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Abstract: Epilepsy affects about 1% of the world’s population, and up to 30% of all patients will
ultimately not achieve freedom from seizures with anticonvulsive medication alone. While surgical
resection of a magnetic resonance imaging (MRI) -identifiable lesion remains the first-line treatment
option for drug-refractory epilepsy, surgery cannot be offered to all. Neuromodulatory therapy
targeting “seizures” instead of “epilepsy” has emerged as a valuable treatment option for these patients,
including invasive procedures such as deep brain stimulation (DBS), responsive neurostimulation
(RNS) and peripheral approaches such as vagus nerve stimulation (VNS). The purpose of this review
is to provide in-depth information on current concepts and evidence on network-level aspects of
drug-refractory epilepsy. We reviewed the current evidence gained from studies utilizing advanced
imaging methodology, with a specific focus on their contributions to neuromodulatory therapy.
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1. Introduction

Epilepsy affects about up to 1% of the world’s population [1], and 1/3 of all patients will not be
rendered seizure-free by anticonvulsive medication [2]. The two most common medically refractory
epilepsy syndromes include temporal lobe epilepsy (TLE) with hippocampal sclerosis as its pathological
hallmark [3] and extra-temporal lobe epilepsy arising developmental malformations, particularly focal
cortical dysplasia (FCD) [4]. Surgical resection of an MRI-identifiable lesion is the first-line treatment
option for drug-refractory epilepsy [5] with success rates that may reach up to 80% [6]. Notably,
complete resection of the lesion is the most reliable predictor for postoperative seizure freedom [7].

Despite its efficacy, resective surgery cannot be offered to all patients with refractory seizures.
Specifically, bilateral or multifocal seizures, proximity to or overlap of the ictal zone with
eloquent cortical areas, and lack of distinctive imaging abnormalities represent potential surgical
contraindications [8]. Moreover, depending on the resected brain area, patients may develop a new
neurologic or cognitive deficit postoperatively or worsen an existing one [9]. From a network level
perspective, evidence from preclinical models and human studies indicate that specific cortical and
subcortical networks are key elements in the genesis and expression of seizures [10], supporting the
hypothesis that pathological substrates of refractory epilepsy may be less “focal” than traditionally
presumed [11].

Neuromodulation refers to the process of electrically or chemically altering signal transmission
of the central nervous system through implantable devices to excite, inhibit or modify neuronal
activity, to elicit therapeutic effects [12]. It is a rapidly evolving field on the boundary between
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biomedical and engineering research across a wide range of scientific disciplines [12]. In medicine,
neuromodulatory therapy aims at improving quality of life by means of neurostimulators or implantable
drug-delivery systems [13]. Implantable devices are currently available for a variety of conditions,
including movement disorders, chronic pain or psychiatric disorders. Neuromodulatory therapy
targeting “seizures” instead of “epilepsy” [14] has recently emerged as a valuable treatment option for
non-operable patients, including invasive procedures such as deep brain stimulation (DBS), responsive
neurostimulation (RNS), peripheral approaches such as vagus nerve stimulation (VNS) or non-invasive,
transcranial approaches. The purpose of this review is to provide in-depth information on current
concepts and evidence on drug-refractory epilepsy as a network disorder. We reviewed the current
state of evidence gained from advanced neuroimaging studies, with a specific focus on their potential
contribution to neuromodulatory therapy.

2. Contributions of Advanced Neuroimaging to Presurgical Evaluation of
Drug-Resistant Epilepsy

2.1. Network Modelling Using Structural and Functional MRI

From a basic perspective, a network is formed by a given number of items that exhibit pairwise
associations [15]. The brain as a whole is a hierarchically organized network [16], partitioned into
densely connected units spanning from local circuits to broad functional areas [17]. Continuing
methodological advancements in neuroimaging now allow for non-invasive investigations of both
structural and functional networks in vivo. Information on structural networks [16] is derived from
diffusion MRI tractography or covariance of morphological markers, e.g., gray matter volume or cortical
thickness [18], representing physical connections. Diffusion imaging provides voxel-wise information
on magnitude and directionality of water diffusion and is utilized to assess white matter connective
circuitry [19]. Moreover, the use of tractography algorithms allows for a reconstruction of fiber
pathways along plausible diffusion trajectories, which have been cross-validated against anatomical
tract-tracing studies [20]. Structural covariance analysis may be utilized to assess changes of anatomical
connectivity between cortical areas [21]. This methodology infers networks from morphological
markers, i.e., gray matter volume or cortical thickness. A probable interconnection between given
regions is derived from high inter-correlation of morphological markers [22]. Covariance patterns
may reflect trophic and/or signaling interactions between brain areas and exhibit close overlap with
networks derived from diffusion imaging or resting-state functional MRI [23].

Functional connectivity is usually estimated from statistical relationships of neurophysiological
signals between brain regions [24], with time-series extracted from sources such as task-based or
resting-state functional MRI [25]. These sequences are nowadays included in presurgical evaluation
protocols, mainly to localize eloquent areas, e.g., hemispherical language dominance. Resting-state
functional MRI offers several advantages over task-based paradigms, e.g., high reproducibility among
subjects [26]. However, compared to task-based measures, its yield to infer function has not yet been
solidly established, hindering introduction into routine clinical use.

2.2. Studying Networks with Graph Theory

Graph theory offers a powerful framework for the mathematical representation and analysis of
complex systems and allows for the quantification of organizational patterns of brain networks [15].
In graph-theory terms, a network contains a collection of nodes (brain regions) connected by edges
(structural or functional connections; Figure 1) [15]. A multitude of criteria can be employed to define
nodes, from single voxels to entire brain regions or functional parcellations [27]. By assessing all
pairwise connections between a given numbers of nodes, a connectivity matrix can be inferred [28].
Based on shared similarities, groups of nodes can be arranged in clusters (modules), demonstrating
dense internal connectivity, but relative segregation from the rest of the network. By analyzing
metrics of centrality, nodes with high degrees of connectivity and prominent roles can be identified,
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which are thus referred to as hubs. Measures of local efficiency, such as clustering coefficient, reflect
connectional density within the local environment, whereas path length describes the average number
of connections between nodal pairs assessing efficiency of information flow at a global scale [29].
These metrics of whole-brain topology have shown small world characteristics of brain networks in
healthy individuals exhibiting short paths and high clustering [30], a configuration allowing for an
efficient information flow.
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Figure 1. Construction of structural and functional networks. Upper panels show parcellated
surfaces (color-coded by lobes) mapped onto the diffusion and resting-state fMRI. In the middle
panels, each parcel represents a seed and its connectivity is estimated to all other parcels. Diffusion
tensor-probabilistic tractography and functional MRI time series correlations between the superior
frontal (green) and the post-central (blue) parcels are shown. Lower panels display connection
probabilities (represented by partial correlation coefficients between all pairs of parcels) used to
generate structural and functional association matrices. Matrices are the substrate for graph-theoretic
analyses of network properties. In the graph, nodes represent parcels (white dots) and edges (lines
linking nodes) pairwise connections color-coded according to connectivity strength. Abbrev: LH/RH:
left/right hemisphere.



Brain Sci. 2020, 10, 700 4 of 14

Another relevant parameter, particularly in epilepsy, stems from the relative importance of a
node within a specific network, i.e., centrality [17]. Measures of centrality are useful for charting
the global topography of brain networks. Specifically, networks exhibiting higher degrees of
interconnections among highly central nodes than expected by chance are considered to represent a
rich-club organization [31]. Indeed, rich clubs have been identified in structural connectivity data
including the human connectome [32] and reduced rich club connectivity has recently been linked to
long-term injury effects of generalized seizures [33]. Rich club connectivity is also altered in epilepsies
related to cortical malformations [34,35].

Controllability may be another metric of interest in epilepsy, as it measures the ability to exert
control, i.e., induce transition from an initial state to a desired final state. Sparse inhomogeneous
networks, which are often found in real-world complex systems, have proven to be most difficult to
control, whereas dense and homogeneous networks can be controlled using a few driver nodes [36].

Finally, it should be noted that, irrespective of the investigated modality, a functional core of any
human brain network is likely formed by associations between high-centrality nodes of an underlying
structural network, thus displaying high overlap between these conceptually separate domains [37].

2.3. Epilepsy as a Network Disorder

Clinical manifestations of seizures likely involve similar large-scale brain networks active during
the inter-ictal state [38]. A network perspective [39] is therefore of particular relevance, since structures
within epileptogenic networks are thought to be involved in both generation and expression of seizures
as well as maintenance of the disorder [40]. In this context, non-invasive neuroimaging techniques
offer unique opportunities to study networks at multiple levels [25].

Temporal lobe epilepsy (TLE) is the most commonly studied syndrome from a network-level
perspective. Recent studies have revealed widespread structural [41] and functional [21] alterations
affecting both local circuits and networks at large. Moreover, growing evidence supports the concept
that large-scale connectional reconfiguration occurs in epilepsy secondary to cortical malformations [35].
Taken together, these findings prompted a major conceptual shift in the conceptualization of focal
epilepsy, emphasizing the importance of a network approach to comprehensively capture the complexity
of the disorder. In TLE, graph theoretical analyses have found increased path length, sometimes
associated with increased clustering [42]. These changes likely represent pathologically increased
local and reduced global network efficiency [11], with similar findings stemming from analyses of
connectivity in extra-temporal lobe epilepsy [34].

While a structural brain lesion is considered the core of the epileptogenic focus [43], extra-lesional
structural alterations may negatively impact seizure outcome after surgery [44]. Furthermore, distant
alterations in morphology [45] and structural connectivity [11] could impair the organization of
functional networks [10], promoting both insufficient seizure control [46] and unfavorable cognitive
outcomes [47]. It has been demonstrated that TLE patients with favorable seizure outcomes mainly
exhibit alterations limited to the resected or disconnected mesial temporal lobe [48]. While the
contribution of altered connectivity to seizure outcomes is increasingly recognized [46], single-patient
level predictive biomarkers are not yet readily available [44].

Patients who require neuromodulatory treatment for unfavorable seizure control likely exhibit a
distributed seizure network with rapid propagation; seizures may be bilateral or even multifocal [49].
Longer epilepsy duration is known to be associated with less favorable surgical outcome, suggesting
a progressive disease course with worsening of the structural damage and likely remodeling of
seizure-generating networks [50]. Indeed, recent neuroimaging studies found reduced network
controllability in drug-refractory TLE [51], which is expected to be even more marked in multifocal
epilepsy syndromes. Clearly, understanding the complex interactions between an ictogenic lesion and
large-scale brain networks is critical for clinical decision-making [52] and should be investigated in
future prospective analyses.
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3. Imaging-Informed Neuromodulation of Drug-Resistant Epilepsy

3.1. Deep Brain Stimulation

The therapeutic principle of DBS is the direct modulation of pathological activity within certain
brain networks [53], thus making this approach particularly well suited for network manipulation in
drug-refractory epilepsy. DBS involves delivery of predetermined electrical stimulation (open-loop) to
given brain structures via stereotactically implanted depth electrodes connected to a pulse generator [8].
While the exact physiological mechanisms still remain poorly understood, DBS is generally considered
to exert either inhibitory or excitatory effects, or a combination of both, on target neurons [54,55].
High-frequency stimulation may activate GABA-ergic inhibitory neurons and desynchronize neuronal
activity. Low-frequency stimulation potentially reduces overall excitability by induction of long-term
depression [56]. More recently, it has been proposed that DBS could disrupt abnormal flow of
information in pathological conditions, which seems particularly compelling in the context of
epilepsy [54].

Various structures have been targeted by DBS for the treatment of refractory epilepsy in the recent
past; however, robust evidence from randomized controlled trials currently only exists for two targets,
i.e., the anterior nucleus of the thalamus (ANT) [57] and hippocampus (HC), whereas results for other
brain areas such as the cerebellum remain inconclusive [58].

Evidence from the landmark Stimulation of the Anterior Nucleus of the Thalamus in Epilepsy
(SANTE) trial [57] revealed a significant decrease in seizure frequency both short and long term and an
improved overall quality of life [59], producing Class I-level evidence for the approval of ANT-DBS as
a treatment option for refractory epilepsy in the US, Canada, Europe and Australia. Subgroup analyses
further demonstrated variable treatment efficacy, with temporal lobe seizures being most responsive,
with up to 76% reduction of total seizure frequency [59]. Additionally, there is growing evidence
that ANT-DBS may lead to a significant improvement in executive functioning, memory, attention
and mood [60]. However, the exact underlying mechanisms of the observed cognitive improvements
remain poorly understood and warrant further study (Table 1).

Selection of stimulation parameters form a critical part of any successful DBS application. Besides
the SANTE trial, only small cohort studies have reported data on stimulation settings. Usually, starting
frequencies were set between 90 and 185 Hz, with a pulse width between 60 and 150 µs and amplitudes
between 1 and 10 V; most studies utilized alternate cycling. Importantly, most studies described
adjustments made at the “physicians discretion” [61]. Clearly, further trials with larger cohorts are
required to formulate guidelines on optimal programming.

As in other applications of DBS, both target selection and precision of electrode placement are
crucial steps for treatment success. Ongoing development and refining of MRI acquisition protocols
now allow for an accurate ANT visualization [62], which was unavailable at the time of SANTE,
thus raising questions on exact electrode positioning [63], a procedure that may be particularly
challenging in TLE, as ANT together with medial dorsal, and medial pulvinar nuclei may undergo
atrophy [64] with a subsequent decrease in thalamo-hippocampal connectivity [65]. Despite rather
extensive clinical use, DBS mechanisms of action remain poorly characterized, particularly in the
context of drug-refractory epilepsy. It seems plausible that both disrupting or artificially driving
activity within given critical network hubs could re-establish functional integrity of said circuit, leading
to an observable clinical benefit [53].

Yu and co-workers recently demonstrated desynchronization of large-scale epileptic networks
following high-frequency ANT stimulation. Importantly, stimulation was found to suppress
pathological HC seizure activity and disrupted connectivity across various cortical areas, leading to
an overall reduction in seizure frequency [66]. Previous reports have proposed modulating effects
of DBS on hippocampal activity, leading to a reduction in network excitability and suppression of
seizure activity [67]. Indeed, modulation of functional connectivity within cortical networks has
been demonstrated in DBS for movement disorders as well [68]. Therefore, individual connectome
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analysis could be particularly useful for neuroimaging-informed DBS planning in non-resective,
drug-refractory epilepsy.

High-quality connectome datasets have already been harnessed to identify connectivity patterns
associated with favorable treatment response in movement disorders [69]. More recently, resting-state
fMRI-derived functional connectivity patterns in patients responding to ANT-DBS were found to
exhibit strong correlations with the default mode network and anticorrelations with the hippocampus
compared to non-responders, potentially due to a DBS-induced increase in seizure propagation
thresholds within larger-scale networks [70]. Furthermore, TLE patients can be successfully lateralized
according to individual thalamocortical connectivity profiles, pointing towards an importance of
thalamocortical networks for seizure spread [71]. More recently, building on results of SANTE, Schaper
and co-workers demonstrated improved seizure control by targeting the ANT-mamillothalamic
junction, thus effectively modulating a white matter tract [72]. Target identification and trajectory
planning may benefit from tractography-informed “cable modeling” [73], i.e., subtracting ictal from
inter-ictal diffusion-tensor imaging to allow for an individualized seizure network modulation [74].
Apart from its potential to activate larger neuron populations through axonal stimulation, white matter
tract stimulation generally requires lower currents, potentially reducing side effects [75].

Elucidation of specific hub-to-hub and network interactions harbors potential to significantly
improve therapeutic response [76]. Interestingly, a strong relationship between the absence of a
structural brain lesion on MRI and DBS treatment response has been observed for both ANT- and
HC-DBS [8], highlighting the importance of a network-centered target selection. Reflecting this ongoing
trend, comprehensive imaging processing pipelines are now available to facilitate connectome analysis
for DBS [77].

Finally, it should be noted that, despite its success and growing clinical use, DBS may not be
universally offered to all patients with refractory seizures who are ineligible for resective surgery.
Although evidence on ideal candidate selection is still very limited, contraindications to ANT-DBS
therapy in epilepsy generally include progressive disease etiologies, coexisting psychiatric disorders,
frequent psychogenic seizures, MRI and surgical contraindications as well as poor patient compliance.
It is thus critical to conduct interdisciplinary case discussions to weigh the expected benefits against
potential risks of ANT-DBS treatment in order to define realistic therapy goals [61].

3.2. Responsive Neurostimulation

Responsive neurostimulation (RNS) constitutes another form of implantable electrical current
delivery. Contrasting the open-loop concept of DBS, RNS (Neuropace Inc., Mountain View, CA, USA)
is event-triggered and delivers stimulation after detection of predefined seizure biomarkers based
on electrocorticography (closed-loop) [78]. The device continuously monitors EEG data and uses a
variety of features, e.g., line length, band-pass filters and area under the curve to detect epileptiform
activity. Both depth electrodes and cortical strips are utilized to deliver stimulation to their respective
target following recognition of a triggering event. In a 2011 randomized controlled trial, a significant
frequency reduction of disabling partial seizures as well as an improved quality of life was observed
in patients with drug-refractory partial seizures with a maximum of 2 independent epileptogenic
foci [79]. Moreover, favorable long-term outcomes were equally observed at follow-ups [49]. Notably,
almost half of the study cohort consisted of patients with mesiotemporal seizure onsets. Given these
encouraging results, the US Food and Drug Administration recently approved the RNS system for
clinical use in refractory partial onset seizures [80]. Its tremendous initial success and non-destructive
nature make RNS particularly well suited for seizures within eloquent areas [9]. Apart from its obvious
role as an alternative treatment option in non-resective epilepsy, RNS offers the added benefit of
providing long-term, ambulatory EEG recordings for up to 8 years, after which the stimulator battery
needs to be replaced. Recently, Hirsch and co-workers harnessed this data source to find the leading
temporal lobe in patients with bilateral TLE, which resulted in a successful resection in 17 patients
(Table 1). Most remained seizure-free after surgery without the need for RNS, whereas a subgroup
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was seizure-free with continuing use of it [81]. While EEG data obtained from the RNS system could
provide additional information on TLE seizure patterns which might have been missed during routine
video-EEG monitoring, it seems far better to push the limits of imaging methods to lateralize the
focus instead of using an invasive procedure. Some evidence points towards improved cognitive
functioning following RNS therapy, such as verbal memory with neocortical seizures and improved
overall memory performance in patients with TLE [82]. Additionally, results from a recently published
long-term observational study confirmed sustained reduction in seizure frequencies and improved
quality of life [83].

Despite its success, several challenges remain for routine RNS utilization, which need to be
addressed in future studies. Adequate target localization and definition of the stimulation zone is
crucial for successful RNS therapy. Many centers use bilateral depth electrodes for these purpose,
an invasive and risky procedure which offers limited sampling [84]. Moreover, observational studies
reported RNS as being most effective in patients with MRI-visible lesions mostly in eloquent areas [9],
while cortical surfaces which can be stimulated are far smaller than any resection, potentially leading to
reduced effectiveness. Importantly, it is currently unknown whether stimulation needs to be delivered
directly at the seizure focus, or to relevant propagation pathways or networks [9]. Consequently, several
groups are now attempting to deliver stimulation directly to a critical node within the seizure-generating
network [50]. Naturally, RNS would benefit greatly from an extensive “sensor network” to continuously
monitor and modulate multiple nodes and hubs to fully understand the seizure dynamics. The exact
mode of action for RNS remains yet to be ascertained and is most likely multifactorial. GABA-mediated
hyperpolarization or neuronal depolarization blockade by accumulation of extracellular potassium
ions might account for stimulation effects on seizure generation and propagation [85]. Additionally,
an observed decrease in seizure frequency over time suggests that stimulation might alter gene
expression patterns or modulate brain network architecture and connectivity, an appealing hypothesis
that needs to be tested [86].

3.3. Vagus Nerve Stimulation

Vagus nerve stimulation (VNS) differs in many ways to the two highly invasive methods outlined
above. First and foremost, VNS is targeted towards the peripheral part of a cranial nerve, thus carrying
fewer risks than any other treatment involving a craniotomy. With >100.000 implanted devices, VNS has
emerged as an effective, safe and well-tolerated intervention for certain patients with intractable
seizures, particularly children with partial or generalized epilepsy [87]. However, inability to predict
individual response and variability in seizure control rates could potentially expose candidates to
aesthetic and surgical risks with an uncertain success rate. Therefore, imaging-derived biomarkers are
needed to identify suitable candidates for VNS treatment.

Significant progress has been made in recent years in the understanding of the neurobiology
underlying VNS response. While initial attempts mostly relied on protein detection and enzyme
tracing methods, multimodal neuroimaging now allows for an increasingly detailed characterization
of the “vagus afferent network” (VAN), leading to the identification of critical brainstem nuclei and
circuitry [88]. Given its peripheral nature, VNS is particularly well suited to study the impact of
neurostimulation on brain networks, as high-field MRI can be safely performed after implantation.

By combining connectomic profiling with machine learning, Mithani and co-workers were able to
establish predictive factors for VNS treatment response. The authors harnessed both functional and
structural connectivity data in combination with support-vector-based machine to accurately predict
treatment response (Table 1). Efficacy of VNS was found to be associated with preserved white matter
microstructure in several left-lateralized tracts of the VAN, which more closely resemble those of
healthy subjects. Moreover, functional connectivity analysis revealed a left insular/temporal network
associated with favorable treatment response [89]. Notably, clinical parameters alone were found to be
insufficient in predicting treatment response.



Brain Sci. 2020, 10, 700 8 of 14

Enhanced connectivity between the thalamus, anterior cingulate and insular cortices has been
associated with better response to VNS [90]. Furthermore, a shorter duration of epilepsy seems
to correlate with treatment response, which could indicate that the seizure network is more easily
modifiable close to disease onset. Clearly, neuroimaging, and in particular, connectomics, have the
potential to further improve our understanding of the longitudinal structural circuitry changes induced
by VNS, thus improving patient selection and candidate counseling (Table 1).

Table 1. Landmark papers in neuromodulatory treatment for refractory epilepsy.

Landmark Publications in Neuromodulatory Treatment for
Refractory Epilepsy Key Findings

Deep Brain Stimulation

Fisher et al. [57] SANTE trial, Epilepsia 2010
ANT-DBS is effectice in reducing seizure
frequencies in drug-refractory patients without the
option of resective surgery

Salanova et al. [59] Epilepsia 2015
Up to 76% total decrease in seizure frequency has
been demonstrated in long-term follow-up of
SANTE patients

Tröster et al. [60] Seizure 2017
ANT-DBS and associated reduction in seizure
frequency improves executive functioning,
memory, attention and mood

Yu et al. [66] Brain 2018
ANT-DBS desynchronization of seizure networks is
associated with reduction of seizure frequency,
supresses pathological HC activity

Middlebrooks et al. [70] Neurosurgical Focus 2018 Functional imaging-derived connectivity profiles
predict treatment response to ANT-DBS

Schaper et al. [72] Neurosurgery 2020
Delivering DBS to the mamillothalamic tract
junction instead of the ANT surpresses seizure
activity, potential target site

Responsive Neurostimulation

Morrell et al. [79] RNS trial, Neurology 2011
Decrease in disabling partial seizures, improved
quality of life in drug-refractory patients with ≤ 2
independent epileptogenic foci

Bergey et al. [49] Neurology 2015 Long-term efficacy and safety in RNS trial patients

Hirsch et al. [81] Epilepsia 2020
Long-term ambulatory EEG-sampling obtained
from RNS leads provides additional information to
lateralize seizures

Loring et al. [82] Epilepsia 2015 Improved cognitive functioning observed in several
domains, i.e., verbal memory; overall memory

Nair et al. [83] Neurology 2019
Long-term improvement in quality of life and
sustained reduction in seizure frequency, 9-year
follow-up

Vagus Nerve Stimulation

Morris et al. [87] AAN guidelines/Neurology 2013
Effective and safe in patients with intractable
partial or generalized seizures, ≥ 50% sustained
seizure frequency reduction

Hachem et al. [88] Neurosurgical Focus 2018 Identification of the vagus-afferent network and
associated brain stem nuclei

Mithani et al. [89] Annals of Neurology 2018
Connectivity profiles of insular and temporal
networks and preserved white matter
microstructure predict treatment response to VNS

Ibrahim et al. [90] Neuroimage Clinical 2017
Enhanced connectivity between thalamus, anterior
cingulate, and insular cortices is associated with
favorable VNS response

SANTE—Stimulation of the Anterior Nucleus of the Thalamus in Epilepsy; ANT—Anterior Nucleus of
Thalamus; DBS—Deep Brain Stimulation; HC—hippocampus; EEG—electroencephalography; RNS—Responsive
Neurostimulation; VNS—Vagus Nerve Stimulation; AAN—American Academy of Neurology.
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4. Conclusions

Neurostimulation has emerged as an efficacious, safe and well-tolerated treatment modality,
thus greatly enhancing the neurosurgeon’s armamentarium, especially for patients where curative
surgery is not possible or might have failed. While significant advances have been made
in neurostimulation, no single modality has yet reached the effectiveness of resective surgery.
Notwithstanding its proven clinical effectiveness, neurostimulation still faces significant challenges.
Most importantly, candidate selection for ANT-DBS and RNS has not been standardized as of yet
and largely depends on institutional procedures; indeed, robust guidelines currently only exist for
VNS. Future research should therefore be directed at advancing our understanding of epileptogenic
networks, facilitating development of robust biomarkers to allow for defined selection criteria and
formulation of guidelines. Network-informed neurostimulation and individualized connectomics
nevertheless harbor the potential to greatly improve the seizure outcome in difficult-to-treat epilepsies.
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