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Abstract: The stop signal task has been used to quantify the human inhibitory control. The inter-subject
and intra-subject variability was investigated under the inhibition of human response with a realistic
environmental scenario. In present study, we used a battleground scenario where a sniper-scope
picture was the background, a target picture was a go signal, and a nontarget picture was a stop signal.
The task instructions were to respond on the target image and inhibit the response if a nontarget
image appeared. This scenario produced a threatening situation and endorsed the evaluation
of how subject’s response inhibition manifests in a real situation. In this study, 32 channels of
electroencephalography (EEG) signals were collected from 20 participants during successful stop
(response inhibition) and failed stop (response) trials. These EEG signals were used to predict two
possible outcomes: successful stop or failed stop. The inter-subject variability (between-subjects) and
intra-subject variability (within-subjects) affect the performance of participants in the classification
system. The EEG signals of successful stop versus failed stop trials were classified using quadratic
discriminant analysis (QDA) and linear discriminant analysis (LDA) (i.e., parametric) and K-nearest
neighbor classifier (KNNC) and Parzen density-based (PARZEN) (i.e., nonparametric) under inter-
and intra-subject variability. The EEG activities were found to increase during response inhibition in
the frontal cortex (F3 and F4), presupplementary motor area (C3 and C4), parietal lobe (P3 and P4), and
occipital (O1 and O2) lobe. Therefore, power spectral density (PSD) of EEG signals (1-50Hz) in F3, F4,
C3, C4, P3, P4, O1, and O2 electrodes were measured in successful stop and failed stop trials. The PSD
of the EEG signals was used as the feature input for the classifiers. Our proposed method shows an
intra-subject classification accuracy of 97.61% for subject 15 with QDA classifier in C3 (left motor
cortex) and an overall inter-subject classification accuracy of 71.66% ± 9.81% with the KNNC classifier
in F3 (left frontal lobe). These results display how inter-subject and intra-subject variability affects
the performance of the classification system. These findings can be used effectively to improve the
psychopathology of attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder
(OCD), schizophrenia, and suicidality.

Keywords: response inhibition; electroencephalography; machine learning; classification; prediction;
frontal cortex; inter-subject variability; intra-subject variability

1. Introduction

Over the previous years, researchers have shown increased interest in human response inhibition
function. Response inhibition has been measured to be a key component of executive control and
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decision-making [1,2]. Response inhibition is a process of executive control. The inhibition model refers
to the suppression of inappropriate actions, which supports flexible and goal-directed behavior in real
environments [3,4]. The human response inhibition (inhibitory control) has been ingrained in our daily
life activities including riding a scooter, driving a car, walking, shooting, and games. In real-world,
there are many examples of the human inhibition, such as stop a scooter during the red traffic signal
when a car comes around the corner without noticing. The stop signal task (SST) and go/no-go (GNG)
tasks are popular tool for the study of inhibition in laboratory-scale [3,4]. In this study, we used the
stop-signal task to classify the neural activities of human inhibition using inter- and intra-subject
variability. Previous studies reported that the stop-signal task is the most appropriate model to
investigate the human response inhibition [5,6]. In stop signal task, each participant responded to a
visual stimulus, after presenting random trials of visual stimulus, a stop-signal stimulus was presented
indicating that the response should be inhibited. The stop signal task has been widely adopted as a
way to parametrically quantify the response inhibition.

Former studies used the simple symbol as go and stop signals to explore the neural activities of
human response inhibition [7–9]. Previous studies did not use the realistic environmental scenario for
the participants when they performed the stop-signal task [7–9]. Through simple symbol experiment
design, we can understand the neural mechanisms of response inhibition. However, in real environment,
the situations for human action and inhibition are more complex than performing experiment in
laboratory scale. How to classify neural activities of response inhibition in real world situations is more
complex. Therefore, in this study, we used battleground scenario to classify EEG signals of human
inhibitory control in realistic environmental settings. Where a sniper-scope view was the background,
a target picture was the go signal, a nontarget picture was the stop signal. The battleground scenario
created a threatening environment and allowed the evaluation of how participants’ response inhibition
manifest in this realistic stop-signal task. The electroencephalography (EEG) recordings were acquired
to observe the brain activities of inhibitory control with the high temporal resolution [10].

Former neuroimaging studies displayed that the neural activities of inter- and intra-subject
variability can be quite different [11,12]. For example, the occipital lobe shows relatively high
intra-subject brain connectivity variability but relatively low inter-subject brain connectivity
variability [11]. Consequently, investigated brain connectivity variability in the occipital lobe might
be wrongly recognized to inter-subject variability of brain connectivity, rather than just intra-subject
variability. Most previous EEG studies only reported between-subjects analysis (inter-subject) [7–9].
Therefore, in this study, we explore the classification model of inter-subject and intra-subject variability
under human inhibitory control. This model can be utilized to predict the inhibition-related mental
disorders, such as attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder
(OCD), schizophrenia, and suicidality.

The EEG neural activities of human inhibitory control have been investigated in right
inferior frontal cortex (IFC) and the presupplementary motor area (pre-SMA) [9,13]. The delta
(1–4 Hz) and theta (4–7 Hz) band powers have been observed to be increased in the frontal
cortex (200–600 ms) under response inhibition [8]. Moreover, the event-related potential (ERP)
of N200 and P300 waves were investigated during human inhibitory control in the frontal cortex [8].
Accordingly, previous neuroimaging study found that the right frontal cortex and presupplementary
motor area (pre-SMA) have been involved in human inhibitory control [13–15]. The parietal lobe
plays a functional role in the integration of sensory information from various regions of the human
brain [16]. In addition, the parietal lobe has been related to the perception of emotions in facial
recognition. Moreover, the parietal lobe is related to the visual stimuli that is less associated to
response inhibition [14]. The parietal lobe receives somatosensory and visual information through
motor signals and controls the movement of the hand [17]. Furthermore, occipital lobe was associated
to the visual perception that is less specifically connected to response inhibition [14,15]. In this study,
human inhibition-related EEG neural markers ERP-N200 and ERP-P300 waves were observed using
ERP analysis in the F3, F4, C3, C4, P3, P4, O1, and O2 channels. Therefore, these eight EEG channels
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including F3, F4, C3, C4, P3, P4, O1, and O2 were used as regions of interest to classify the EEG signals
of successful stop versus failed stop trials.

In this study, we used parametric machine learning algorithms including the quadratic discriminant
analysis (QDA) and the linear discriminant analysis (LDA) classifiers to classify the EEG signals of
successful stop versus failed stop trials. In addition, the nonparametric machine learning algorithms
were used including the K-nearest neighbor classifier (KNNC) and Parzen density-based classifier
(PARZEN) to classify the EEG signals of successful stop versus failed stop trials. We utilized
simple nonparametric and parametric machine learning algorithms to estimate model performance;
these algorithms are very easy to use. If these simple machine learning algorithms achieve better
performance with high accuracy, then the use of more complex classifiers algorithms can be avoided.

The first goal of this study is to explore the neural marker of human response inhibition under the
battleground scenario. The second goal of this study is to design a classification model for successful
stop versus failed stop trials with inter-subject and intra-subject variability. We hypothesized that
both inter-subject and intra-subject variability affect the performance of the classification model when
performing brain–computer interface (BCI) technology. Finally, we develop a classification model to
predict the successful stop versus failed trails EEG signals using the power spectral density as input
features with machine learning nonparametric (KNNC and PARZEN) and parametric (LDA and QDA)
classifiers. This study shows that how inter-subject and intra-subject variability affect the performance
of the classification system. This model can be used to predict the inhibition-related biomarkers for
mental disorders patients, like ADHD, OCD, and schizophrenia. In addition, it can be utilized in
BCI technology.

2. Materials and Methods

2.1. Participants

Twenty subjects (14 men and 6 women; mean age = 23.00; SD = 0.9) participated in the battlefield
scenario. All healthy subjects were right-handed and had normal vision. They had no experience
in battlefield scenario or stop signal task. None of the subjects had a history of gastrointestinal,
cardiovascular, and neurological disorders. Each subject provided written informed consent before
participating in the experiment. This study was carried out in accordance with the recommendations
of the Institutional Review Board (IRB) of the National Taiwan University, Taipei, Taiwan. The study
was approved by the Research Ethics Committee of the National Taiwan University, Taipei, Taiwan,
NTU-REC No: 201210HS007.

2.2. Experimental Design

In this study, we used a realistic experimental scenario to investigate the human response inhibition.
The designed battleground scenario or translational scenario was a modified stop-signal task [6,18],
in which the fixation sign, go cue, and stop stimuli were replaced with images of a sniper scope, target,
and nontarget. The designed translational scenario has a virtual battleground for the participants,
as shown in Figure 1. In this scenario, each subject played the role of the soldier to open fire on target
and to hold the fire when the nontarget stimuli appeared. Each subject was instructed to respond
or withhold their action by key press of left mouse within 1 s in go trials and stop trials. The EEG
signals were collected during go and stop trials. The stop signal delay (SSD), which was around
50% probability of a successful stop (SS), was measured using a staircase tracking system before they
executed formal experimental trials. The staircase tracking system operated in the following way:
the SSD started at 150 ms and if the participants successfully withhold their response, the SSD would
be increased by 50 ms. In failed stop, SSD would be reduced 50 ms and the lower bound of SSD was
fixed 150 ms. The basic response inhibition-related parameters like reaction time (RT) in go trial and
stop signal reaction time (SSRT) in stop trial were investigated according to the former study of human
inhibition [19]. In the battleground scenario, each subject had 200 trials of which 25% were stop trials,
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whereas the rest 75% were go trials. The total number of trials acquired were 20 × 200 = 4000 in go
trials and stop trials. The battleground scenario might provide participants with stronger motivation
and real-world experience in the inhibition study based on a virtual scenario. The battlefield scenario
gave the participants greater motivation and real-world experience of inhibiting the human response.

Figure 1. Design of stop signal task: (A) go trial and (B) stop trial under battleground scenario.
Each subject performed go trials (75%) and stop trials (25%) according to the stimuli presented in the
battleground scenario. (C) The theoretical model of the stop-signal task and where P is the probability
of responding to the stop-signal.

2.3. Acquisition of Electroencephalography (EEG) Signals

The EEG signals were recorded using a Neuro Scan NuAmps Express system (Compumedics
USA Inc., Charlotte, NC, USA) with 32-channels EEG cap, as shown in Figure 2. All EEG signals
were examined using EEGLAB software (10.2.2.4b Version, UC San Diego, Swartz Center for
Computational Neuroscience (SCCN), La Jolla, CA, USA) and MATLAB R2012b (The MathWorks Inc.,
Natick, MA, USA) [10]. In EEG cap, all 32-channels were positioned according to the international
10–20 system. The EEG signals were acquired at a sampling frequency rate of 500 Hz. We use an
infinite impulse response (IIR) filter to eliminate linear trends in EEG signals. The EEG signals were
filtered with a 1–50 Hz band pass IIR filter. The filter configuration was set to 1 Hz high pass and 50 Hz
low pass to eliminate high frequency noise. The EEG signals that were considerably contaminated
by artifacts, such as muscle activity, eye blinking, eye movement, and environmental noise were first
removed manually and then by independent component analysis (ICA) to minimize their influence on
the analysis of the EEG signal. In the artifact removal analysis, we found that about 12% of the epochs
(trials) were so noisy in the raw EEG signals. Consequently, 12% noisy epochs were rejected from the
raw EEG signal. We removed various artifacts, like muscle activities and eye blinking [10,20,21].
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Figure 2. The electroencephalography (EEG) devices used in battleground scenario. (A) Neuro Scan
NuAmps signal amplifier. (B) EEG cap with 32-channels. (C) Experimental screen in
battleground scenario.

2.4. Independent Component Analysis (ICA) and Back-Projection

Independent component analysis (ICA) is an effective technique for removing several types’
artifacts, e.g., eye movement, eye blinking, and muscle artifacts [22,23]. Thus, ICA is a useful technique
for extracting the clean EEG signals [10,20,21]. To identify numerous types of artifacts in EEG signals,
we checked the scalp map, power spectrum of each independent component, as shown in Figure 3.
Based on these standards, we separated clean and noisy independent component, back-projecting the
retained independent components to clean the EEG signal (i.e., EEG channels), as displayed in Figure 3.
In addition, the theory of independent component analysis (ICA) and back-projecting the retained
independent components to EEG channels have been used according to the previous study of EEG
signal analysis [20,21]. Afterward, we utilized the clean EEG signals to perform the EEG channel-based
event-related potential (ERP), event-related spectral perturbation (ERSP), and power spectral density
(PSD) analysis, using functions of the MATLAB R2012b and EEGLAB toolbox [10].

Figure 3. Flowchart of the independent component analysis and back projecting the retained
independent components to artifact free EEG channels (i.e., clean EEG signals).
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2.5. Analysis and Epoch Extraction of EEG Signals

Each epoch was extracted from −500 to 1300 ms. The acquired clean EEG signals were divided
according to event markers in successful go, successful stop, and failed stop epochs from −500 to
1300 ms. The extracted epoch EEG signals from −500 to 1300 ms were used to measure the event-related
potential (ERP) and event-related spectral perturbation (ERSP) analysis. The ERP and ERSP were used
as a biomarker for inhibition of human response. The distribution of go trials was 75% and stop trial
was 25% across subjects. After removing the artifact epochs (trials), the total number of 3538 trials
was observed for ERP, ERSP, and machine learning analysis. To produce the ERP, ERSP, and machine
learning results, we used the successful go trials (2522), successful-stop trails (424), and failed-stop
trails (592). According to previous ERP and ERSP inhibition studies, we found strong changes in
EEG activities after stimulus onset from 1 to 500 ms during go, successful stop, and failed stop
conditions [10,14,15]. Therefore, EEG signals were segmented after the onset of the stimulus from 1 to
500 ms to measure power spectral density (PSD) of EEG signals with inter-subject (between-subjects)
and intra-subject (within-subjects) variability. We used PSD as an input feature for the classification
model under inter- and intra-subject variability. Figure 4 shows all steps of EEG signal analysis and
classification of successful stop versus failed stop.

Figure 4. Flowchart of the classification system architecture. (I). Preprocessing steps of acquired EEG
signals. (II). Human inhibition-related brain regions. (III). Analysis of EEG signals power spectral
density (PSD) under inter-subject and intra-subject at preparation state before stimulus. (IV). The QDA
and LDA (parametric) and KNNC and PARZEN (nonparametric) classifiers performance outcomes
comparison during inter-subject and intra-subject variability.

2.6. Power Spectral Density (PSD) Analysis

Each epoch was separately transformed and normalized into the time frequency domain using
the event-related spectral perturbation (ERSP) routine [10]. A power spectral density (PSD) is the
measure of EEG signal’s power content versus frequency. We measured the PSD of EEG signals using
periodogram power spectral density estimate functions in the MATLAB R2012b [10]. The EEG signals
(1–50 Hz) were used from 1 to 500 ms to observe the power spectrum density under successful stop
and failed stop trials. The PSD of all subjects was measured at the frontal lobe (F3 and F4), the motor
cortex (C3 and C4), the parietal lobe (P3 and P4), and the occipital lobe (O1 and O2) of the brain using
EEG signals of successful stop and failed stop trials. The asterisk shows significant difference between
successful stop trials and failed stop trials using the Wilcoxon signed-rank test (p < 0.05) at inter-subject
and intra-subject variability.
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2.7. Machine Learning Classifiers: Nonparametric (KNNC and PARZEN) and Parametric (LDA and QDA)

Most of the previous EEG studies used either nonparametric or parametric machine learning
algorithms to evaluate the participant’s performance [24–26]. However, in our study, for the first time,
we compared both nonparametric and parametric machine learning algorithms using EEG signals of
successful stop and failed stop trials. In this study, four types of classifiers were utilized to compare
the classification accuracy of EEG signals under successful stop versus failed stop conditions. The four
kinds of classifiers were as follows:

2.7.1. K-Nearest-Neighbor Classifier (KNNC)

The KNNC is the k-nearest-neighbor classifier and is one of the basic classifiers for pattern
recognition. The principle of this method is an intuitive concept that data instances of the same
class should be closer in the feature space. For a given data point x of one unknown class, the
distance between x and all the data points in the training data was investigated, and the class of X was
determined by K, i.e., the nearest point of X. Due to its simplicity, KNNC is frequently used as a base
method in comparison with other sophisticated methods in pattern recognition. KNNC regulation is
well known in the pattern recognition literature [27,28].

2.7.2. Parzen Density-Based Classifier (PARZENDC)

The PARZENDC is a technique for nonparametric density estimation. It is based on a PARZEN
kernel density estimate with its smoothing kernel parameter acquired as a maximum likelihood
estimate [29]. Using a given kernel function, the technique approximates a given training set
distribution via a linear combination of kernels centered on the observed points. In this work,
we separately approximate densities for each of the two classes and assign a test point to the class
with maximal posterior probability [30]. The kernel width is optimized for the training set using a
leave-one-out error estimation [30].

2.7.3. Linear Discriminant Analysis (LDA) Classifier

Linear discriminant analysis was originally developed by [31], and it is the standard method
for classification. This method often produces models as accurate as of more complex classifier.
LDC analysis can be used only for classification not for regression. The target variable may have two
or more categories. Moreover, for a two class problem, one canonical discriminant function can be
constructed for classification of the two groups of cases. The discriminant function is formulated by a
linear combination of the feature variables:

D = a0 +
∑
i=1

aixi (1)

Assume n is the number of feature variables, the xi are the values of the feature variables, and the
ai are coefficients estimated from the input data during training so that the separation between the
distributions of the discriminant scores, D, of the two groups is a maximum. This is accomplished by
maximization of the ratio of the between-groups sum of squares to the within-groups sum of squares
for the two distributions of the discriminant scores [32].

2.7.4. Quadratic Discriminant Analysis (QDA) Classifier

The quadratic classifier was used in machine learning and statistical classification to separate
measurements of two or more classes of objects or events by a quadric surface. It is a more general
version of the linear classifier. Here, we used a quadratic classifier for our recognition purpose based
on literature review [33]. This classifier gives better results than the other classifiers. In particular,
a Pattern Recognition Tools (PRTools) function called PARZENDC, KNNC, LDC, and QDC were
employed for classifier design.
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2.8. EEG Features Extraction and Selection Method

The EEG signal epoch was extracted from 1 to 500 ms to measure power spectral density (PSD)
with inter-subject (between-subjects) and intra-subject (within-subjects) variability. The EEG signals
from 1 to 50 Hz frequency were used to observe the power spectrum density under successful stop and
failed stop trials. The calculated PSDs of the EEG signal during the successful stop and failed stop
trials were used as the input feature for the LDA, QDA, PARZEN, and KNNC classifiers. In the feature
extraction process, the PSDs of EEG signals were investigated in eight EEG-channels, which included F3
and F4 (frontal lobe), C3 and C4 (motor cortex), P3 and P4 (parietal lobe) and C3 and C4 (occipital lobe)
under inter-subject and intra-subject variability. Most previous studies used power spectral density as
a feature to classify EEG signals [34–36]. Consequently, in this study, we propose for the first time a
classification system to predict successful stop versus failed stop under battleground scenario using
power spectral density as input features. We used both parametric (QDA and LDA) and nonparametric
(KNNC and PARZEN) algorithms to predict the response inhibition function.

In present work, we used the average power spectral density of EEG signals as input features to the
PRTools—pattern recognition tools function from 1 to 500 ms using forward feature selection method
during successful stop and failed stop trials. The forward feature selection technique begun with a
blank set, X = 0, to which the most significant features with respect to X were added. Forward feature
selection was utilized to select the best power spectral features to predict the successful stop and failed
stop. The forward feature selection technique was started by investigating all subsets of features
that consist of a single input attribute. In other words, we begun by measuring the leave-one-out
cross validation (LOOCV) error of the one component subsets, {X1}, {X2}, {XM}, where M is the input
dimensionality. Consequently, we examined the best individual feature, X (1). Moreover, the feature
selection technique is called variable selection process. Feature selection denotes to the selection
of a subset of related features used for making a classification system. Feature selection process
was utilized for three main reasons: (I) generalization of system to make them easier to understand,
(II) the shortening of classification model training times, and (III) the improvement of generalization
by reducing overfitting [37].

Moreover, in this study, we used leave-one-out cross validation (LOOCV) for training and testing
datasets in which one part for testing and remaining for training with equal sampling for successful and
unsuccessful trials were used. Cross validation is a statistical method to evaluate and compare machine
learning algorithms via dividing the EEG data into two parts: one utilized to train a classification model
and the other utilized to validate the classification model. The accuracy of the suggested classification
model was investigated by leave-one-out cross validation method [38]. This technique reduces the
probability of obtaining erroneous outcomes, as it studies multiple splits of the EEG signals.

2.9. Statistical Analysis

In ERP analysis, the yellow asterisks show pairwise significance (p < 0.01) difference using
Wilcoxon signed-rank test between the go and successful stop epochs. Green asterisks display pairwise
significance (p < 0.01) difference in the go and failed stop epochs. Violet asterisks show pairwise
significance (p < 0.01) difference using the Wilcoxon signed-rank test between the successful stop and
failed stop epochs. Additionally, in ERSP analysis, the statistical significant (p < 0.01) difference with
multiple comparison was measured using the default setting in EEG laboratory toolbox [10]. In power
spectrum density (PSD) analysis, the statistical significance (p < 0.05) difference of power spectrum
between successful stop and failed stop epochs was observed with Wilcoxon signed-rank test in F3
and F4 (frontal lobe), C3 and C4 (motor cortex), P3 and P4 (parietal lobe), and C3 and C4 (occipital
lobe) under inter-subject and intra-subject variability. In addition, the pairwise significance difference
(p < 0.05) was measured in t-test between the performance of QDA, LDA, KNNC, and PARZEN
classifiers under inter-subject variability.
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3. Results

3.1. Behavioral Results

Table 1 shows the behavioral results during go trial and stop trial with inter-subject and intra-subject
variability. After removing the artifact trials, the number of trials per condition was measured for the
behavioral analysis of the successful go 2522 trials, successful-stop 424 trails, and failed-stop 592 trails.
In go trial, average reaction time (RT) was observed (375 ± 30 ms), and successful go (SG) ratio was
measured (91% ± 4%). In stop trail, average stop signal delay (SSD) was investigated (195 ± 36 ms),
stop-signal reaction time (SSRT) was observed (180 ± 41 ms), and successful stop (SS) ratio was
investigated (43% ± 12%). In addition, the averaged inhibition function approached around 50% at
SSD and error rate level increased with the length of SSD. Asterisks display the significant difference in
one-way ANOVA between the RT, SSD, and SSRT (F (2, 57) = 167.5, p < 0.01])

Table 1. Behavioral results during go trial and stop trial with inter-subject and intra-subject variability.
Standard deviation (SD). Asterisks show the significant difference in one-way ANOVA between the
reaction time (RT), stop signal delay (SSD), and stop signal reaction time (SSRT) (F (2, 57) = 167.5,
p < 0.01).

Subject Go Trial (75%) Stop Trial (25%)

ID RT (ms) SG Ratio (%) SSD (ms) SSRT (ms) SS Ratio (%)

1 446 94 183 263 48
2 376 99 172 204 49
3 381 95 167 214 51
4 346 93 167 179 29
5 378 90 260 118 54
6 416 88 198 218 54
7 382 84 184 198 48
8 350 98 167 183 27
9 366 86 166 200 38

10 420 94 167 253 10
11 366 82 215 151 49
12 346 93 219 127 49
13 338 96 167 171 33
14 350 95 166 184 49
15 352 94 234 118 52
16 336 87 193 143 51
17 382 89 167 215 46
18 434 85 290 144 57
19 376 93 249 127 35
20 368 92 167 201 21

(Average ± SD) 375 ± 30 * 91 ± 4 195 ± 36 * 180 ± 41 * 43 ± 12

3.2. Event-Related Potential (ERP) Results

Figure 5 shows the average event-related potential (ERP) under go, successful stop, and failed
stop trials at F3, F4, and C3 channels. In this study, we used the default setting in EEG laboratory
toolbox for generating the ERP image [10]. It considers a moving window of 10-epoch size with
50% overlap. The yellow asterisks indicate pairwise significance (p < 0.01) in Wilcoxon signed-rank
test between the go and successful stop conditions. Green asterisks show pairwise significance
(p < 0.01) difference in the go and failed stop conditions. Violet asterisks show pairwise significance
(p < 0.01) difference by Wilcoxon signed-rank test between the successful and failed stop condition.
The human inhibition-related neural markers ERP N200 and P300 peaks were observed to be increased
in successful stop than in go and failed stop conditions over the frontal cortex (F3 and F4 channels)
and the presupplementary motor area (C3 channels).
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Figure 5. The average event-related potential (ERP) during go, successful stop, and failed stop trials
at F3, F4, and C3 channels. Yellow asterisks indicate pairwise significance (p < 0.01) in Wilcoxon
signed-rank test between the go and successful stop conditions. Green asterisks show pairwise
significance (p < 0.01) in Wilcoxon signed-rank test between the go and failed stop. Violet asterisks show
pairwise significance (p < 0.01) in Wilcoxon signed-rank test between the successful and failed stop.

3.3. Event-Related Spectral Perturbation (ERSP) Results

Figure 6 shows the average event-related spectral perturbation (ERSP) of the frontal cortex during
go, successful stop, and failed stop trials at F3, F4, and C3 channels. The response inhibition-related
EEG activity of delta (1–4 Hz) and theta (4–7 Hz) powers were investigated increased in successful
stop than in go and failed stop conditions at the frontal cortex (F3 and F4) and the presupplementary
motor area (C3).

Figure 6. The average event-related spectral perturbation (ERSP) of the frontal cortex and the
supplementary motor area of the brain during go, successful stop, and failed stop trials at F3, F4, and C3
channels. The first magenta line shows go-stimulus onset. The second black dashed line reveals stop
signal onset. The third black dashed line presents response onset. Statistically significant at p < 0.01.
Color bars show the scale of ERSP.

Figure 7 displays the average ERSP of the EEG signals under the “Successful stop—Go” and
“Failed stop—Go” conditions at frontal cortex (F3 and F4 channels) and supplementary motor area
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(C3 channel). The human inhibitory control-related EEG activity of delta (1–4 Hz) and theta (4–7 Hz)
band powers were detected increased in “Successful stop—Go” condition at F3, F4, and C3 channels.
However, we observed greater EEG activity of delta (1–4 Hz) and theta (4–7 Hz) band powers in the
“Failed stop—Go” than in the “Successful stop—Go” condition at F3, F4, and C3 channels.

Figure 7. The average ERSP of the EEG signals under “Successful stop—Go” and “Failed stop—Go”
conditions at F3, F4, and C3 channels. The first magenta line shows go-stimulus onset. The second
black dashed line reveals stop signal onset. The third black dashed line presents response onset.
Statistically significant at p < 0.01. Color bars show the scale of ERSP.

3.4. Power Spectral Density (PSD) of Inter- and Intra-Subject Variability under Human Inhibition

The EEG signals were extracted from 1 to 500 ms after the onset of the stimuli, to investigate the
average PSD of EEG signals (1-50Hz) during successful stop and failed stop conditions. In this study,
we used the EEG frequency spectrum (1–50 Hz) (i.e., PSD) as input in the machine learning approaches
with inter- and intra-subject variability. Figure 8 shows the average PSD of all subjects (i.e., inter-subject
variability) in human inhibition-related brain regions included frontal lobe (F3 and F4), motor cortex
(C3 and C4), parietal lobe (P3 and P4), and occipital lobe (O1 and O2) under successful stop and failed
stop trials. Asterisk display significant difference between successful stop trials and failed stop trials
by Wilcoxon signed-rank test (p < 0.05). We observed the delta (1–4 Hz) and theta (4–7 Hz) band
powers slightly increased in failed stop trials than in successful stop trials in F3, F4, C3, C4, P3, P4, O1,
and O2 EEG channels. We found no significant difference in PSD of P3, P4, O1, and O2 EEG channels.
These brain activities changes under human response inhibition revealed the inter- and intra-subject
variability. In addition, the intra-subject variability in EEG power spectral density of each subject,
from 1–20, is presented in the Supplementary Materials Figures S1–S10.
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Figure 8. The average power spectral density (PSD) of all subjects (inter-subject variability) at F3, F4, C3,
C4, P3, P4, O1, and O2 under successful stop and failed stop trials. Asterisk show significant difference
between successful stop trials and failed stop trials by Wilcoxon signed-rank test (at *p < 0.05).

3.5. Classification System Performance using the EEG Frequency Spectrum (1–50 Hz) as Input in the Machine
Learning Approaches with Inter- and Intra-Subject Variability

In present study, a classification model was developed to predict the neural activities of human
inhibition using inter-subject and intra-subject variability. In this work, simple nonparametric and
parametric classifiers were utilized to estimate model performance, because these classifiers are very
easy to use. If these simple classifiers achieve batter performance in highest accuracy than the use of
more difficult classifiers algorithms can be escaped. Moreover, the commonly parametric machine
learning algorithms were used including the quadratic discriminant analysis (QDA) classifier and
the linear discriminant analysis (LDA) classifier. The nonparametric machine learning algorithms
were used including the K-nearest neighbor classifier (KNNC) and Parzen density-based classifier
(PARZEN). The nonparametric (KNNC and PARZEN) and parametric (QDA and LDA) classification
algorithms were utilized to classify successful stop and failed stop (FS) trials. We used the average
power spectral density (PSD) of EEG signals (1–50 Hz frequency) as input features for classifiers
from 1 to 500 ms using forward feature selection method during successful stop and failed stop trials,
because the inhibition-related ERP N200 and P300 peaks were observed from 1 to 500 ms after stimulus
onset at F3, F4, and C3 channels. In the ERSP analysis, we observed that the delta (1–4 Hz) and theta
(4–7 Hz) power increased after stimulus onset from 1 to 500 ms at F3, F4, and C3 channels.

The accuracy of the classification system was observed during the successful stop and failed stop
trials with inter- and intra-subject. Table 2 shows the comparison of the variability between inter-subject
and intra-subject of each participant’s performance with accuracy (%) in F3 and F4 (frontal cortex).
We found the classification accuracy of 92.85% with QDA in intra-subject, and the classification accuracy
was reduced to 71.66% with KNNC in inter-subject at F3 (i.e., left frontal cortex). However, we observed
highest classification accuracy of 95.31% with QDA in intra-subject, and the classification accuracy was
found to be 69.54% with KNNC in inter-subject at F4 (i.e., right frontal cortex).
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Table 2. Result of leave-one-out cross validation using the EEG frequency spectrum (1–50 Hz) as input in
the machine learning approaches including quadratic discriminant analysis (QDA), linear discriminant
analysis (LDA) (parametric), K-nearest neighbor classifier (KNNC) and Parzen density-based (PARZEN)
(nonparametric). The performance of the classification system is compared in accuracy (%) during
inter-subject and intra-subject variability at frontal lobe (F3 and F4) of the brain.

Subject F3 F4

ID QDA LDA KNNC PARZEN QDA LDA KNNC PARZEN

1 73.46 65.30 77.55 65.30 87.75 57.14 55.10 63.26
2 67.21 65.57 68.85 60.65 49.18 63.93 62.29 63.93
3 58.82 54.90 60.78 52.94 60.78 58.82 62.74 56.86
4 73.07 73.00 73.00 75.00 73.07 73.00 86.53 71.15
5 72.00 72.00 68.00 74.00 50.00 64.00 70.00 62.00
6 75.60 65.85 78.04 70.73 56.09 65.85 51.21 70.73
7 64.91 63.15 56.14 63.15 52.63 66.66 66.67 64.91
8 73.46 73.47 71.42 73.46 75.51 73.46 87.75 75.52
9 68.51 62.96 61.11 66.66 66.67 62.96 72.22 64.81

10 90.62 92.18 89.06 90.63 95.31 92.19 90.62 92.19
11 59.25 59.26 57.40 62.96 85.18 51.85 59.25 61.11
12 65.21 67.39 65.21 56.52 73.91 58.69 60.86 60.87
13 79.06 72.09 83.72 74.41 67.44 67.40 69.76 67.43
14 64.28 64.29 66.66 69.04 71.42 57.14 71.43 71.41
15 92.85 59.52 80.95 71.42 78.57 61.90 66.66 54.76
16 61.81 49.09 56.36 54.54 67.27 63.63 74.54 56.36
17 58.62 67.24 75.86 56.89 51.72 58.62 55.17 51.72
18 66.00 62.00 80.00 74.00 58.00 58.10 77.00 72.00
19 73.46 67.34 77.55 79.59 75.51 65.30 71.42 75.52
20 81.63 75.51 85.71 79.59 81.64 79.59 79.58 79.59

Accuracy
(Avg. ± SD) 70.99 ± 9.40 66.60 ± 8.61 71.66 ± 9.81 68.57 ± 9.38 68.88 ± 12.98 65.01 ± 8.88 69.54 ± 10.74 66.80 ± 9.33

Table 3 displays the evaluation of the variability between inter-subject and intra-subject of each
participant’s performance with accuracy in C3 and C4 (motor cortex). We saw the best classification
accuracy of 97.61% with QDA in intra-subject, and major drop in the classification accuracy was found
as 70.91% with QDA in inter-subject at C3 (left motor cortex). Moreover, we found classification
accuracy of 93.75% with QDA in intra-subject, and the classification accuracy was investigated to be
69.77% with KNNC in inter-subject at C4 (right motor cortex).

Table 3. Result of leave-one-out cross validation using the EEG frequency spectrum (1–50 Hz) as
input in the machine learning approaches including QDA, LDA (parametric), KNNC and PARZEN
(nonparametric). The performance of the classification system is compared in accuracy (%) during
inter-subject and intra-subject variability at motor cortex (C3 and C4) of the brain.

Subject C3 C4

ID QDA LDA KNNC PARZEN QDA LDA KNNC PARZEN

1 77.55 73.46 73.47 73.46 63.26 63.27 65.30 71.42
2 77.04 65.57 63.93 67.21 49.18 55.73 63.93 59.01
3 66.66 54.90 66.66 66.67 64.70 64.71 68.62 72.54
4 73.07 73.00 69.23 71.15 75.00 73.07 84.61 76.92
5 76.00 58.00 56.00 60.00 68.00 66.00 70.00 66.00
6 58.53 58.54 56.09 53.65 48.78 56.09 60.97 51.21
7 57.89 70.17 59.64 70.18 66.66 63.15 68.42 64.91
8 69.38 73.46 85.71 73.46 73.46 77.55 81.63 77.56
9 72.22 68.51 75.92 72.22 75.92 64.81 59.25 74.07

10 90.63 90.62 90.63 92.18 93.75 90.62 90.60 96.87
11 90.74 62.96 64.81 55.55 55.56 62.96 57.40 57.41
12 71.73 60.86 76.08 60.86 65.21 54.34 54.35 56.52
13 67.44 69.76 62.79 72.09 69.76 67.44 81.39 79.06
14 57.14 57.15 69.04 52.38 71.42 57.14 78.57 69.04
15 97.61 57.14 71.42 61.90 92.85 59.52 71.42 69.04
16 61.81 58.18 54.54 58.18 54.54 74.54 69.09 76.36
17 50.00 65.51 65.51 60.34 60.34 62.06 56.89 51.72
18 58.00 60.00 66.00 60.00 52.00 54.00 58.00 74.00
19 63.26 63.27 67.34 63.26 67.34 63.26 69.38 65.30
20 81.63 79.59 79.60 81.64 79.59 79.60 85.71 85.72

Accuracy
(Avg. ± SD) 70.91 ± 12.27 66.03 ± 8.74 68.72 ± 9.28 66.31 ± 9.55 67.36 ± 12.20 65.49 ± 9.21 69.77 ± 10.50 69.73 ± 11.06
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Table 4 shows the comparison of the variability between inter-subject and intra-subject of
individually subject performance with accuracy in P3 and P4 (parietal lobe). We observed classification
accuracy of 95.23% with QDA in intra-subject, and the classification accuracy was obtained as 70.05%
with QDA in inter-subject at P3 (left parietal lobe). Furthermore, we investigated best classification
accuracy of 96.87% with QDA in intra-subject, and the classification accuracy was found to be 70.01%
with QDA in inter-subject at P4 (right parietal lobe).

Table 4. Result of leave-one-out cross validation using the EEG frequency spectrum (1–50 Hz) as
input in the machine learning approaches including QDA, LDA (parametric), KNNC and PARZEN
(nonparametric). The performance of the classification system is compared in accuracy (%) during
inter-subject and intra-subject variability in parietal lobe (P3 and P4) of the brain.

Subject P3 P4

ID QDA LDA KNNC PARZEN QDA LDA KNNC PARZEN

1 73.46 71.42 61.22 61.23 59.18 73.46 65.30 69.38
2 62.29 65.57 72.13 63.93 65.57 72.13 60.65 68.85
3 64.70 56.86 62.74 56.86 70.58 58.82 66.66 66.67
4 76.92 73.07 78.84 76.92 80.76 73.07 78.84 75.00
5 58.00 54.00 72.00 62.00 52.00 52.00 72.00 58.00
6 60.97 53.65 73.17 65.85 51.21 48.78 73.17 68.29
7 75.43 77.19 71.92 77.19 57.89 61.40 68.42 57.89
8 77.55 75.51 79.59 85.71 73.46 73.47 79.59 77.55
9 66.66 68.51 68.52 68.51 66.67 61.11 66.66 70.37

10 93.75 92.18 90.62 92.19 96.87 90.62 90.61 90.62
11 77.77 51.85 68.51 62.96 79.62 62.96 53.70 55.55
12 65.21 73.91 67.39 63.04 93.47 58.69 69.56 67.39
13 72.09 74.41 72.00 72.09 72.09 79.06 76.74 74.41
14 57.14 61.90 59.52 59.53 54.76 54.76 66.66 61.90
15 95.23 59.52 64.28 66.67 92.85 61.90 54.76 57.14
16 70.90 67.27 69.09 58.18 63.63 58.18 61.81 45.45
17 50.00 55.17 44.82 56.89 58.62 62.06 56.89 55.17
18 54.00 64.00 64.00 66.00 62.00 62.00 62.00 60.00
19 61.22 63.26 75.51 71.42 61.22 63.26 65.30 59.18
20 87.75 81.63 77.55 81.63 87.75 79.59 79.59 81.63

Accuracy
(Avg. ± SD) 70.05 ± 12.19 67.04 ± 10.27 69.67 ± 9.11 68.44 ± 9.61 70.01 ± 13.87 65.36 ± 10.11 68.44 ± 9.12 66.02 ± 10.33

Table 5 displays the comparison of the variability between inter-subject and intra-subject of
individually subject performance with accuracy in O1 and O2 (occipital lobe). We found the best
classification accuracy of 97.61% with QDA in intra-subject, and the classification accuracy was
obtained as 69.57% with QDA in inter-subject at O1 (left occipital lobe). Furthermore, we investigated
classification accuracy of 93.75% with QDA in intra-subject, and the classification accuracy was found to
be 70.05% with PARZEN in inter-subject at O2 (right occipital lobe). These EEG findings show how the
variability between inter-subject and intra-subject affects the performance of the classification system.

3.6. Comparison of Classification Model Performance between Inter-Subject and Intra-Subject Variability using
the EEG Frequency Spectrum (1–50 Hz) as Input in the Machine Learning Approaches

This section presents the classification system performance with QDA, LDA (parametric),
KNNC and PARZEN (nonparametric) classifier using the EEG frequency spectrum (1–50 Hz) as
input in the machine learning approaches. The accuracy of the present classification model was
investigated under successful stop and failed stop (FS) trials. Figure 9 shows the comparison of inter-
and intra-subject variability of participant’s maximum performance in accuracy under successful
stop and failed stop trials. Asterisks show pairwise significance difference (* p < 0.05) in t-test
between the QDA, LDA, KNNC, and PARZEN. In this model, the highest classification accuracy
of 97.61% was achieved with QDC in the left motor cortex (C3) under intra-subject variability.
However, we found classification accuracy of 71.66% was reached with KNNC in the left motor cortex
(C3) under inter-subject variability. These results clearly demonstrate that how the variability between
inter-subject and intra-subject affects the performance of the classification model.
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Table 5. Result of leave-one-out cross validation using the EEG frequency spectrum (1–50 Hz) as
input in the machine learning approaches including QDA, LDA (parametric), KNNC and PARZEN
(nonparametric). The performance of the classification system is compared in accuracy (%) during
inter-subject and intra-subject variability in occipital lobe (O1 and O2) of the brain.

Subject O1 O2

ID QDA LDA KNNC PARZEN QDA LDA KNNC PARZEN

1 61.22 63.26 59.18 61.22 65.30 69.38 67.34 67.35
2 59.01 59.00 50.18 59.01 55.73 54.09 47.54 60.65
3 64.70 60.78 66.66 62.74 54.90 54.90 60.78 62.74
4 69.23 71.15 75.00 75.00 73.07 73.07 80.76 84.61
5 58.00 62.00 62.00 50.00 62.00 68.00 72.00 64.00
6 63.41 63.41 70.73 63.41 73.17 60.97 73.17 60.97
7 64.91 59.64 57.89 57.89 56.14 57.89 66.66 64.91
8 73.47 73.46 79.59 77.55 83.67 85.71 81.63 85.71
9 64.81 62.96 68.51 70.37 57.40 62.96 61.11 61.11

10 96.87 89.06 92.18 89.06 93.75 90.62 90.62 89.06
11 77.77 59.25 61.11 64.81 59.25 51.85 59.25 55.55
12 58.69 73.91 76.08 67.93 80.43 71.73 80.43 82.60
13 74.41 79.06 72.09 76.74 72.09 67.44 67.44 74.41
14 61.90 73.80 69.04 73.80 64.28 69.04 66.66 69.04
15 97.61 54.76 66.66 69.04 78.57 59.52 64.28 71.42
16 58.18 63.63 67.27 54.54 63.63 63.63 52.72 63.63
17 62.06 63.79 68.96 62.06 60.34 58.62 65.51 60.34
18 66.00 56.00 70.00 62.00 64.00 66.00 72.00 70.00
19 77.55 61.22 69.38 59.18 71.42 61.22 65.30 63.26
20 81.63 79.59 83.67 79.59 85.71 81.63 89.79 89.79

Accuracy
(Avg. ± SD) 69.57 ± 11.49 66.48 ± 8.80 69.30 ± 9.11 66.79 ± 9.34 68.74 ± 10.86 66.41 ± 10.08 69.24 ± 10.90 70.05 ± 10.37

Figure 9. The QDA and LDA (parametric) and KNNC and PARZEN (nonparametric) classifiers
performance outcomes comparison in accuracy and standard error bars during inter-subject and
intra-subject variability at F3, F4, C3, C4, P3, P4, O1, and O2. Asterisks show pairwise significance
difference (* p < 0.05) in t-test between the QDA, LDA, KNNC, and PARZEN.

4. Discussion

In this study, a classification model was developed to predict the response inhibition of subjects
based on their EEG signals under the battleground scenario. The ERP and ERSP results were used
as a neural marker for inhibition of the human response. In addition, the PSD of EEG signals at F3,
F4, C3, C4, P3, P4, O1, and O2 channels were investigated under successful stop versus failed stop
condition with inter-subject versus intra-subject variability. The PSD of EEG signals from (1–50 Hz)
was utilized as the input feature for the parametric (QDA and LDA) and nonparametric (KNNC and
PARZEN) machine learning approaches. The classification results reveal that the proposed method
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prediction accuracy of 97.61% was achieved with QDC classifier under intra-subject variability at C3
channel. However, major drop in the classification accuracy was found as 71.66% with KNNC in
inter-subject variability at F3 channel. Previous studies reported that the frontal and presupplementary
motor areas of the brain have been related to human response inhibition [13,19]. This study show
that how inter-subject and intra-subject variability affects the performance of the classification system
under inhibition.

4.1. Neural Activity Change with Inter-Subject and Intra-Subject Variability

In our study, we observed inhibition-related biomarkers (i.e., ERP N200 and P300 waves).
These results are similar to preceding studies that investigated the frontal lobe (i.e., F3 and F4 channels)
and presupplementary motor area (i.e., C3 channel) of the brain, which are associated with human
response inhibition [3–9]. In addition, the ERSP of delta and theta band powers were increased after
successful stop at F3, F4, and C3 channels.

Moreover, the previous studies of functional connectivity with inter-subject and intra-subject
variability reported that EEG activity of brain regions was observed to be dissimilar in both
conditions [11,12]. They observed greater intra-subject variability than in inter-subject variability
using functional connectivity in occipital lobe of the brain [11]. In our study, we also explored the
similar EEG activities changes under human response inhibition over the frontal cortex (F3 and F4)
and presupplementary motor area (C3) of the brain. Therefore, inter- and intra-subject variability
shows the different result of the classification model. Most of the former studies performed the average
analysis of all participants. Therefore, for the first time in this study, we investigated inter-subject
and intra-subject variability under human inhibitory control. These results can be used effectively in
clinical research to improve inhibition-related mental disorders, like ADHD, OCD, and schizophrenia.

4.2. Relationship between Inter- and Intra-Subject Variability

For the first time, our study has explored the specific relationship between inter-subject and
intra-subject variability under the battleground scenario. We observed the relationship between human
cognitive inhibition and shooting the target, which can offer numerous practical benefits in military as
well as in clinical research, such as to improve the psychopathology of ADHD, OCD, and schizophrenia.
First, the response inhibition relations with cognitive abilities could help us to identify the EEG neural
markers (ERP, ERSP, and PSD) of the individual participants (i.e., healthy subject or patient) using
battlefield scenario. Second, we can easily eliminate errors in classification model using inter- and
intra-subject variability. These results increase the evidence that the battleground scenario can be used
to improve the cognitive ability of patients.

Cognitive inhibition training improved the control of response inhibition ability, which may
reduce the error rate for stopping the brain–computer interface (BCI) system [39–42]. The present study
provides an initial view of this relationship by comparing the performance of normal subjects during
inter- and intra-subject variability in battleground scenario. However, previous studies have shown
that inhibitory control could be trained by stop signal task [43,44]. Present study demonstrates through
experimental results that the PSD with the QDA classifier can provide highest classification accuracy
of 97.61% than the other commonly used features in machine learning. For the first time, this study
presents the highest accuracy of 97.61% to classify complex mental states related to human response
inhibition under the battleground scenario. In addition, these results show that inter- and intra-subject
variability affects the performance of the classification system due to the neurophysiological state
changes of the individual participants.

Previous studies reported that the correct classification of ERP waves in EEG signals is a difficult
method that requires efficient signal processing and machine learning techniques. ERP analysis
provides non-invasive measurements of electrical activity in the human brain. It is associated with
the response to stimuli [45–47]. The previous study yielded a higher classification accuracy of 93.75%
using ERP input features in machine learning techniques [45–47]. In our article, using PSD with the
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QDA classifier achieved the highest classification precision of 97.61% than in ERP features commonly
used in former machine learning algorithms. The power spectrum of the EEG signal increased the
performance of the classification system.

4.3. Application and Future Works

In addition, the current classification model can be used to predict EEG neural activity of human
inhibition-related disorders, like ADHD, obsessive-compulsive disorder (OCD), and schizophrenia.
For example, when a participant (ADHD, OCD, and schizophrenia patient) begins preparing to
response the target image, the power spectral density of the EEG signals from 1 s or 500 ms in the brain
region related to the inhibition of response will be investigated, such as in the frontal lobe and the
presupplementary motor area [13,19,48–52]. After that, the EEG power spectrum of the frontal lobe
and the presupplementary area will be transferred to the proposed classification model to predict the
performance of the participant in real time. If the participant’s performance is predicted as a success,
then the classification system will produce a tone or signal to encourage the patient to response the
target and inhibit response with nontarget. The 500 ms EEG signals can be analyzed by this procedure
every few milliseconds until the patient improve performance. However, it is a challenging task for
future work because in a real environment, the neurophysiological state changes (i.e., fatigue, stress,
and mind-wandering) affect the EEG signal of patients. This novel study of inhibition can be used
effectively to improve the psychopathology of ADHD, OCD, and schizophrenia.

The limitation is that we used 20 subjects. For future work, the number of subjects will be
increased to validate the design of the experiment for a large dataset. In addition, we will perform the
brain connectivity analysis with a large dataset. We will use deep learning-based models to analyze
this dataset and develop a real-time model for the inhibition of human response with a high rate of
accuracy. In addition, we will compare the subject’s performance with ICA and without ICA analysis
during inter-subject and intra-subject variability.

5. Conclusions

To conclude, based on the results of the classification, we found differences in performance
between inter- and intra-subject variability during successful stop versus failed stop trials. The highest
classification accuracy observed from individual participants (intra-subject variability) was 97.61% with
QDA, although average participants (inter-subject variability) obtained highest classification accuracy
of 71.66% with KNNC. We observed reduced performance of the classification system accuracy of 71.66%
with KNNC in inter-subject variability. These results show that the mental status of the individual
participants affects the performance of the classification system. The results of the present study
suggest that this classification system can be applied effectively to improve the psychopathology of
attention deficit hyperactivity disorder, obsessive-compulsive disorder, schizophrenia, and suicidality
patient by training their mental state under the battlefield scenario. For future work, the number of
subjects will be increased in order to obtain more clean and substantial EEG dataset for the accuracy of
the mental state classification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/10/726/s1,
Figure S1: The EEG signals power spectral density (PSD) of single subject-1 and subject-2 (intra-subject variability)
at F3, F4, C3, C4, P3, P4, O1 and O2 under successful stop and failed stop trials, Figure S2: The EEG signals
PSD of subject-3 and subject-4 (intra-subject variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under successful
stop and failed stop trials., Figure S3: Figure S3. The EEG signals PSD of subject-5 and subject-6 (intra-subject
variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under successful stop and failed stop trials, Figure S4: Figure S4.
The EEG signals PSD of subject-7 and subject-8 (intra-subject variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under
successful stop and failed stop trials, Figure S5: The EEG signals PSD of subject-9 and subject-10 (intra-subject
variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under successful stop and failed stop trials, Figure S6: The EEG
signals PSD of subject-11 and subject-12 (intra-subject variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under
successful stop and failed stop trials, Figure S7: The EEG signals PSD of subject-13 and subject-14 (intra-subject
variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under successful stop and failed stop trials, Figure S8: The EEG
signals PSD of subject-15 and subject-16 (intra-subject variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under
successful stop and failed stop trials, Figure S9: The EEG signals PSD of subject-17 and subject-18 (intra-subject
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variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under successful stop and failed stop trials, Figure S10: The EEG
signals PSD of subject-19 and subject-20 (intra-subject variability) at F3, F4, C3, C4, P3, P4, O1, and O2 under
successful stop and failed stop trials.
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Abbreviations

EEG Electroencephalography
QDA Quadratic discriminant analysis
LDA Linear discriminant analysis
KNNC K-nearest neighbor classifier
PARZEN Parzen density-based
PSD Power spectral density
ADHD Attention deficit hyperactivity disorder
OCD Obsessive-compulsive disorder
SST Stop signal task
GNG Go/no-go
IFC Inferior frontal cortex
Pre-SMA Presupplementary motor area
ERP Event-related potential
SSD Stop signal delay
SSRT Stop signal reaction time
RT Reaction time
SG Successful go
SS Successful stop
FS Failed stop
IIR Infinite impulse response
ICA Independent component analysis
ERSP Event-related spectral perturbation
LOOCV Leave-one-out cross validation
SD Standard deviation
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