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Abstract: Motor Imagery (MI) promotes motor learning in activities, like developing professional
motor skills, sports gestures, and patient rehabilitation. However, up to 30% of users may not
develop enough coordination skills after training sessions because of inter and intra-subject variability.
Here, we develop a data-driven estimator, termed Deep Regression Network (DRN), which jointly
extracts and performs the regression analysis in order to assess the efficiency of the individual brain
networks in practicing MI tasks. The proposed double-stage estimator initially learns a pool of deep
patterns, extracted from the input data, in order to feed a neural regression model, allowing for
infering the distinctiveness between subject assemblies having similar variability. The results,
which were obtained on real-world MI data, prove that the DRN estimator fosters pre-training neural
desynchronization and initial training synchronization to predict the bi-class accuracy response,
thus providing a better understanding of the Brain–Computer Interface inefficiency of subjects.

Keywords: sensorimotor rhythm; event-related de/synchronization; brain-computer inefficiency;
regression networks

1. Introduction

Motor Imagery (MI) is understood as the dynamic cognitive ability to generate mental movements
without performing them. This mental process triggers the activation of the neurocognitive mechanisms
that underlie the planning of voluntary movements resembling how the action is executed in a real
way [1]. Currently, MI has been postulated as a reliable tool to promote motor learning in all of
its phases in activities, like the development of professional motor skills learning [2], improvement
of sports gestures [3], and enhancement of skilled performance in the patient rehabilitation [4,5],
among others. In these applications, the Media and Information Literacy methodology proposed by
UNESCO includes many competencies that are vital for people to be effectively engaged in human
development [6]. Electroencephalography (EEG) signals are broadly accepted to implement MI
systems due to their noninvasive nature, portability, and cost-efficiency. However, the most common
limitations for decoding neural responses are related to the inter and intra-subject variability that
leads to non-stationary, nonlinear, and a poor signal-to-noise ratio of EEG signals. All of these factors,
along with frequently used small datasets, decrease the performance of EEG-based MI systems [7].

A notable number of machine learning algorithms and feature extraction methods have been
developed in order to improve the analysis of MI responses [8,9]. Another improving approach is
to perform several training sessions in which participants learn how to modulate their sensorimotor
rhythms appropriately, relying on the spatial specificity of MI-induced brain plasticity [10,11]. However,
even after long training sessions, between 15% to 30% of users may not develop enough coordination
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skills [12,13], yielding an inadequate performance of most brain-computer interface (BCI) systems
(termed the BCI inefficiency factor) and posing one of the biggest challenges in MI research.

One more enhancing strategy of learning is identifying the causes of variability and incorporating
appropriate actions in order to compensate for the BCI inefficiency [14], for instance, by including a
calibration module that works hand-in-hand with the training procedure to make learning algorithms
adapt to user EEG patterns [15,16]. In this regard, the correlation between the neural activity
features that are extracted in advance (electrophysiological indicators or predictor) with the MI
onset responses instructed via sensory stimuli can be assessed to prescreen participants for the ability
to learn regulation of brain activity (pre-training measures) or for the improvement of learning
abilities (training phase) [17]. A systematic review of the predictors of neurofeedback training outcome is
given in [18,19], concluding that the most promising predictor seems to be the (neurophysiological)
baseline activity, which was derived from the parameter targeted by the training. In an attempt to
anticipate the evoked MI responses, several pre-training electrophysiological indicators are reported,
like functional connectivity of resting-state networks [20], α rhythm activity of eyes-open and
eyes-closed resting-states [21], pre-cue EEG rhythms over different brain regions [22], and the power
spectral density estimates of resting wakefulness (before the cue-onset of the conventional MI trial
timing and resting state) [23,24]. Although this last predictor is one of the most used, its curve-fitting
method depends heavily on various parameters that are difficult to determine, regardless of the resting
data employed [25]. Other predictors are derived from measuring the change in electrophysiological
properties across the training sessions [26,27]. Other predictors are derived from measuring the
change in electrophysiological properties across the training sessions [26–28]. Thus, event-related
Des/synchronization (ERD/ERS) is extracted in order to evaluate the (in)efficiency of MI training,
which shows a distinct activation of the sensorimotor cortex region in response to imagery tasks [29].
Although visible ERD lateralization of evoked MI activity has been considered for predicting the
user’s control ability from neurophysiological measures [30], the characterization of its topography
and frequency specificity poses a challenging task because of the difficulty in accurately quantifying
the trial-to-trial variability [31,32].

The linear correlation and regression models are used to explore or test the relationship between
predictor and outcome measures, since they provide direct insight into the possible reasons for BCI
control failures. However, the assumption of proportionality may be strong enough in real settings
of MI tasks, resulting in scores with low values of significance. Instead, this task can be solved using
linearizing models (like logistic regression [33]), which vary depending on the types and numbers
of EEG indicators selected in each model [34]. Thus, related to motor evoked potential time series,
nonlinear models (like random forests) can achieve significantly better prediction performance than a
linear one (or logistic regression) [35]. In particular, machine learning analysis in nonlinear regression
is extensively employed under two deep learning solutions [36,37]: (i) utilizing an ensemble of deep
networks that suffer from larger computational complexity and (ii) transforming a single nonlinear
regression hypothesis to a robust loss function that is jointly optimizable with the deep network usually
in terms of the mean square error. However, the generalization ability is a major concern in developing
deep regression models and computational complexity and hardware consumption [38].

Here, we develop a data-driven estimator, termed Deep Regression Network (DRN), which jointly
extracts and performs the regression analysis to assess the efficiency of the individual brain networks
in practicing MI tasks. Similar to the double-stage learning strategy for regression in [39], the proposed
estimator initially learns a pool of deep patterns, extracted from the input data, in order to feed a
neural regression model, allowing to infer the distinctiveness between subject assemblies having
similar variability. The results, obtained on real-world MI data, prove that the DRN estimator fosters
the ability of pre-training neural desynchronization and initial training synchronization to predict
the bi-class accuracy response and, thus, providing a better understanding of the BCI-inefficiency
of subjects.
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The rest of the paper is organized, as follows: Section 2 briefly discusses the theoretical background
of the model. Section 3 describes the experimental set-up, including the dataset used. Section 4 presents
the assessment of Deep Regression Network performance, describes the results, and discusses the
findings. Lastly, Section 5 concludes the paper.

2. Material & Methods

2.1. Electrophysiological Indicators in Mi Tasks

Pre-training indicator of neural desynchronization: for quantifying the potential for
desynchronization at rest over the sensorimotor area, the spectral variability of a state of wakefulness
conscious can be assessed by computing the difference between the EEG background activity (a fit of
f−1 noise spectrum) and the spectral content of those rhythms that are directly related to MI responses
(i.e., µ and β). Thus, the pre-training neural predictor, noted as ξ1 ∈ R+, is estimated while using the
following fitting-curve based approach developed in [40]:

ξ1 = max
∀ f∈f
{s( f )− ε( f ; η∗, κ∗)} (1a)

η∗, κ∗ = {arg min
mΩ ,σΩ ,η,kΩ ,κ

‖s( f )−
(

∑
Ω=µ,β

kΩNΩ( f ; mΩ, σΩ) + ε( f ; η, κ)
)
‖2} (1b)

where s( f ) is the positive semi-definite power spectral density (PSD) computed from an a priori
given state of wakefulness, N ( f ; mΩ, σΩ) is a Gaussian function modeling each spectral peak of either
sensorimotor rhythm Ω = {µ, β}, widely reported for practicing MI tasks [41]; {kΩ ∈ R+} are the
summation rhythm weights; {mΩ∈R+} and {σΩ∈R+} are the spectral moments ruling the offset and
scale of each fitting function, respectively; ε( f ; η, κ)= κ1 + (κ2/ f η) is the hyperbolic fitting of noise
with parameters {κ1∈R+, κ2∈R+}, η∈R+. Notation ‖ · ‖p stands for `p-norm.

Initial training indicator of Event-related De/Synchronization: this time-locked change of
ongoing EEG is a control-mechanism of the somatotopically organized areas of the primary motor
cortex, which can be generated intentionally by mental imagery. For a measured EEG recording
x = [x∆t ∈R], the estimation of ERD/ERS is performed, at specific sample ∆t ∈ T, by squaring the
samples and averaging over the EEG trial set to compute the variational percentage (decrease or
increase) in EEG signal power regarding a given reference interval, as follows [42]:

ζ̂∆t = (ζ∆t − ζ̄)/ζ̄, s.t.: var(ζ∆t)�var(ζ̄), (2)

where ζ∆t =E
{
|x∆t,n|2∈ xn:∀n

}
is the power scatter averaged across the trial set, n∈N, and the trial

power scatter ζ̄ =E {ζ∆t:∀∆t∈∆T1}, with ζ̄ ∈R, is computed by averaging over the reference time
interval ∆T1 ⊂ T, being T ∈ R+ the whole EEG recording length. The time-series of ERD/ERS is
computed across the whole trial set by accurately ruling the trial power scatter ζ̄(·).

Intending to provide a scalar-valued assessment of the synchronization mechanism, the initial
training indicator, which is noted as ξ2∈R+, is the distance measured between both labeled ERD/ERS
time-series (λ= l, l′, denoting left-hand and right-hand tasks, respectively). ERD/ERS are extracted
within each rhythm Ω at channel c, as below:

ξ2 = max
Ω,c

{
‖ζ̂(Ω, c|l)− ζ̂(Ω, c|l′)‖2

2

‖ζ̂(Ω, c|l)‖2‖ζ̂(Ω, c|l′)‖2

}
(3)

where ζ(Ω, c|λ) is the estimated ERD/ERS at channel c and bandwidth Ω, selecting the baseline
inverval as reference. The reported values of ξ2 are computed using the maximization operator
in Equation (3), relying on the fact that a single ERD/ERS time series may occur at different electrodes
and bandwidths, being sufficient to provide an adequate neural response.
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2.2. Regression Analysis between Classifier Performance and Electrophysiological Indicators

For evaluating the BCI efficiency, we employ a learning rule that estimates an unknown function
θ:RM 7→R from representative observations of an individual indicator (independent variable) ξ∈RM,
for which a multivariate model-free regression problem can be stated through by optimizing, across the
subject set m∈M, the following framework:

min
π
E
{
‖ν− (θ{ξ(xm)|π}+ ε)‖p : ∀m ∈ M

}
, (4)

where ν∈RM is the response vector (dependent variable), ε∈RM is the additive error term that is
independent of ξ, and π is the unknown parameter vector that allows estimation of the function θ(; )
that fits the data most closely in terms of a given `p-norm distance.

Here, the framework in Equation (4) is further developed by a proposed data-driven estimator,
termed Deep Regression Network (DRN), which jointly extracts and performs the regression analysis,
as follows:

min
π
E
{
‖ψ(Vm)− (θ3 ◦ θ2 ◦ θ1{ξ(ϕ(xc

m)) : m, c∈M, C′}|π})‖1 : ∀m ∈ M
}

(5)

where the initial hidden layer θ1 extracts through the function ϕ(xc) as a set of salient patterns from all
EEG recordings measured at every electrode xc, θ2 is the fully-connected layer that maps the first-layer
inputs into a high-dimensional space, generalizing the salient patterns sets over the considered channel
configuration C′ in order to assess the subject indicator ξ∗, θ3 is the output layer fed by the response set
of individuals to perform the regression analysis by incorporating a linear activation function, ψ(Vm)

is a functional that maps the scalar-valued response set Vm assessed for each subject into a single value.
Figure 1 sketches the proposed Deep Regression Network architecture that is based on the

non-sequential Wide&Deep neural network to perform learning of deep patterns (using the deep path)
under simple rules (through the short path) [43], implemented as below:

– IN: input layer that holds the extracted relevant patterns {ϕ(xc
m):∀c, m}.

– θ1: fully-Connected layer that is used for extracting robust and epileptic relevant patterns that
are mapped into a high-dimensional latent space [44], holding h = p1.5 size({ϕ(·)})q neurons,
being p·q the ceiling operator.

– CT: a concatenate layer that condenses the resulting feature sets of all electrodes into a single
block, sizing hC′.

– θ2: a fully-connected layer with size p0.5hC′q that is linked to each output-layer neuron.
– θ3: the one-neuron regression equipped with a linear activation function to predict the response.

Using the proposed Deep Regression Network framework, we extract the subject vector, which is
noted as ξ∗, as an indicator of MI neural activity that is further correlated with the computed bi-class
accuracy as a response variable. To this end, the parameters in Equation (5) are adjusted, as follows:

– The set of relevant patterns {ϕ(xc
m)} that holds elements extracted by the following statistical

moments: mean, median, variance, minimal, and maximal values. For every subject, the moments
are estimated over xc data using a short-time window lasting 1 s with a 50% overlap.
All time-varying moments are concatenated to form a single set per channel.

– Both layers, θ1 and θ2, employ a hyperbolic tangent (tanh) as the activation function.
– During learning, Adam algorithm optimizer and loss function are used, measuring the Mean Absolute

Error and fixing the learning rate to 10−3. In addition, the weight values (empirically set to 10−3)
are regularized while using the Elastic Net regularization.

– The backpropagation algorithm solves the parameter set optimization of π with auto
differentiation under a Wide Deep Neural Network framework that includes two hidden layers
under elastic-net regularization.
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– As the function mapping ψ(Vm), two operators over the response vectors are tested: (a) the
mean accuracy (noted as mean) that is averaged across the extraction window lengths δτ and
weighted by the subject variance performed at each window; (b) first PCA component of the
accuracy vectors (noted as PCA1). The set Vm is the subject accuracy values evaluated at four
lengths of feature extraction δτ=[0.5, 1.0, 1.5, 2.0] s, and performed over the whole trail MI data
set, as explained before in Section 3.2.

– For evaluation purposes, we also contrast the DRN-based regression analysis with the case of
avoiding the data-driven indicator extraction. Which is, the estimator in Equation (5) is directly fed
by the scalar-valued neurophysiological indicators devised in Equations (1a) and (3), fixing each
individual vector element of ξ∗ to ξ∗= ξ1,2 and removing the concatenation layer CT.

-

-

-

- -

.

-

θ1

.

IN CT θ2 θ3

ϕ(xC3)

ϕ(xC4)

ϕ(xC′)

Fully-Connected()

Fully-Connected()

1

Fully-Connected()

Concatenate() Fully-Connected() Output()

...
...

ξ∗

Figure 1. Proposed Deep Regression Network with three-layers architecture corresponding to the
extraction of salient sensorimotor patterns, subject indicator computation, and the linear regression of
performance responses on the assessed indicator vector.

3. Experimental Set-Up

Related to MI tasks, the methodology for evaluating the efficiency of neurophysiological
indicators embraces the following stages: (i) extraction of a pre-training learning ability indicator,
evaluating two scenarios of resting data for computation: (a) baseline inverval, ∆T1, lasting τ=1.5 s;
and (b) resting-state, lasting τ = 55 s. (ii) Extraction of an initial training phase indicator from the
Motor Imagery interval of the trial timing, (iii) regression and further clustering analysis between each
electrophysiological indicator and the performance response of individuals. To this end, the accuracy
classifier is estimated using the CSP-based features, maximizing the class variance to improve the
system accuracy. Additionally, Spearman’s correlation coefficient is used to assess the effectiveness of
each electrophysiological indicator considered in predicting the bi-class accuracy response.

In practice, extraction from fewer sensorimotor area is achieved in order to reduce the
computational complexity without affecting the BCI system performance [45]. To this end, we select the
EEG recordings measured over the sensorimotor area, evaluating two configurations of scalp positions:
(a) narrow electrode arrangement (noted as 2Ch) that includes two channels (C′=2): C3 (left motor
cortical region) and C4 (right), (b) wide arrangement (6Ch) that holds six surrounding electrodes
(C′=6): C3 and P3 (left motor cortex), Cz and Pz (middle cortex), and C4 and P4 (right cortex).

3.1. MI Database Description and Pre-Processing

We explore the collection, publicly available at http://gigadb.org/dataset/100295, which holds
EEG data obtained from fifty-two subjects using a 10-10 placement electrode system with C = 64
channels. However, we only validate M=50 individuals, since two of them (#29 and #34) have less
than 20 trials. Every channel x(c) lasting T=7 s was sampled at Fs =512 Hz. At the trial beginning,

http://gigadb.org/dataset/100295
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a fixation cross was presented on a black screen within a period that lasted 2 s. Subsequently, a cue
instruction (related to either MI label λ = l or λ = l′) appeared randomly on the screen for 3 s
that inquired each subject to imagine moving his/her fingers, starting to form the index finger and
proceeding to the little finger and touching each to their thumb. Afterward, a blank screen was shown
at the beginning of a break period, lasting randomly between 4.1 and 4.8 s. For completing a single
run, this procedure was repeated over 20 times and stopped at the end to fulfill a written cognitive
questionnaire [46]. Every subject performed five or six runs. Additionally, a single-trial recording of
resting-state lasting 60 s was collected from each subject.

Every raw EEG channel was band-pass filtered within the frequency range f ∈ [4–40]Hz,
covering both considered sensorimotor rhythms, µ and β. With the aim of providing a physiological
interpretation of the implemented experimental paradigm, the MI dynamics pictured in Figure 2 are
segmented. For purposes of evaluation, we employ the following two intervals of interest: ∆T1= [0–2] s
(termed baseline interval) and ∆T2= [2.6–4.6] s (motor imagery interval). We only employ two intervals
of interest during evaluation: ∆T1, which contains the baseline interval, and ∆T2, which reflects the
most representative brain neural response. The length of either interval is selected to be comparable to
the values that were reported for similar MI databases, like in [40].

Figure 2. Block diagram and trial timing used to complete the MI database paradigm.

For addressing the volume conduction problem, the indicators are assessed after performing
the Laplacian filter over the input EGG data to improve the spatial resolution of EEG recordings
This filtering procedure was carried out using Biosig Toolbox, freely available at http://biosig.
sourceforge.net, avoiding the influence of noise coming from neighboring channels [47]. Of note,
the first five seconds are removed from resting data because of measured variations [48].

3.2. Bi-Class Accuracy Estimation as a Response Variable

We perform the individual accuracy in distinguishing either MI class as the performance response
in order to validate the proposed data-driven estimator approach. The classifier accuracy is computed
using the sliding short-time feature set extracted by the algorithm of Common Spatial Patterns (CSP),
fixing the surrogate space variance to the first three eigenvectors by class, as carried out in [49]. It is
worth noting that the short-time window must be adjusted for extracting the subject EEG dynamics
over time accurately. To reflect this influence, we test four different lengths of the sliding window:
δτ=[0.5, 1.0, 1.5, 2.0] s, having an overlap of 50%.

The top row in Figure 3 displays the classification accuracy achieved by each individual at
different δτ, employing the Linear Discriminant Analysis algorithm and applying the regularized
selection strategy over the extracted CSP feature set together with a 10×10-fold cross-validation
scheme, as carried out in [50]. For purposes of interpretation, all of the individuals are ranked in
decreasing order according to the achieved CSP-based accuracy, showing that the less the classifier
performance, the higher the dispersion between accuracy estimates extracted at different window
lengths δτ. However, the subjects performing the best have better accuracy at length δτ=2, while the
worst individuals achieve better at the shorter window δτ=0.5, which means that the dynamics of
neural responses may cluster into different groups in terms of the utilized extraction length δτ.

http://biosig.sourceforge.net
http://biosig.sourceforge.net
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(a) δτ = 2 (b) δτ = 1.5 (c) δτ = 1 (d) δτ = 0.5

Figure 3. Individual accuracy in distinguishing either MI class performed by the CSP-based
time-frequency feature set, using different window lengths: – δτ = 2, –δτ = 1.5, –δτ = 1, –δτ = 0.5.
Bottom row: Accuracy for the trial timing using different windows S14 (marked with color –) and
S17(–).

As an illustration, the bottom row in Figure 3 draws the time-varying classification accuracy
achieved by two representative subjects: the individual labeled as S14 that reaches very high scores
across the whole MI interval and the subject S17 that presents the lowest distinguishing ability,
performing the highest accuracy unusually late (after the expected ∆T2 interval).

4. Results and Discussion

4.1. Computation of Pre-Training Desynchronization Indicator

For extracting the PSD-fitting values in Equation (1a), the power spectral density s( f ) of each
Laplacian-filtered channel, {xc}, is computed through the nonparametric Welch’s method. To this,
we use a set of smooth-time sliding windows of length 1 s, fixing an overlap of 50% in order to
overcome the non-stationary nature of EEG data. Further, we perform a single estimate of ξ1 as the
mean value averaged across the tested scalp electrode configuration.

Figure 4 depicts the curve-fitting model obtained, respectively, by the baseline interval (outlined in
black color) and resting-state (gray color). The PSD estimate is drawn by a continuous line,
the curve-fitting–by an asterisk line, and the hyperbolic fitting of noise–by a dashed line. In the
case of subject # 14 reaching high accuracy, the top row presents the performed curve-fitting with
a high indicator value, showing a big match between the modeled and PSD estimated from the
resting-state in each one of the six considered channels. As expected, the spatial configuration 2Ch
provides the best values of ξ1, which are large enough when compared with the remaining channels.
On the contrary, the subject # 17 with a very low accuracy performs a small indicator because of
a poor fitting agreement (see the bottom row), also having no distinguishable activity at µ and β

rhythms, regardless of the channel. The values of curve-fitting adjustment are shown beneath the plots,
resulting in very close estimates for the pre-training desynchronization indicator despite the resting
data extraction interval.

Figure 5 displays the indicator that was calculated by Equation (1a) according to the achieved
CSP-based accuracy that is ranked in decreasing order. As seen in the top row, the baseline inverval
estimates extracted from 2Ch configuration (colored with blue squares) have a behavior that is
comparable to the values that were recomputed by expanding to 6Ch the number of MI channels
(green squares). A similar situation holds for the resting state indicator computed, as observed in the
bottom row. It is worth noting that, although there is a high resemblance between both individual
assessments (close to 50%), either calculated version of ξ1 barely follows the ranked accuracy sequence
of individuals.
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P3 C3 Cz Pz C4 P4
S1

4

ξ1=6.3(9.79) ξ1=13.40(10.98) ξ1=6.09(12.35) ξ1=9.46(8.64) ξ1=15.79(4.60) ξ1=3.88(11.79)

S1
7

ξ1=2.66(2.29) ξ1=3.68(0.54) ξ1=2.79(2.80) ξ1=2.79(4.83) ξ1=2.68(1.72) ξ1=2.82(3.96)

Figure 4. Examples of pre-training power spectral density (PSD)-fitting computed within resting data:
baseline inverval (black line) and resting (gray line). Values of ξ1 are reported for the sensorimotor
area of baseline inverval and (resting) states.

∆
T 1

=
1.

5
s

∆
T R

=
55

s

Figure 5. Pre-training desynchronization indicator ξ1 computed for baseline inverval (top plot)
and resting data (bottom row) while using either electrode arrangement: 2Ch (blue color) and 6Ch
(green color). Individuals are ranked according with the achieved accuracy response.

4.2. Initial Training Synchronization Assessment

Here, we extract the ERD/ERS dynamics over the entire filtered trial matrix, fixing the time
window to the sample rate (0.004 s). Additionally, the reference interval is fixed to the range 0.5–1.5 s
while using the significance value of 1% in z-score approach, as performed in [51].

Figure 6 displays the individual pattern changes extracted from the electrode arrangement Ch6,
holding the cue onset interval (shadowed area) and the MI segment ∆T2. As seen, the induced
synchronization mechanisms are represented through the increase or decrease of energy at the
post-stimulus period. For illustration purposes, the corresponding time series are presented for
a couple of representative subjects: #14 that performs high accuracy and #17, achieving a low accuracy.
The former individual provides distinctive modulation amplitudes all over the sensorimotor area,
while the latter subject presents a weak synchronization behavior, as observed in the top row.

P3 C3 Cz Pz C4 P4

S1
4

E
R

D
/E

R
S

[%
]

S1
7

E
R

D
/E

R
S

[%
]

Figure 6. Exemplary ERD/ERS time-courses performed by subjects S17 and S14 for left-hand class
(colored in red line) and right-hand class (in yellow) at the evaluated scalp electrodes, while using the
back resting state (shadowed area) as the reference segment.
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Further, Figure 7 displays the assessments of individual synchronization that are computed while
using the labeled-related distance in Equation (3) within the sensorimotor rhythms, for which the
electrical brain activity prompted by motor tasks is frequently associated. The computed values of
initial training synchronization ξ2 hardly follow the accuracy sequence of individuals, as observed in
the previous indicator.

µ
β

µ
+

β

Figure 7. Individual values of initial training synchronization ξ2 computed within subband
combinations: µ, β, µ+β.

One more aspect to consider is the indicator’s capacity to characterize the training session’s
synchronization mechanism. To this end, we extract ξ2 while using a sequence of 30 trials ordered in
time. Fixing a significance value of 5%, Figure 8 displays the results of the Wilcoxon signed-rank test,
revealing that the first 30 trials are different from the second run. Likewise, the second run differs
from the last one (only three runs are considered, since not all subjects have the same number of trials).
Moreover, the mean value of ξ2 decreases over the runs, which suggests that the synchronization
mechanism can be evaluated as the training sessions increases in number. Overall, these outcomes
in Figure 8 agree to the results in [52], evidencing the difficulty of quantifying a significant change in
ERD/ERS across the training sessions, even for either channel C3 or C4.

µ = 0.62

µ = 0.43

µ = 0.43

padjusted= 0.018

padjusted= 0.012

0.0

0.2

0.4

0.6

0.8

1.0

P1
(n = 47)

P2
(n = 47)

P3
(n = 47)

Partitions

ξ 2

(a) 2CH

µ = 0.87

µ = 0.71

µ = 0.64

padjusted= 0.018

padjusted=0.001

0.2

0.4

0.6

0.8

1.0

P1
(n = 47)

P2
(n = 47)

P3
(n = 47)

Partitions

(b) 6CH

Figure 8. Differences in initial training synchronization ξ2 performed at each trial partition during the
training sessions.

4.3. Drn-Based Indicator Extraction and Regression

Aiming at assessing the effectiveness of the pre-training desynchronization indicator ξ1, Table 1
displays Spearman’s correlation coefficient, r∈R, which is reported under two different regression
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assumptions: linear (noted as LC) and linearized (DRN). In the case of extracting ξ1 by Equation (1a)
from the baseline inverval, the linear correlates with the responses yield a minimal value of r,
regardless of the associated accuracy response. The efficiency for predicting the subject accuracy
remains not significant (r<0.23), even though the expanded electrode arrangement increases the
Spearman coefficient a little. Further, the values of r are performed through the linearizing DRN
estimator while using the same scalar-valued PSD-fitting indicator set (noted as DRN ξ̃∗ = ξ1),
which is obtained by concatenating all of the trials before carrying out the short-time vector extraction,
as implemented in [40]. As a result, the correlation with the MI performance raises to r<0.37,
but this indicator poses still not meaningful for prediction. Lastly, the use of the DRN framework
for joint indicator extraction and regression (noted as DRN ξ∗) leads to a notable increase of the
Spearman coefficient up to r<0.88, allowing for an adequate predictive interpretation of the data-driven
pre-training desynchronization indicator.

Table 1. Biserial Spearman correlation coefficient quantified between the ξ1 indicator, extracted within
different scenarios of resting data, and the accuracy response, estimated at each window length
of δτ. Notations LC, DRN, and LOO stand for Linear Correlation [40], Deep Regression Network,
and leave-one-out-cross validation strategy, respectively. The best value per row is marked in bold.

Resting Data Electrode δτ [s] ψ(·)
Configuration 0.5 1.0 1.5 2.0 Mean PCA1

Baseline inverval

2Ch(LC) 0.15 0.15 0.17 0.16 0.13 0.15
6Ch(LC) 0.07 0.04 0.11 0.13 0.05 0.07
2Ch(DRN ξ∗= ξ1) 0.15 0.16 0.18 0.16 0.14 0.15
6Ch(DRN ξ∗= ξ1) 0.07 0.04 0.12 0.14 0.06 0.08
2Ch(DRN ξ∗) 0.86 0.85 0.96 0.97 0.83 0.87
2Ch(DRN ξ∗) LOO 0.76 0.79 0.82 0.80 0.78 0.86
6Ch(DRN ξ∗) 0.92 0.86 0.95 0.97 0.83 0.88
6Ch(DRN ξ∗) LOO 0.83 0.87 0.85 0.87 0.89 0.91

Resting-state

2Ch(LC) 0.30 0.31 0.31 0.27 0.29 0.31
6Ch(LC) 0.25 0.31 0.26 0.26 0.28 0.28
2Ch(DRN ξ∗= ξ1) 0.31 0.31 0.31 0.28 0.30 0.32
6Ch(DRN ξ∗= ξ1) 0.25 0.31 0.26 0.27 0.30 0.30
2Ch(DRN ξ∗) 0.79 0.80 0.92 0.94 0.78 0.82
2Ch(DRN ξ∗) LOO 0.85 0.87 0.83 0.82 0.79 0.84
6Ch(DRN ξ∗) 0.86 0.77 0.91 0.93 0.75 0.80
6Ch(DRN ξ∗) LOO 0.85 0.83 0.88 0.86 0.80 0.77

When extracting ξ1 by Equation (1a) from a single resting-state record, the linear assumption
increases almost by two the values of r as compared to the previous baseline inverval extraction.
This result may point out that the resting-state data enable a more confident estimation of the
desynchronization indicator. Nonetheless, for these scalar-valued estimates, the DRN estimator cannot
further improve their predictive ability with the accuracy responses (r < 0.40). However, the joint
model of DRN-based indicator extraction and regression leads to a definite rise in the correlation
coefficient, outperforming all of the tested scenarios of resting data (r < 0.93).

The linear correlation values of (r<0.39) performed by the initial training synchronization ξ2 are
comparable to the ones of ξ1, including both evaluated rhythm bandwidths µ+β and the wide electrode
arrangement, as presented in Table 2. By feeding the DRN estimator with the scalar-valued ξ2 (noted as
DRN ξ̃∗ = ξ2), similar low significant correlation values are obtained, regardless of the evaluated
rhythms. The fact that the proposed DRN estimator is not benefiting from a scalar-valued indicator
set implies that involved Wide&Deep neural network demands a higher volume of information from
predictors to perform learning of deep patterns.
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Table 2. Computed values of r for the indicator of initial training synchronization within the evaluated
rhythm bandwidths: µ, β, µ+β. Notations LC, DRN, and LOO stand for Linear Correlation [40],
Deep Regression Network, and leave-one-out-cross validation strategy, respectively. The best value per
row is marked in bold.

Rhythm Electrode τ [s] ψ(·)
Subband Configuration 0.5 1.0 1.5 2.0 Mean PCA1

µ

2Ch(LC) 0.12 0.064 0.04 0.003 0.6 0.05
6Ch(LC) 0.23 0.08 0.10 0.04 0.11 0.11
2Ch(DRN ξ∗= ξ2) 0.13 0.064 0.13 0.17 0.06 0.17
6Ch(DRN ξ∗= ξ2) 0.23 0.12 0.10 0.04 0.11 0.11

β

2Ch(LC) 0.11 0.06 0.08 0.02 0.07 0.06
6Ch(LC) 0.14 0.04 0.006 0.016 0.11 0.07
2Ch(DRN ξ∗= ξ2) 0.16 0.15 0.20 0.23 0.16 0.20
6Ch(DRN ξ∗= ξ2) 0.19 0.05 0.23 0.25 0.21 0.20

µ + β

2Ch(LC) 0.06 0.05 0.05 0.01 0.04 0.04
6Ch(LC) 0.11 0.07 0.03 0.04 0.11 0.08
2Ch(DRN ξ∗= ξ2) 0.08 0.06 0.10 0.18 0.11 0.09
6Ch(DRN ξ∗= ξ2) 0.11 0.11 0.19 0.21 0.15 0.21
2Ch(DRN ξ∗) 0.84 0.80 0.94 0.91 0.78 0.83
2Ch(DRN ξ∗) LOO 0.15 0.17 0.24 0.19 0.18 0.21
6Ch(DRN ξ∗) 0.87 0.77 0.93 0.95 0.82 0.82
6Ch(DRN ξ∗) LOO 0.20 0.44 0.40 0.28 0.26 0.40

On the other hand, the characterization of evoked MI activity poses a challenging task, because
of the difficulty in quantifying the trial-to-trial variability accurately, increasing the complexity in
assessing the distance ξ2 between both labeled ERD/ERS time-series by Equation (3). It should be
noted that the indicators perform the best linear estimates of r at a distinct window length (δτ=0.5
by ξ1 while δτ=0.5 by ξ2), which means that this extraction parameter must be tuned differently for
each indicator.

Once again, the DRN framework of joint indicator extraction and regression (DRN ξ∗) enables an
increase of the Spearman coefficient up to r<0.89, concatenating both labeled ERD/ERS time series
at the estimator input. Therefore, for increasing the predictive interpretation of either considered
electrophysiological indicator, the proposed DRN framework should incorporate the joint extraction
and regression procedures, intending to extract more distinguishing information between subjects
from the indicators.

4.4. Clustering of Subject-Level Efficiency

Here, we assume the rationale by which the higher the accuracy in distinguishing between MI
tasks, the more efficient the individual brain network. Therefore, the sets of the extracted indicator
values, together with the accuracy series, are employed to infer the distinctiveness between the subject
assemblies, each having a similar variability level.

In the beginning, we determine the number of partitions considering the intra and inter-subject
variability of responses as an important factor affecting the regression analysis that was conducted
by Equation (5). Thus, an adequate group number is found to be three, which we estimate through the
k-means algorithm fed by the four accuracy sets accounting for the performance variability, because of
the extraction window length, δτ (see Figure 3), and introducing the cluster inertia and the Silhouette
score to minimize the objective function.

The top row in Figure 9 displays the maximal accuracy that was performed by each subject within
the extraction window set and his assigned group (left plot). The corresponding right plot depicts the
resulting cluster by the colored dots into the following three partitions of individuals:
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(i) A group that holds the individuals performing the best accuracy with very low variability
(yellow color).

(ii) A group that contains the subjects that reach important values of accuracy, but performing with
some fluctuations.

(iii) A group with modest accuracy performed with high unevenness.

In the following, each group is assumed to have distinguishable skills in practicing Motor
Imagery tasks.
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(b) DRN-based pre-training desynchroniation indicator ξ∗= ξ1 extracted within resting data ∆T1
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(c) DRN-based pre-training desynchroniation indicator ξ∗= ξ1 extracted within resting data ∆TR
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(d) DRN-based pre-training desynchroniation indicator ξ∗= ξ1 extracted from (µ + β) rhythms

Figure 9. Extracted assessments using the proposed DRN estimator (left-side column) and performed
clustering of subjects (right-side column).

The rows (b)–(d) in Figure 9 present the indicators that were extracted by the proposed DRN
in Equation (5) that perform the best Spearman correlation r, meaning that they provide a high ability
to predict the bi-class accuracy response. It is worth noting the high linearity between each indicator
and the performance response set ranked in decreasing order, as displayed in the left column. The right
column depicts the three subject partitions that were accomplished by the DRN extracted indicators,
which are evidently separated, regardless of the involved indicator. Furthermore, the similarities
between 2Ch (colored with blue squares) and 6Ch (green squares) arrangements are not noticeable,
meaning that the clustering is scarcely affected by the fluctuations of neural activity coming from
neighboring electrodes.

Nonetheless, as seen at the end of the left-side plots, several subjects (namely, #7, #40, #33, #8,
and #17) do not follow the trend, and they are out of the regression (right plots), which implies
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that the DNR framework is not able to linearize the indicators extracted from this group of subjects.
Besides their lowest performed bi-class accuracy, the main reason accounting for this discrepancy is the
implied variability in their response that exceeds the performed values by the remaining subject set,
as explained before in Figure 3a. In fact, the outlier subject set’s classification performance increases
atypically at the end of the MI interval, so that some subjects do not provide distinguishable activity
between µ and β rhythms. This issue seems to be relevant, since it proves that, along with the measured
indicator variability, the response behavior also changes influence the resulting data-driven regression
analysis. Consequently, the number of subject partitions is increased by one, and the appearing fourth
group contains the outlier subject set for which the DRN estimator cannot infer any predictive ability
because of their intra-subject variability.

Another concern is how few subjects can exchange the assigned clusters when accounting for
each extracted indicator’s influence. To illustrate this fact, in Figure 10 we display the matrix that spans
the cells colored according to the individual group assigned by the DRN-based estimator. The top
row shows that the just a couple of subjects downgrades from the group I to II, when utilizing the
extracted by DRN-based indicator assessments (see the pictured sets of (b)–(d) in Figure 9). It is worth
noting that either electrode arrangement performs the same clustering if it involves the entire trail set
of EEG data.
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Figure 10. Clustering of individuals according to the DRN-based indicator extraction and regression.
In first row, notations (a), (b) ,(c), and (d) stand for the corresponding items in Figure 9. The last two
rows show the cluster of the DRN-based indicator ξ∗= ξ2 extracted from (µ + β) rhythms, removing
10 trials consecutively in six runs with 2CH and 6CH electrode configuration, respectively.

5. Concluding Remarks

To provide a better understanding of the BCI-inefficiency, we develop a data-driven estimator,
termed Deep Regression Network (DRN), which jointly extracts and performs the regression analysis
to assess the efficiency the individual brain networks in practicing MI tasks. To deal with the high
inter- and intra-subject variability of elicited neural activity, the estimator performs learning of deep
patterns, allowing to infer the distinctiveness between subject assemblies having similar variability.
The results, which were obtained on real-world MI data, prove that the DRN estimator fosters the
ability of the pre-training neural desynchronization and initial training synchronization to predict the
bi-class accuracy response and, thus, providing a better understanding of the user’s intent of action
upon imagination tasks. The regression-based evaluation of the tested neurophysiological indicators
for predicting the subject’s ability to practice motor imagery tasks implies the following aspects:

Electrophysiological indicators in evaluation efficiency. We appraise the ability of pre-training
neural desynchronization to predict the system response, showing that the computation by the
baseline PSD-fitting may result in low significant correlates to the bi-classification accuracy (r < 0.23),
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at least, if performing extraction from the back-resting state. By extracting from resting-state data,
the correlation with the MI performance raises to r < 0.37, remaining still not meaningful for prediction.
Besides, the initial training synchronization indicator is assessed while using a proposed distance
between both labeled Event-related De/Synchronization time-series that hardly follows the accuracy,
sequence of individuals, resulting in low significant correlation values, regardless of the evaluated
rhythms. However, other approaches of ERD/ERS calculation are to be evaluated, like event-related
spectral perturbation technique [53].

Classifier accuracy as a response variable. In order to assess the efficiency of individual brain networks,
the accuracy in distinguishing between MI tasks is widely employed, which is frequently computed
while using the sliding short-time feature set extracted by the algorithm of Common Spatial Patterns.
However, to deal with the intra inter-subject variability, the short-time length must be adjusted for
each subject properly (see Figure 3). Furthermore, the individuals performing the worst are more
susceptible to this choice, degrading the regression analysis highly. As a result, either indicator’s
predictive ability depends differently on this extracting parameter, at least, using linear regression
(see Tables 1 and 2). This result may lead to a restriction when gathering several electrophysiological
indicators into a common regression framework to improve efficiency evaluation of subjects.

Joint model of indicator extraction and regression analysis. For increasing the predictive interpretation
of either considered electrophysiological indicator, we develop a Deep Regression Network framework
that, first, extracts from neural activity indicators the most salient patterns that allow evaluating the
BCI inefficiency, and then performs linearization of the indicator assessments towards the accuracy
response. As a result, there is high linearity between the extracted sets for either indicator and the
ranked performance response values of subjects. To include the accuracy variability because of window
extraction, we test the mean accuracy weighted across the subject variance and the first PCA eigenvalue
of the accuracy vectors, both performing similarly and outperforming notably the results that were
obtained by each particular window length. Nonetheless, the proposed DRN estimator does not
benefit from scalar-valued indicator sets, since the included Wide&Deep neural network demands a
larger amount of information from predictors to perform learning of deep patterns.

One more aspect to remark is that the developed prediction model is subject-dependent and
has to be validated with trial sets acquired under similar conditions from a representative number of
individuals. As a rule, publicly available motor imagery databases are small, unusually exceeding
several dozens because of their associated cost of implementation. We also need to validate the
resting-state data that are less present in MI collections, since their capture demands a different
paradigm, increasing the acquisition complexity. Here, we use the leave-one-out-cross validation
strategy (LOO) to reduce the variability derived by splitting into two groups the validating data
(training and test), enhancing the generalizing ability of the developed predictor and the model
reproducibility, even under such an amount of examined individuals, aiming to understand why some
subject groups show different performances in the same system.

Cluster of subject efficiency. The extracted indicator assessments, together with the accuracy series,
are employed to infer the distinctiveness between the subject groups with a comparable variability
level, that is, having similar skills in practicing MI tasks. As a result, the DRN estimator provides three
subject partitions with the predictive ability regardless of the involved indicator and barely affected
by the fluctuations of neural activity coming from neighboring electrodes. One more group with
nonpredictive ability is obtained that holds the subjects with the lowest and most variable estimates of
accuracy. The DNR framework is not able to linearize this group, which confirms that the changes in
the response behavior also influence the resulting data-driven regression analysis.

Nonetheless, some issues remain to enhance the BCI-inefficiency evaluation through the developed
data-drive DRN estimator. Firstly, the extraction of indicators should be improved; for instance, the
assessment of the initial training synchronization must be performed using more elaborate labeled-based
distances. Generally, the `2 loss function tends to limit the generalization ability due to its susceptibility
to outliers. Instead, using the combined `2,1-norm concept loss (or even `∞-norm), the curve-fitting



Brain Sci. 2020, 10, 707 15 of 17

indicator in Equation (1a) can be improved. Further, the DRN framework should be enhanced in
order to include the joint extraction of several indicators, taking into account the differences in the
de/synchronization mechanism between both brain hemispheres. Additionally, there is a need to
develop a more powerful mapping function to include the system response’s stochastic behavior.
Another aspect of improving is the Deep Network architecture to enhance the interpretation of spatial
brain neural patterns that mainly contribute to evaluating indicators’ efficiency in practicing MI tasks.

As future work, we plan to validate the proposal on a database with more subjects to obtain
more robust evidence of the presented findings. Additionally, a broader class of MI dynamics is to be
considered together with subjective scores of perception assessments, aiming to understand why some
subject groups show different performances in the same system.
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