to participate in the study and for the publication
of this report. The ethics committees (Severance Hospital Human Research Protection Center;
Code: 4-2013-0795) of our institution approved the study protocol.

2.2. Surgical Procedures

Because the patient had myoclonus refractory to medication, a decision was made to perform
DBS to improve her myoclonus and quality of life, three years after her hypoxic event. The decision
to choose the bilateral Gpi as the target for implantation was based on our experience as well as
on published data regarding the treatment of myoclonus in patients with myoclonus-dystonia (MD)
with Gpi DBS [17–19]. The operation involved frame-based stereotactic implantations of the DBS
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electrodes targeting the Gpi. Preoperative stereotactic 1.5-T MRI was performed and the images
transferred to a Leksell SurgiPlan (Elekta, Stockholm, Sweden). The stereotactic coordinate for Gpi
localization was 20.5 mm lateral (X), 2 mm anterior (Y), 3 mm inferior (Z) to the midcommissural
point (MCP). Gpi localization was verified with MRI and the Schaltenbrand atlas. The procedure
was performed under local anesthesia to evaluate the effects of stimulation and possible side effects
using microstimulation during microelectrode recordings (MERs) and macrostimulation through the
permanent electrode. For permanent stimulation, DBS electrodes (model 3387, Medtronic, Minneapolis,
MN, USA) were used. After implanting the electrodes, postoperative computed tomography (CT)
scans were acquired before removing the frame (Figure 2A) and fused with preoperative MR images to
identify the positions of the electrodes. After 10 days of test stimulation, implantable pulse generators
(IPGs) (Activa SC, Medtronic) were implanted subcutaneously in the sub-axillary region under general
anesthesia (Figure 2B,C). The lead analysis was performed with Suretune 3 (Medtronics) to identify
the actual location of each contact. Figure 3 reveals that contact 0 and 1 are located within the Gpi for
both electrodes.Brain Sci. 2020, 10, x FOR PEER REVIEW 3 of 15 
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Figure 2. (A) Postoperative computed tomography (CT) scans revealed bilateral deep brain stimulation
(DBS) electrodes implantation in the globus pallidum internus (Gpi) without any surgery-related
complication. (B,C) 10 days after DBS, implantable pulse generators (IPGs) were implanted
subcutaneously in the sub-axillary region.
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2.3. Brain Image Acquisition and Preprocessing

Because the conventional MRI presented no definite structural abnormality, fluorodeoxyglucose
positron emission tomography (18F-FDG PET) was performed three times—preoperatively, one year
after DBS, and three years after DBS—to identify functional activity of the cerebral cortex after
the hypoxic event and to investigate alterations that could be modulated by DBS. Postoperative
PET scans were performed with DBS stimulation on. 18F-FDG PET images were obtained on a
PET/CT scanner (Discovery STE PET/CT scanner, GE Healthcare, USA). Approximately 370 MBq
of 18F-FDG was administered intravenously 60 min before scanning. 18F-FDG PET images were
acquired for 10 min, and repeatedly reconstructed with CT-based attenuation correction according
to the following parameters: field of view = 128 × 128, pixel size = 2.34 × 2.34 mm2, slices = 65,
slice thickness = 2.38 mm. Brain anatomical images of high-resolution T1-weighted MRI on a
3-Tesla (T) MRI scanner (Achieva, PHILIPS Healthcare, Netherlands) were obtained using the
following parameters: field of view = 256 × 256, voxel size = 0.86 × 0.86 × 1.0 mm3, slices = 170,
echo time (TE) = 9.89 ms, repetition time (TR) = 4.6 ms, flip angle = 8◦. In the image analysis,
only preoperative 3-T MRI images (before DBS implantation) were used due to the potential
morphological changes to the skull that may have occurred in the brain after surgery.

All analyses of changes in preoperative and postoperative brain glucose metabolism were
performed using statistical parametric mapping (SPM12, Wellcome Trust Centre for Neuroimaging,
University College London, London, UK) implemented in MATLAB (version 2018b, MathWorks Inc.,
Natick, MA, USA). To analyze the images at spatially common coordinates of individual brains,
each 18F-FDG PET image obtained at different time points during the follow-up period was co-registered
to the MRI image using rigid-body transformation. These MRI co-registered PET images can visualize
a distributed map of radioisotope uptake levels on individual brain MRIs and localize the neural
activation or deactivation regions [20]. Co-registered 18F-FDG PET images were subsequently smoothed
by convolution with an isotropic 3D Gaussian kernel of 6-mm full width at half maximum (FWHM).
Finally, the image intensities of 18F-FDG PET were scaled in proportion to the overall mean (conventional
global mean scaling) for voxel-based subtraction analysis [21].

2.4. Voxel-Based Subtraction Analysis of PET

To investigate metabolic changes after DBS, a voxel-based subtraction analysis was performed
by adopting the subtraction ictal SPECT co-registered to MRI (SISCOM) technique used in epilepsy
(Hong S.B., 2014). The difference in radioisotope uptake levels was assessed by voxel-by-voxel
subtraction of preoperative from postoperative 18F-FDG PET images [22]. This difference (Di) of a
voxel (i) is defined as the subtraction of preoperative from postoperative 18F-FDG PET images given by

Di =
(Poi − Pri)

Pri
× 100 (%) (1)
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where Poi and Pri denote the i-th voxel value of postoperative and preoperative 18F-FDG PET images,
respectively. In the present study, the threshold was set at 2 standard deviations (SD) from the mean
value. The subtraction image was represented as a distribution map of clustered and localized brain
regions with differences in radioisotope uptake levels. Figure 4 describes the process of voxel-based
subtraction analysis of PET in this study.
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3. Results

3.1. Clinical Course

The initial programming consisted of a monopolar review (contact 0 and 1, amplitude 2 V,
pulse width 90 µs, frequency 130 Hz). As the amplitude increased from 2 V to 3 V, the patient
reported subjective weakness in her upper and lower extremities. Instead of changing the amplitude,
the frequency was gradually increased from 130 Hz to 160 Hz. Both her rest and action myoclonus
were aggravated, and were greater in her upper extremities (Supplementary Materials Video S3).
Six weeks after DBS, we attempted to decrease the frequency to 40 Hz, and within a few minutes,
reductions in both rest and action myoclonus were observed (Supplementary Materials Video S4).
Three months after DBS electrode implantation, her unified myoclonus rating scale (UMRS) score
decreased from 32 to 3 at rest, from 17 to 8 for stimulus sensitivity, and from 80 to 52 for action.
From three months after DBS, the patient discontinued her topiramate treatment and took levetiracetam
(1000 mg twice a day), valproic acid (500 mg twice a day), and clonazepam (1 mg twice a day).
Nine months from the first programming session, a significant reduction in her action myoclonus
was observed in both her arms and legs, without resting myoclonus. The negative myoclonus in her
lower extremity also showed improvement, which allowed her to stand and walk using a walker.
She could hold items with both hands and drink from a cup with one hand. The dose of one of
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her antiepileptic medications, clonazepam was reduced by 0.5 mg. Five years after DBS electrode
implantation, she underwent an implantable pulse generator (IPG) replacement operation. The DBS
parameters were adjusted to an amplitude of 2.5 V, a pulse width of 130 µs, and a frequency of 35 Hz.
EEG performed five years after electrode implantation showed a reduced number and amplitude
of slow-wave discharges, without generalized spikes or polyspikes with stimulation off (Figure 5).
Although mild negative myoclonus remained in her lower extremities, she reported no aggravation or
recurrence. She discontinued clonazepam and but continues levetiracetam (750 mg twice a day) and
valproic acid (500 mg twice a day).
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Figure 5. Electroencephalogram (EEG) performed five years after deep brain stimulation showed a
reduced number and amplitude of slow-wave discharges, with no evidence of generalized spike or
polyspikes from prefrontal or prefrontal seen in the previous EEG.

3.2. Voxel-Based Subtraction Analysis of PET

Using PET/MRI co-registration and voxel-based statistical parametric mapping to compare
postoperative and preoperative images, one year after DBS we observed, bilaterally, a decrease in glucose
metabolism in the dorsolateral prefrontal cortex (DLPFC), especially in the left hemisphere, and an
increase in glucose metabolism in the medulla, pons, midbrain, cerebellar lobules, inferior temporal
lobe, ventrolateral thalamus, Gpi, globus pallidus externus (Gpe), putamen, and premotor cortex
(Figure 6). Table 1 presents the stereotactic coordinates and the peak value of each anatomical regions in
SISCOM 1 year after DBS. Subsequently, our analysis of images obtained three years after DBS revealed
a bilateral decrease in glucose metabolism in the cerebellum, inferior temporal lobe, sensory cortex,
superior parietal cortex and, particularly, the orbito-/inferior prefrontal cortex, and an increase in
glucose metabolism in the medulla, pons, midbrain, occipital cortex (including the cuneus and calcarine
sulci), motor cortex (mainly areas concerned with motor activity of the legs and feet), anterior part of
the insula, anterior cingulate cortex and genu of the corpus callosum (Figure 7). Table 2 present the
stereotactic coordinates and the peak value of each anatomical regions in SISCOM 3 years after DBS.
Based on these results, we hypothesize that interventions such as DBS that can modulate networks
involving these structures may be useful in patients with severe PHM [9].
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 SISCOM 1 Year After Deep Brain Stimulation 

Anatomical Region MNI Coordinates Number of Voxels Maximum Subtraction Value (%) 

L Putamen −28, −12, −2 167 19.38 

R Putamen 28, −4, −2 60 16.62 

L Pallidum −26, −6, −4 110 20.77 

R Pallidum 26, −8, −4 133 20.77 

L Thalamus −14, −12, −2 33 22.15 

R Thalamus 14, −10, −2 6 16.62 

L Middle Frontal Gyrus −36, 12, 44 698 −48.46 

R Middle Frontal Gyrus 32, 26, 52 259 −23.54 

L Precentral Gyrus −40, −2, 56 267 22.15 

Figure 6. PET/MRI co-registration and voxel-based subtraction analysis of one year after deep brain
stimulation (DBS) from pre-operation. Red scale indicates an increase in glucose metabolism and blue
scale indicates a decrease in glucose metabolism. (A) A noticeable decrease in glucose metabolism
in the dorsolateral prefrontal cortex (DLPFC) (asterisk) and an increase in glucose metabolism in
the ventrolateral thalamus, globus pallidum internus (Gpi), globus pallidum externus (Gpe) and
putamen (arrowhead). (B) A noticeable decrease in glucose metabolism was observed in the DLPFC,
especially in the left hemisphere and an increase in glucose metabolism was identified in the medulla,
pons, midbrain, cerebellar lobules, inferior temporal lobe, ventrolateral thalamus, Gpi, Gpe, putamen,
and premotor cortex bilaterally on PET/MRI images obtained one year after DBS and compared with
preoperative PET/MRI.

Table 1. The values given are the stereotactic MNI coordinates and the peak value of each anatomical
region. The threshold was set at 2 standard deviations of SISCOM results. (Voxel size: [2.0, 2.0, 2.0] mm,
Minimum cluster size threshold of 50 voxels.).

SISCOM 1 Year After Deep Brain Stimulation

Anatomical Region MNI Coordinates Number of Voxels Maximum Subtraction Value (%)

L Putamen −28, −12, −2 167 19.38

R Putamen 28, −4, −2 60 16.62

L Pallidum −26, −6, −4 110 20.77

R Pallidum 26, −8, −4 133 20.77

L Thalamus −14, −12, −2 33 22.15

R Thalamus 14, −10, −2 6 16.62

L Middle Frontal Gyrus −36, 12, 44 698 −48.46

R Middle Frontal Gyrus 32, 26, 52 259 −23.54

L Precentral Gyrus −40, −2, 56 267 22.15

R Precentral Gyrus 24, −14, 56 7 16.62

L Midbrain −14, −14, −8 98 30.46

R Midbrain 14, −10, −2 47 16.62

L Inferior Temporal Gyrus −38, −6, −46 95 20.77

R Interior Temporal Gyrus 44, 4, −46 149 24.92

R, right; L, left; MNI, Montreal Neurological Institute, SISCOM, subtraction ictal SPECT co-registered to MRI.
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Figure 7. PET/MRI co-registration and voxel-based subtraction analysis of three years after deep brain
stimulation (DBS) from pre-operation. Red scale indicates an increase in glucose metabolism and blue
scale indicates a decrease in glucose metabolism. (A) A noticeable decrease in glucose metabolism
in the orbitoprefrontal and inferior prefrontal cortex (asterisk). (B) A bilateral decrease in glucose
metabolism was observed in the cerebellum, inferior temporal lobe, sensory cortex, superior parietal
cortex and, especially orbito-, and inferior prefrontal cortex and an increase in glucose metabolism
was identified in the medulla, pons, midbrain, occipital cortex including cuneus and calcarine sulcus,
motor cortex mainly for leg and feet, anterior part of the insula, anterior cingulate cortex and genu of
corpus callosum on the PET/MRI images obtained three years after DBS.

Table 2. The values given are the stereotactic MNI coordinates and the peak value of each anatomical
region. The threshold was set at 2 standard deviations of SISCOM results. (Voxel size: [2.0, 2.0, 2.0] mm,
Minimum cluster size threshold of 50 voxels.).

SISCOM 3 Years After Deep Brain Stimulation

Anatomical Region MNI Coordinates Number of Voxels Maximum Subtraction Value (%)

L InferiorTemporal Gyrus −32, −8, −44 44 −42.92

R InteriorTemporal Gyrus 38, −4, −46 61 −34.61

L InferiorFronto-Orbital Gyrus −34, 46, −16 95 −34.61

R InferiorFronto-Orbital Gyrus 48, 46, −4 132 −45.69

R Supramarginal Gyrus 58, −32, 44 180 −41.54

L Supramarginal Gyrus −60, −28, 38 89 −41.54

R Postcentral Gyrus 50, −32, 50 17 −34.61

L Postcental Gyrus −62, −20, 30 4 −30.46

R Cuneus 8, −94, 24 46 40.15

L Cuneus −4, −94, 20 106 38.77

R Calcarine Sulcus 4, −70, 8 55 30.46

L Calcarine Sulcus −2, −76, 6 119 34.61

R Insular 30, 28, 6 4 27.69

L Insular −30, 28, 12 161 41.54

R Anterior Cingulate Cortex 2, 28, 0 4 33.23

L Anterior Cingulate Cortex −8, 28, −4 41 48.46

R, right; L, left; MNI, Montreal Neurological Institute, SISCOM, subtraction ictal SPECT co-registered to MRI.
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4. Discussion

4.1. Bilateral Gpi Deep Brain Stimulation for Post-Hypoxic Myoclonus

DBS has been suggested for patients with medically-refractory chronic PHM [4,14–16].
Our decision to choose the bilateral Gpi as the target for implantation was thus based on published
data regarding the treatment of chronic PHM. However, there is a lack of published data regarding
myoclonus treatment in PHM, and MD should be considered distinct from PHM in respect of the
different pathogenesis. We referred to published data regarding the treatment of myoclonus with Gpi
DBS in patients with MD [17–19,23]. Based on experience at our center, Kim et al. suggested that
patients with MD may significantly benefit from bilateral Gpi DBS; the authors found optimal results
at a long pulse width and high frequency [17]. Gruber et al. reported that combined and separate
Gpi and ventral intermediate thalamic nucleus (VIM) DBS improved MD symptoms in 10 cases of
incapacitating MD [18]. These patients required high-frequency stimulation to show myoclonus
improvements. Liu et al. reported successful treatment of a patient with familial MD with DBS to
the medial pallidum. The authors suggested that high-frequency DBS might suppress the myoclonus
by desynchronizing abnormal pallidal oscillations [24,25]. In previous studies, PET results indicated
that PHM is associated with changes in metabolic activity of the Gpi [26,27], especially because the
Gpi is considered vulnerable to hypoxic brain damage [28,29]. It is known that globus pallidus (GP)
neurons in the network decrease during high-frequency stimulation and increase during low frequency
stimulation [30]. Although high-frequency stimulation targeting the Gpi has been reported in a few
studies, in the present study, an increase in myoclonus ratings at high stimulation frequencies was
observed, which is not in line with previous findings. When stimulation frequency was decreased,
reductions in both rest and action myoclonus were observed. Low-frequency stimulation reduced
the clinical myoclonus, which is also not consistent with the results of previous studies. While the
mechanism underlying the improvement of myoclonus with low-frequency stimulation remains
unclear, some studies proposed that low-frequency stimulation of the Gpi might also be effective for
the treatment of dystonia [31–35]. Although a mean firing rate of the Gpi during an operation does not
represent an optimal frequency of stimulation, Starr et al. demonstrated a mean firing rate of the Gpi of
50 Hz in intraoperative MER of Gpi neurons in patients undergoing pallidal surgery for dystonia [36],
and Alterman et al. suggested that low-frequency stimulation may approximate the intraoperative
firing rate of the target neurons [33]. The mean firing rate of the Gpi may vary from patient to
patient. McClelland et al. reported MER data from Gpi in children undergoing DBS for dystonia and
investigated differences in firing rates among the different types of dystonia. The authors identified
that Gpi firing rates in the secondary group (median 9.6 Hz) showed significantly lower frequencies
than the primary group (median 13.5 Hz) and among the secondary group, the hypoxic-ischemic
encephalopathy (HIE) group in particular had significantly lower Gpi firing rates than those with
later onset [37]. In the present study, myoclonus improved rapidly after low-frequency stimulation.
Myoclonus is expected to disappear earlier than dystonic movement and posture [38], Chudy et al.
also observed diminishing and disappearing myoclonism a few days after starting DBS of the central
thalamic area [39]; however, rapid improvements after the introduction of low-frequency stimulation
seem unusual. While only a blinded cross-over stimulation trial would allow us to draw clearer
conclusions, we hypothesized that low-frequency stimulation might have induced an increase of
Gpi firing rates which had been lowered after the hypoxic event. Therefore, activation of Gpi led to
re-activation of GABA-mediated inhibitory postsynaptic mechanism in the frontal cortex [40].

4.2. Pathophysiology of Post-Hypoxic Myoclonus

The pathophysiology of PHM remains unknown. Initially, the pathophysiology of LAS was
proposed to involve repetitive firing of the thalamocortical fibers arising from the ventrolateral
nucleus of the thalamus, which is the main relay nucleus from the cerebellum to the sensorimotor
cortex [3,41]. Although minimal anatomical changes were observed in recent human brain imaging
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studies on PHM, significant cortical and cerebellar connectivity, metabolic, and blood flow changes
were found [9,10,42–45]. Notably, 18F-FDG PET findings by Frucht and colleagues revealed elevated
glucose metabolism in the ventrolateral thalamus and pontine tegmentum in seven patients with
PHM, indicating involvement of the basal ganglia-thalamocortical network. Based on the observation
of hypermetabolism in the ventrolateral thalamus on PET scan, the authors suggested stereotactic
targeting of the ventrolateral thalamus using DBS for selected patients with severe, medically refractory
PHM [9]. However, this is not a consistent finding. Zhang et al. reported that the PET scan of a patient
with LAS showed a mild bilateral decrease in glucose metabolism in the frontal lobes, compared to the
scans of other patients [10]. Huang et al. conducted functional MRI (fMRI) of a PHM patient whose
myoclonic jerks were more vigorous on the right leg than on the left. The authors identified increased
activity in the bilateral cortex, especially the motor cortex of leg when the patient dorsiflexed her
right foot compared with her left [45]. Another fMRI study on a patient with post hypoxic cortical
myoclonus observed increased connectivity between the motor and sensory cortexes in the resting
state [43]. fMRI has many potential advantages for studying functional brain connectivity and activity
changes in neurobehavioral disorders [46], enabling us to investigate the pathogenesis of LAS. It is a
non-invasive imaging technique with no radiation hazard. Besides artifacts from electrode, the clinical
safety of 3-T MRI in patients with DBS implantation is not yet fully established, although there is
some preliminary data showing that there was no heating, warmth, or adverse neurological effects in
patients with implanted DBS systems who underwent 3-T MRIs [47]. Voxel-based subtraction analysis
enables us to measure neuronal activity by exploiting glucose metabolism and identify functional
neural changes after DBS implantation. Finding cerebral alterations that are not visible on conventional
MRI is possible with an advanced PET analysis technique such as the one used in the present study.
Co-registration of PET/MRI improved the anatomical definition of PET, and a voxel-based subtraction
analysis enabled us to differentiate the functional neural changes after DBS on serial PET. It was
not possible to compare the glucose metabolism of the brain before and after the hypoxic injury,
since we did not assess 18F-FDG PET before the hypoxic event and therefore, did not have baseline
measurements. In the present study, voxel-based subtraction analysis revealed an increase in glucose
metabolism in the subcortical structures Gpi, Gpe and ventrolateral thalamus one year after DBS
(Figure 6). Subsequently, we identified a significant reduction in glucose metabolism in the cerebral
cortex, particularly, the bilateral prefrontal cortex three years after DBS (Figure 7). In the present study,
we could not observe a definite evidence regarding the connectivity from the cerebellum to the cortex,
although we observed a mild decrease in glucose metabolism in the cerebellum on PET/MRI performed
3 years after DBS. Results of studies on the pathogenesis of PHM vary, making it difficult to make a
conclusion about its origin and the effect of DBS stimulation. According these results, we hypothesize
that DBS may involve the stabilization of neuronal activity within the cortex which exhibits significant
activation after hypoxic brain damage by stimulating the subcortical structure, Gpi.

4.3. Gpi DBS Reduced Glucose Metabolism in Prefrontal Cortex

The patient showed involuntary movements of both arms and legs in the resting state and
precipitated by action (Video 1). EEG showed frequent bilateral generalized high-voltage polyspike
discharges (Figure 1). These findings suggested that the origin of myoclonus in this patient might be the
cortex, as epileptiform discharges such as spike or polyspike discharges suggest a cortical origin [43,48].
Furthermore, the polyspike discharges were recorded mainly in the bilateral prefrontal and frontal
electrodes. We observed a decrease in glucose metabolism in the DLPFC in the voxel-based subtraction
analysis performed one year after DBS and in the orbito-/inferior prefrontal cortex and DLPFC three
years after DBS. We modulated DBS parameters and identified that low frequency stimulation was
optimal, as the patient showed a significant reduction in her action myoclonus without resting
myoclonus. EEG performed five years after DBS showed slow-wave discharges, with no evidence of
generalized spike or polyspikes from prefrontal or frontal that had been seen in the previous EEG.
A study investigating the effect of chronic Gpi-DBS on brain activity in focal and segmental dystonia
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revealed markedly reduced resting cerebral blood flow (rCBF) in the prefrontal cortex in patients who
underwent Gpi-DBS for dystonia [49]. The mechanism of decreased activity in the prefrontal network
in dystonia after Gpi DBS may be different from the decrease in glucose metabolism in the prefrontal
cortex in PHM. PHM shares similarities with juvenile myoclonic epilepsy (JME), in terms of the clinical
presentation of myoclonus. Koepp et al. suggested that JME is associated with the possible involvement
of the DLPFC and thalamic dysfunction. Furthermore, the authors proposed that increased functional
connectivity between the motor and prefrontal cognitive systems may occur in JME [50]. Rubboli et al.
suggested that positive myoclonus involves in the primary motor cortex and negative myoclonus
depends on the activation of cortical inhibitory areas [6]. Also, the author proposed that epileptic
negative myoclonus was associated with a frontal cortical potential suggesting involvement of frontal
areas in the generation of negative myoclonus [51]. Usui et al. observed iomazenil SPECT images,
which reflect the specific binding of the tracers to GABA-A receptors of a patient with epileptic
negative myoclonus exhibited significant decrease in the left medial frontal area [40]. The negative
myoclonus might be associated with the supplement motor area (SMA). In the present study, we did
not present a definite topography of myoclonus-related component, but we identified a decrease in
glucose metabolism in the prefrontal lobe which was suspected to be the origin of the myoclonus
according to the clinical presentation and EEG findings. However, we did not demonstrate an alteration
in functional connectivity between the subcortical and cortical areas in our study. The structures
that had been activated and deactivated after one year and three years following DBS were not
coherent. An increase in glucose metabolism in the Gpi suggests that DBS may modulate pathological
neural activity within stimulation sites [52,53], and that ongoing interference of cellular firing rates
requires increased glucose metabolism; therefore, DBS results in a consuming state of activity [54].
Stimulation of the Gpi might induce activation of GABA-mediated inhibitory postsynaptic mechanism
in the frontal cortex, triggering the stabilization of neuronal activity within the cortex which exhibits
activation after hypoxic damage. Although PHM is a rare disorder, more cases and longitudinal studies
are necessary to elucidate the underlying mechanism of PHM and the effect of Gpi DBS in terms of
reducing pathological PHM-related activity, by potentially reorganizing subcortical-cortical circuits.

4.4. Limitations

The imaging analysis used in the present study has several limitations. Currently, due to
improvements in voxel-based subtraction analysis, data from a healthy control group are used to
define the distribution of FDG accumulation in normal structures with reference to anatomical MRI
findings. However, in the present study, the regional abnormality of cerebral metabolic activity
was not determined by comparing the patient’s scan with age-matched healthy controls selected
from a data base [55]. Furthermore, standard uptake value ratios (SUVr) on 18F-FDG PET are
quantitatively measured and used to compare SUVr for each voxel of interest between normal and
pathologic structures [56]. Further studies on LAS using regional SUVr could help our understanding
of metabolic changes correlating with functional outcomes and thus the pathophysiology of PHM
and LAS. PHM is a rare disorder, as previously mentioned. As DBS is considered for patients with
PHM in rare cases, it is difficult to confirm clinical evidence for the effectiveness of DBS for PHM
on a case-by-case basis. We did not present a satisfying clinical evidence for meaningful effect of
DBS for PHM, because spontaneous recovery of myoclonus in LAS after few years could often not
be excluded [57]. We acknowledged limitations to clearly establish whether recovery is spontaneous
or due to DBS. In addition, the longitudinal PET studies were performed only in the stimulation-on
state. A voxel-based subtraction analysis with stimulation off after a washout period would have
revealed the long-term effect of Gpi DBS on PHM and the functional changes in the patient due solely
to DBS, excluding the possibility of spontaneous recovery and underlying pathologic changes from the
hypoxic event itself. Not only the clinical improvement over time but also the changes in PET studies
and EEG findings are not completely excluded from the possibility of outcomes resulting from the
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spontaneous remission of PHM. Further investigations including more cases are necessary to confirm
whether DBS can contribute to the improvement of patients with PHM.

5. Conclusions

We present a patient with medically refractory PHM following cardiopulmonary arrest who
experienced clinical improvements with bilateral Gpi DBS. We conclude from this case that when
modulating DBS parameters for the treatment of PHM, decisions on adjusting stimulation parameters
should be based on the patient’s clinical symptoms. Our experience suggests that low-frequency
stimulation might be helpful to control myoclonus in PHM. Although it is difficult to confirm our
hypothesis with a single-case observation, the present results indicate that voxel-based PET subtraction
may be a useful approach for monitoring patients with PHM treated with DBS. Further investigations
and continuous follow-up on the use of the advanced technique of PET analysis as well as DBS
treatment for patients with PHM are necessary to help our understanding of the pathophysiology of
PHM and LAS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/10/730/s1,
Video S1: She could not hold a cup because of her action myoclonus., Video S2: She needed assistance to stand,
which triggered negative myoclonus in her legs, and the shock-like involuntary negative myoclonus caused
postural lapses., Video S3: When the frequency was increased from 130 Hz to 160 Hz, both her rest and action
myoclonus were aggravated., Video S4: When the frequency was decreased to 40 Hz, reductions in both rest and
action myoclonus were observe.
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1. Szczepanska, A.; Dziadkowiak, E.; Bladowska, J.; Kipiński, L.; Budrewicz, S.; Koszewicz, M. The Usefulness of
Quantitative EEG and Advanced MR Techniques in the Monitoring and Long-Term Prognosis of Lance-Adams
Syndrome. Front. Neurol. 2019, 10, 214. [CrossRef] [PubMed]

2. Hallett, M. Physiology of human posthypoxic myoclonus. Mov. Disord. 2000, 15 (Suppl. 1), 8–13.
[CrossRef] [PubMed]

3. Lance, J.W.; Adams, R.D. The syndrome of intention or action myoclonus as a sequel to hypoxic
encephalopathy. Brain 1963, 86, 111–136. [CrossRef] [PubMed]

4. Ramdhani, R.A.; Frucht, S.J.; Kopell, B.H. Improvement of Post-hypoxic Myoclonus with Bilateral Pallidal
Deep Brain Stimulation: A Case Report and Review of the Literature. Tremor Other Hyperkinet. Mov. (NY)
2017, 7, 461. [CrossRef]

5. Tassinari, C.A.; Rubboli, G.; Shibasaki, H. Neurophysiology of positive and negative myoclonus.
Electroencephalogr. Clin. Neurophysiol. 1998, 107, 181–195. [CrossRef]

6. Rubboli, G.; Tassinari, C.A. Negative myoclonus. An overview of its clinical features, pathophysiological
mechanisms, and management. Neurophysiol. Clin. 2006, 36, 337–343. [CrossRef]

7. Shibasaki, H. Overview and classification of myoclonus. Clin. Neurosci. 1995, 3, 189–192.
8. Shibasaki, H. Pathophysiology of negative myoclonus and asterixis. Adv. Neurol. 1995, 67, 199–209.
9. Frucht, S.J.; Trost, M.; Ma, Y.; Eidelberg, D. The metabolic topography of posthypoxic myoclonus.

Neurology 2004, 62, 1879–1881. [CrossRef]

http://www.mdpi.com/2076-3425/10/10/730/s1
http://dx.doi.org/10.3389/fneur.2019.00214
http://www.ncbi.nlm.nih.gov/pubmed/30915026
http://dx.doi.org/10.1002/mds.870150703
http://www.ncbi.nlm.nih.gov/pubmed/10755266
http://dx.doi.org/10.1093/brain/86.1.111
http://www.ncbi.nlm.nih.gov/pubmed/13928398
http://dx.doi.org/10.5334/tohm.342
http://dx.doi.org/10.1016/S0013-4694(98)00058-3
http://dx.doi.org/10.1016/j.neucli.2006.12.001
http://dx.doi.org/10.1212/01.WNL.0000125336.05001.23


Brain Sci. 2020, 10, 730 13 of 15

10. Zhang, Y.-X.; Liu, J.-R.; Jiang, B.; Liu, H.-Q.; Ding, M.-P.; Song, S.-J.; Zhang, B.-R.; Zhang, H.; Xu, B.;
Chen, H.-H.; et al. Lance-Adams syndrome: A report of two cases. J. Zhejiang Univ. Sci. B 2007, 8,
715–720. [CrossRef]

11. Fahn, S. Post-Anoxic Action Myoclonus: Improvement with Valproic Acid. N. Engl. J. Med. 1978, 299,
313–314. [CrossRef] [PubMed]

12. Obeso, J.A. Therapy of myoclonus. Clin. Neurosci. 1995, 3, 253–257. [PubMed]
13. Wille, C.; Steinhoff, B.J.; Altenmüller, D.-M.; Staack, A.M.; Bilic, S.; Nikkhah, G.; Vesper, J.

Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood-Report of
five cases. Epilepsia 2011, 52, 489–496. [CrossRef] [PubMed]

14. Yamada, K.; Sakurama, T.; Soyama, N.; Kuratsu, J. Gpi pallidal stimulation for Lance-Adams syndrome.
Neurology 2011, 76, 1270–1272. [CrossRef] [PubMed]

15. Kobayashi, K.; Katayama, Y.; Otaka, T.; Obuchi, T.; Kano, T.; Nagaoka, T.; Kasai, M.; Oshima, H.; Fukaya, C.;
Yamamoto, T. Thalamic Deep Brain Stimulation for the Treatment of Action Myoclonus Caused by Perinatal
Anoxia. Ster. Funct. Neurosurg. 2010, 88, 259–263. [CrossRef]

16. Asahi, T.; Kashiwazaki, D.; Dougu, N.; Oyama, G.; Takashima, S.; Tanaka, K.; Kuroda, S. Alleviation of
myoclonus after bilateral pallidal deep brain stimulation for Lance–Adams syndrome. J. Neurol. 2015, 262,
1581–1583. [CrossRef] [PubMed]

17. Kim, J.H.; Na, Y.C.; Lee, W.H.; Chang, W.S.; Jung, H.H.; Chang, J.W. Bilateral globus pallidus interna
deep-brain stimulation in a patient with myoclonus-dystonia: A case report. Neuromodulation 2014, 17,
724–728. [CrossRef]

18. Gruber, D.; Kühn, A.A.; Schoenecker, T.; Kivi, A.; Trottenberg, T.; Hoffmann, K.-T.; Gharabaghi, A.; Kopp, U.A.;
Schneider, G.-H.; Klein, C.; et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia.
Mov. Disord. 2010, 25, 1733–1743. [CrossRef]

19. Kurtis, M.M.; Luciano, M.S.; Yu, Q.; Goodman, R.R.; Ford, B.; Raymond, D.; Pullman, S.L.;
Saunders-Pullman, R. Clinical and neurophysiological improvement of SGCE myoclonus–dystonia with GPi
deep brain stimulation. Clin. Neurol. Neurosurg. 2010, 112, 149–152. [CrossRef]

20. Kiebel, S.J.; Ashburner, J.; Poline, J.-B.; Friston, K. MRI and PET Coregistration—A Cross Validation of
Statistical Parametric Mapping and Automated Image Registration. NeuroImage 1997, 5, 271–279. [CrossRef]

21. Lange, C.; Suppa, P.; Frings, L.; Brenner, W.; Spies, L.; Buchert, R. Optimization of Statistical Single
Subject Analysis of Brain FDG PET for the Prognosis of Mild Cognitive Impairment-to-Alzheimer’s Disease
Conversion. J. Alzheimer’s Dis. 2015, 49, 945–959. [CrossRef] [PubMed]

22. Lung, H.J.; Weng, Y.-H.; Wen, M.-C.; Hsiao, I.-T.; Lin, K.-J. Quantitative study of 18F-(+)DTBZ image:
Comparison of PET template-based and MRI based image analysis. Sci. Rep. 2018, 8, 16027. [CrossRef]

23. Ramdhani, R.A.; Frucht, S.J.; Behnegar, A.; Kopell, B.H. Improvement of Isolated Myoclonus Phenotype in
Myoclonus Dystonia after Pallidal Deep Brain Stimulation. Tremor Other Hyperkinet. Mov. (NY) 2016, 6, 369.
[CrossRef] [PubMed]

24. Liu, X.; Griffin, I.C.; Parkin, S.G.; Miall, R.C.; Rowe, J.G.; Gregory, R.P.; Scott, R.B.; Aziz, T.Z.; Stein, J.F.
Involvement of the medial pallidum in focal myoclonic dystonia: A clinical and neurophysiological case
study. Mov. Disord. 2002, 17, 346–353. [CrossRef] [PubMed]

25. Zhang, Y.-Q.; Wang, J.-W.; Wang, Y.-P.; Zhang, X.-H.; Li, J.-P. Thalamus Stimulation for Myoclonus Dystonia
Syndrome: Five Cases and Long-Term Follow-up. World Neurosurg. 2019, 122, e933–e939. [CrossRef] [PubMed]

26. Kobayashi, S.; Momose, T.; Sakurai, M.; Kanazawa, I. Postanoxic akinesia with bilateral pallidal lesions:
A PET study. Intern. Med. 2012, 51, 2449–2451. [CrossRef] [PubMed]

27. Yoshii, F.; Kozuma, R.; Takahashi, W.; Haida, M.; Takagi, S.; Shinohara, Y. Magnetic resonance imaging and
11C-N-methylspiperone/positron emission tomography studies in a patient with the interval form of carbon
monoxide poisoning. J. Neurol. Sci. 1998, 160, 87–91. [CrossRef]

28. Bhatia, K.P.; Marsden, C. The behavioural and motor consequences of focal lesions of the basal ganglia in
man. Brain 1994, 117, 859–876. [CrossRef]

29. Carella, F.; Grassi, M.P.; Savoiardo, M.; Contri, P.; Rapuzzi, B.; Mangoni, A. Dystonic-Parkinsonian
syndrome after cyanide poisoning: Clinical and MRI findings. J. Neurol. Neurosurg. Psychiatry 1988, 51,
1345–1348. [CrossRef]

http://dx.doi.org/10.1631/jzus.2007.B0715
http://dx.doi.org/10.1056/nejm197808102990621
http://www.ncbi.nlm.nih.gov/pubmed/351404
http://www.ncbi.nlm.nih.gov/pubmed/8891399
http://dx.doi.org/10.1111/j.1528-1167.2010.02884.x
http://www.ncbi.nlm.nih.gov/pubmed/21219312
http://dx.doi.org/10.1212/WNL.0b013e31821482f4
http://www.ncbi.nlm.nih.gov/pubmed/21464432
http://dx.doi.org/10.1159/000315464
http://dx.doi.org/10.1007/s00415-015-7748-x
http://www.ncbi.nlm.nih.gov/pubmed/25929661
http://dx.doi.org/10.1111/ner.12162
http://dx.doi.org/10.1002/mds.23312
http://dx.doi.org/10.1016/j.clineuro.2009.10.001
http://dx.doi.org/10.1006/nimg.1997.0265
http://dx.doi.org/10.3233/JAD-150814
http://www.ncbi.nlm.nih.gov/pubmed/26577523
http://dx.doi.org/10.1038/s41598-018-34388-6
http://dx.doi.org/10.5334/tohm.290
http://www.ncbi.nlm.nih.gov/pubmed/26989574
http://dx.doi.org/10.1002/mds.10038
http://www.ncbi.nlm.nih.gov/pubmed/11921122
http://dx.doi.org/10.1016/j.wneu.2018.10.177
http://www.ncbi.nlm.nih.gov/pubmed/30419400
http://dx.doi.org/10.2169/internalmedicine.51.8008
http://www.ncbi.nlm.nih.gov/pubmed/22975566
http://dx.doi.org/10.1016/S0022-510X(98)00218-4
http://dx.doi.org/10.1093/brain/117.4.859
http://dx.doi.org/10.1136/jnnp.51.10.1345


Brain Sci. 2020, 10, 730 14 of 15

30. Fleming, J.E.; Lowery, M.M. Changes in Neuronal Entropy in a Network Model of the Cortico-Basal Ganglia
during Deep Brain Stimulation. In Proceedings of the 2019 41st Annual International Conference of the IEEE
Engineering in Medicine & Biology Society, Berlin, Germany, 23–27 July 2019; pp. 5172–5175.

31. Kim, J.P.; Chang, W.S.; Park, Y.S.; Chang, J.W. Effects of relative low-frequency bilateral globus pallidus
internus stimulation for treatment of cervical dystonia. Ster. Funct. Neurosurg. 2012, 90, 30–36. [CrossRef]

32. Kumar, R.; Dagher, A.; Hutchison, W.D.; Lang, A.E.; Lozano, A.M. Globus pallidus deep brain stimulation
for generalized dystonia: Clinical and PET investigation. Neurology 1999, 53, 871–874. [CrossRef] [PubMed]

33. Alterman, R.L.; Miravite, J.; Weisz, D.; Shils, J.L.; Bressman, S.B.; Tagliati, M. Sixty hertz pallidal deep brain
stimulation for primary torsion dystonia. Neurology 2007, 69, 681–688. [CrossRef] [PubMed]

34. Goto, S.; Mita, S.; Ushio, Y. Bilateral pallidal stimulation for cervical dystonia. An optimal paradigm from
our experiences. Ster. Funct. Neurosurg. 2002, 79, 221–227. [CrossRef]

35. Sarva, H.; Miravite, J.; Swan, M.C.; Deik, A.; Raymond, D.; Severt, W.L.; Kopell, B.H. A Case of
Myoclonus-Dystonia Responding to Low-frequency Pallidal Stimulation. Tremor Other Hyperkinet. Mov. (NY)
2017, 7, 460. [CrossRef] [PubMed]

36. Starr, P.A.; Turner, R.S.; Rau, G.; Lindsey, N.; Heath, S.; Volz, M.; Ostrem, J.L.; Marks, W.J.
Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia:
Techniques, electrode locations, and outcomes. J. Neurosurg. 2006, 104, 488–501. [CrossRef]

37. McClelland, V.M.; Valentin, A.; Rey, H.; Lumsden, D.E.; Elze, M.C.; Selway, R.; Alarcon, G.; Lin, J.-P.
Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children
with dystonia. J. Neurol. Neurosurg. Psychiatry 2016, 87, 958–967. [CrossRef]

38. Cif, L.; Valente, E.M.; Hemm, S.; Coubes, C.; Vayssiere, N.; Serrat, S.; Di Giorgio, A.; Coubes, P. Deep brain
stimulation in myoclonus-dystonia syndrome. Mov. Disord. 2004, 19, 724–727. [CrossRef]
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