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Abstract: Huntington’s disease (HD) is a progressive neurological disease that is inherited in an
autosomal fashion. The cause of disease pathology is an expansion of cytosine-adenine-guanine (CAG)
repeats within the huntingtin gene (HTT) on chromosome 4 (4p16.3), which codes the huntingtin
protein (mHTT). The common symptoms of HD include motor and cognitive impairment of psychiatric
functions. Patients exhibit a representative phenotype of involuntary movement (chorea) of limbs,
impaired cognition, and severe psychiatric disturbances (mood swings, depression, and personality
changes). A variety of symptomatic treatments (which target glutamate and dopamine pathways,
caspases, inhibition of aggregation, mitochondrial dysfunction, transcriptional dysregulation, and
fetal neural transplants, etc.) are available and some are in the pipeline. Advancement in novel
therapeutic approaches include targeting the mutant huntingtin (mHTT) protein and the HTT gene.
New gene editing techniques will reduce the CAG repeats. More appropriate and readily tractable
treatment goals, coupled with advances in analytical tools will help to assess the clinical outcomes of
HD treatments. This will not only improve the quality of life and life span of HD patients, but it will
also provide a beneficial role in other inherited and neurological disorders. In this review, we aim to
discuss current therapeutic research approaches and their possible uses for HD.
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1. Introduction

Huntington’s disease (HD) is genetically inherited in an autosomal dominant fashion. It is
a fatal neurodegenerative disease, caused by an abnormal triplet repeat expansion of CAG
(cytosine-adenine-guanine) within the huntingtin (HTT) gene on chromosome 4p16.3, causing a
mutated huntingtin protein (mHTT) [1–5]. HD is predominantly characterized by adult-onset,
progressive motor dysfunction, cognitive impairment and psychiatric symptoms (depression, anxiety,
obsessive-compulsive disorder, and psychosis). Chorea, incoordination, and rigidity are common
motor symptoms due to neurotoxicity of mHTT, leading to brain atrophy of the striatum, thalamus,
cerebellum, brain stem and cortex [6–9]. Clinically, HD includes juvenile HD (onset less than 21 years,
and marked clinical symptoms), and late-onset HD (after the age of 60 years) [10–12]. Alcohol, drug,
and tobacco abuse were associated with earlier onset of HD, and hasten motor onset in women. These
abuses have more significant associations in females than in males [13,14]. Children with CAG repeats
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≥39, had significantly lower measures of head circumference, weight, and body mass index [15–17].
Disrupted sleep, tics, pain, itching, and psychosis are the common symptoms of juvenile HD [18].

Presently, there is no remedy for HD, and the disease progresses manifests with a presumed
continuation of 15–20 years after the appearance of the first symptom [12,19]. The identification of novel
biomarkers involves the development of new treatment strategies. The current therapy is palliative
and does not change the course of the disease. Tetrabenazine (TBZ; Xenazine™) was approved for the
remedy of chorea in HD by the U.S. food and drug administration (FDA). Additionally, the deuterated
version of TBZ, deutetrabenazine (AUSTEDO™), has an improved pharmacokinetic profile and was
recently approved by the FDA for the treatment of Huntington chorea. In the last review [20], we
discussed different promising agents in the treatment of HD, and their phases under clinical trial. Here
we describe updates related to these promising agents which will cure HD.

2. Pathogenesis of the HD

HD is a monogenic disease with prevalence of about 1 in 7,500 individuals in the general
population [21,22]. The normal allele has less than 27 CAG repeats and intermediate alleles have
27–35 repeats. CAG repeats of 36–39 will develop HD with less penetrance. Individuals who have
40 or more CAG repeats will develop HD with full penetrance. It is also reported that the higher
the CAG expansion, the earlier the onset and the greater the disease severity [12,23]. Kremer et al.
reported the largest expansion of 121 trinucleotides [24]. CAG codon encodes glutamine α-amino
acid (symbol Gln or Q). Glutamine (C5H10N2O3) is synthesized from glutamate and ammonia by the
enzyme glutamine synthetase. It is mainly produced in muscle, the lungs, and the brain and acts as a
precursor to the neurotransmitter glutamate [25]. CAG has glutamine amino acids within the HTT
gene and it is not toxic in itself. However, the polyglutamine expansion involves the formation of
aggregate and ultimately becomes toxic. It is the principal factor for the manifestation of HD because
aggregates are never a remarkable feature in the brain of normal subjects [26,27]. Aggregate formations
are accountable for secondary problems, like inflammatory responses (altered cytokine and nitric oxide
level), mitochondrial dysfunction (imbalanced level of free radicals and oxidative stress markers),
nuclear cleavage, apoptosis, excitotoxicity, transcriptional altered regulation, and lastly, are responsible
for the altered neuropathological feature (cause of cell death/damage) (Figure 1). Approximately 70%
of the variation of the disease is due to expanded CAG repeats, while 13% of the variation is due to
polymorphisms in the GRIK2 gene [28]. These depict the importance of secondary factors that affect
disease onset, its severity, and possible output.Brain Sci. 2019, 9, x FOR PEER REVIEW 3 of 22 

  

Figure 1. Mechanism of Toxicity of Huntingtin (HTT) gene. NO (Nitric Oxide), CAG 
(cytosine-adenine-guanine). 
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therapeutic status and their potential role in treatment. These drugs are summarized in Table 1 and 
Figure 2. 

3.1. Drugs against Excitotoxicity 

3.1.1. Riluzole and Memantine Drug 

Riluzole is a glutamate inhibitor that reduces abnormal movement in amyotrophic lateral 
sclerosis (ALS) patients [29,30]. In a double-blinded trial, riluzole did not decrease symptoms of HD, 
nor was it neuroprotective [31]. 

Memantine is an antagonist of extrasynaptic N-methyl-D-aspartate (NMDA) receptors and is 
used for the treatment of moderate-severe dementia in Alzheimer's disease (AD). It diminishes 
striatal cell death, hinders disease progression and improves cognitive function related to HD 
[32,33]. The combination of memantine and risperidone prevented the expected progression of 
motor symptoms, cognitive decline, and psychosis over a 6-month study period [34]. However, 
memantine dosing may be critical, as rodents on low-dose memantine had decreased pathology, 
while a high-dose of memantine worsened rodent outcomes and possibly promoted cell death 
[35–37]. 

3.1.2. Tetrabenazine (TBZ) and Deutetrabenazine  

TBZ inhibits the dopamine pathway by inhibiting vesicular monoamine transporter (VMAT) 
type 2 and consequently decreases available dopamine in the synapse and its interaction with 
postsynaptic dopamine receptors [38–40]. Deutetrabenazine contains a deuterium atom and is a 
novel inhibitor of VMAT2. In indirect treatment comparison studies, deutetrabenazine was found to 
have a favorable tolerability profile compared to tetrabenazine [41]. In mouse models, TBZ 
ameliorated chorea and other motor symptoms, and reduced striatal neuronal cell loss [38]. 

Figure 1. Mechanism of Toxicity of Huntingtin (HTT) gene. NO (Nitric Oxide), CAG
(cytosine-adenine-guanine).
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3. Therapeutic Update

Currently, many drugs are under clinical trial. In the following subsection, we discuss their
therapeutic status and their potential role in treatment. These drugs are summarized in Table 1 and
Figure 2.

3.1. Drugs against Excitotoxicity

3.1.1. Riluzole and Memantine Drug

Riluzole is a glutamate inhibitor that reduces abnormal movement in amyotrophic lateral sclerosis
(ALS) patients [29,30]. In a double-blinded trial, riluzole did not decrease symptoms of HD, nor was it
neuroprotective [31].

Memantine is an antagonist of extrasynaptic N-methyl-D-aspartate (NMDA) receptors and is
used for the treatment of moderate-severe dementia in Alzheimer’s disease (AD). It diminishes striatal
cell death, hinders disease progression and improves cognitive function related to HD [32,33]. The
combination of memantine and risperidone prevented the expected progression of motor symptoms,
cognitive decline, and psychosis over a 6-month study period [34]. However, memantine dosing
may be critical, as rodents on low-dose memantine had decreased pathology, while a high-dose of
memantine worsened rodent outcomes and possibly promoted cell death [35–37].

3.1.2. Tetrabenazine (TBZ) and Deutetrabenazine

TBZ inhibits the dopamine pathway by inhibiting vesicular monoamine transporter (VMAT) type
2 and consequently decreases available dopamine in the synapse and its interaction with postsynaptic
dopamine receptors [38–40]. Deutetrabenazine contains a deuterium atom and is a novel inhibitor of
VMAT2. In indirect treatment comparison studies, deutetrabenazine was found to have a favorable
tolerability profile compared to tetrabenazine [41]. In mouse models, TBZ ameliorated chorea and
other motor symptoms, and reduced striatal neuronal cell loss [38].

3.2. Targeting Caspase Activities and Huntingtin Proteolysis

Minocycline

Minocycline is a tetracycline analog and can cross the blood–brain barrier (BBB) and inhibits the
expression of caspase-3 and caspase-1 [42,43]. Treatment with minocycline proved to be neuroprotective,
and to improve the disease phenotype [30,42,44]. A human trial study observed motor (unified HD
rating scale (UHDRS)), and cognitive (mini-mental state examination (MMSE)) improvement in 14 HD
patients who took 100 mg of minocycline for 6 months [43]. This study was continued for another 18
months, and it was found that MMSE, TMS, total functional capacity (TFC) and independence scale
were all stabilized after treatment, reducing the expected decline in these measures. There was also a
decrease in psychiatric symptoms at 24 months, which was not apparent after 6 months of treatment [44].
In a pilot study, Thomas et al. found improvement in MMSE, UHDRS, and abnormal involuntary
movements scale (AIMS), in 30 patients with HD who were given minocycline for 6 months [45].

3.3. Targeting HTT Aggregation and Clearance

3.3.1. Congo Red and Trehalose

Congo red dye binds preferably to β-sheets with amyloid fibrils. When injected into HD mice,
it preserved normal protein synthesis and degradation, and improved motor functions. This dye
promotes clearance of expanded polyQ repeats and inhibits polyglutamine oligomer formation through
the disruption of preformed oligomers. Congo red dye also prevented ATP depletion and caspase
activation [46–48].
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Trehalose disaccharide inhibited the formation of nuclear inclusions, improved altered motor
function and was associated with a high rate of survival in R6/2 mice without causing harmful side
effects [49–51] (Table 1 and Figure 2).

3.3.2. Compound C2–8

Compound C2–8 inhibits polyglutamine aggregates in brain slices and cell cultures. It has
improved motor function, decreased the amount of neuronal atrophy, and decreased the size of the
mHTT aggregates in R6/2 mice [52,53]. There is no ongoing human trial using this compound currently
listed on clinicaltrials.gov.

3.3.3. Rapamycin

mTOR is a protein kinase that phosphorylates many proteins and plays a key role in various
cellular functions (like autophagy and transcription). mTOR interacts with mHTT and localizes to these
polyglutamine aggregates, and thus sequestration of mTOR reduces the activity of mTOR, resulting in
a decrease in autophagy and a decrease in the clearance of mHTT. mTOR phosphorylates S6K1 (a key
regulator of cell volume), therefore mHTT-related impairment of mTOR may account for the brain
atrophy in HD. Rapamycin (which inhibits mTOR and consequently induces autophagy) decreased
mHTT aggregates and improved neuronal survival in the drosophila HD model. Rapamycin also
improved motor performance and decreased striatal neuropathology in mouse models of HD [54–56].

Table 1. Recent status of Huntington’s disease (HD) drug therapy.

Drug/Reagent Primary Target (Mechanism of Action) Status and Principal Result Ref.

(1) Drugs against excitotoxicity

Riluzole Glutamate release inhibitor Does not show efficacy in human trails [31]

Memantine N-methyl-D-aspartate (NMDA)
receptor inhibitor Demonstrated efficacy in human trial [32,33]

Tetrabenazine (TBZ)
Dopamine pathway

(Vesicular monoamine transporter
2 inhibitor)

Approved by food and drug
administration (FDA) for treatment of

chorea in HD
[38–40]

(2) Targeting Caspase and huntingtin (HTT) proteolysis

Minocycline Caspase-dependent and independent
neurodegenerative pathway

Inhibits caspase-1 and -3 mRNA
upregulation, and decreases inducible

nitric oxide synthetase
activity

[42,44,45]

(3) Targeting HTT aggregation and clearance

Congo red and Trehalose Aggregation Showed efficacy in a rodent model [46,49]

Compound C2–8 Aggregation Showed efficacy in a rodent model [53]

Rapamycin
Aggregation

mammalian target of rapamycin
(mTOR) inhibitor

Showed efficacy in a rodent model [54,55]

(4) Targeting mitochondrial dysfunction

Creatine Mitochondrial dysfunction Attained futility in human trial [57]

CoQ10 Mitochondrial dysfunction Attained futility in human trial [58]

Eicosapentaenoic acid
(EPA) Mitochondria dysfunction A mixed scenario of positive and

negative trial [59]

Cystamine and
mitochondrial

permeability transition
pore blockers

Mitochondrial dysfunction Showed efficacy in a rodent model [60]

Meclizine drug Mitochondrial dysfunction Showed efficacy in the fly model [61]

clinicaltrials.gov
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Table 1. Cont.

Drug/Reagent Primary Target (Mechanism of Action) Status and Principal Result Ref.

(5) Targeting transcriptional dysregulation

Sodium phenylbutyrate Transcriptional deregulation
histone deacetylase inhibitor Showed efficacy in a rodent model [62]

HDACi4b (a pimelic
diphenylamide HDAC

inhibitor)

Transcriptional deregulation
histone deacetylase inhibitor Showed efficacy in a rodent model [63]

Suberoylanilide
hydroxamic acid

Transcriptional deregulation
histone deacetylase inhibitor Showed efficacy in a rodent model [64]

Mithramycin and
chromomycin

Transcriptional deregulation
G-C-rich DNA binding antibiotic Showed efficacy in a rodent model [65]

(6) Targetting mutant huntingtin (mHTT)

RNA interference and
antisense oligonucleotide

(ASO)
Blocks transcription of mHTT Showed efficacy in a rodent model [6]

Artificial peptides and
intrabodies Targeting proline-rich domain of HTT Showed efficacy in a rodent model [66]

(7) Therapies targeting nucleic acid

Zinc finger protein Reduced mutant protein expression Showed efficacy in a rodent model [67]

CRISPR-Cas9 Excision of CAG repeat and, reduction
of mutant HTT Showed efficacy in a rodent model [68,69]

ASO approach
(IONIS-HTTRX, Peptide

conjugated ASOs)
Reduction in HTT mRNA and protein Showed efficacy in a rodent model [70,71]

RNAi approach (siRNA,
shRNA, and miRNA)

Improves motor and neuropathological
abnormalities, silencing of HTT Showed efficacy in a rodent model [6,72]

Novel Viral Vectors
(AAV1, AAV5, AAV9,
AAV-PHP.B, CREATE)

Widespread transduction of cells Showed efficacy in primate and rodent
models [73,74]

(8) Other therapeutics

Ubiquilin Reduces mHTT aggregation Showed efficacy in a rodent model [75,76]

miRNA Silence HTT Testing in rodent and nonhuman
primates [6,72]

Chaperonins Decrease mHTT aggregation Showed efficacy in a rodent model [77,78]

AFQ056 The antagonist for glutamate receptor 5 Showed no improvement in chorea in a
clinical trial [79]

BN82451 Decreases glutamate release by blocking
Na+ channels Showed efficacy in a rodent model [80,81]

Antipsychotic drug Block or modulate dopamine receptors Under phase III trial -

Antiapoptotic drug Cleave mHTT Effective in mice model [82,83]

Diet Delay onset of disease Effective result but requires further
evaluation [84]



Brain Sci. 2020, 10, 43 6 of 20
Brain Sci. 2019, 9, x FOR PEER REVIEW 7 of 22 

 

Figure 2. Recent advancement in the therapeutics for Huntington’s disease. TBZ (Tetrabenazine); 
EPA (eicosapentaenoic acid); MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine); SAHA 
(suberoylanilide hydroxamic acid); HDACi4b (histone deacetylase inhibitors); RNAi (RNA 
interference); ASO (antisense oligonucleotide); ZFP (zinc finger protein); CRISPR-Cas9 (clustered 
regularly interspaced short palindromic repeats); miRNA (micro RNA); siRNA (small interfering 
RNA). 

3.4. Targeting Mitochondrial Dysfunction 

3.4.1. Creatine 

Creatine (with antioxidant properties) reduced serum levels of 8-hydroxy-2'-deoxyguanosine 
(8-OH-2'-dG) in HD patients [85,86] and is safe and tolerable at a dose of 15 g twice daily [87]. In a 
trial study (with HD patients), receiving a dose of 8 g/day of creatine was secure and well-tolerated 
but produced no marked change on the UHDRS scale [86]. A randomized double-blind study trial 
measuring TFC (up to 40 g daily) was terminated early due to futility criteria being reached. The use 
of creatine fails to delay functional decline in an early manifestation of HD [57]. In another 
controlled study, creatine (5 g/day; 1 year) treatment resulted in better muscle function capacity in 
patients with neuromuscular disease but did not show improvements in neuromuscular function 
and the cognitive status of stage I–III HD patients [88]. 

3.4.2. Coenzyme Q10 

Coenzyme Q10 cofactor is involved in ATP production in the electron transport chain (ETC) of 
mitochondria, and its supplementation in HD patients may improve mitochondrial function [89]. It 
was neuroprotective in R6/2 mice, delaying motor deficit, atrophy, and inclusion, and extending 
survival [90,91]. In a phase III randomized clinical trial, coenzyme Q10 was not effective and the trial 
was stopped as the futility criteria were reached (http://hdsa.org/wp-content/uploads/2015/01) [58]. 
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Figure 2. Recent advancement in the therapeutics for Huntington’s disease. TBZ (Tetrabenazine); EPA
(eicosapentaenoic acid); MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine); SAHA (suberoylanilide
hydroxamic acid); HDACi4b (histone deacetylase inhibitors); RNAi (RNA interference); ASO (antisense
oligonucleotide); ZFP (zinc finger protein); CRISPR-Cas9 (clustered regularly interspaced short
palindromic repeats); miRNA (micro RNA); siRNA (small interfering RNA).

3.4. Targeting Mitochondrial Dysfunction

3.4.1. Creatine

Creatine (with antioxidant properties) reduced serum levels of 8-hydroxy-2′-deoxyguanosine
(8-OH-2′-dG) in HD patients [85,86] and is safe and tolerable at a dose of 15 g twice daily [87]. In a
trial study (with HD patients), receiving a dose of 8 g/day of creatine was secure and well-tolerated
but produced no marked change on the UHDRS scale [86]. A randomized double-blind study trial
measuring TFC (up to 40 g daily) was terminated early due to futility criteria being reached. The use
of creatine fails to delay functional decline in an early manifestation of HD [57]. In another controlled
study, creatine (5 g/day; 1 year) treatment resulted in better muscle function capacity in patients with
neuromuscular disease but did not show improvements in neuromuscular function and the cognitive
status of stage I–III HD patients [88].

3.4.2. Coenzyme Q10

Coenzyme Q10 cofactor is involved in ATP production in the electron transport chain (ETC) of
mitochondria, and its supplementation in HD patients may improve mitochondrial function [89].
It was neuroprotective in R6/2 mice, delaying motor deficit, atrophy, and inclusion, and extending
survival [90,91]. In a phase III randomized clinical trial, coenzyme Q10 was not effective and the trial
was stopped as the futility criteria were reached (http://hdsa.org/wp-content/uploads/2015/01) [58].

3.4.3. Eicosapentaenoic Acid (EPA)

Ethyl-EPA is a derivative of the n-3 polyunsaturated fatty acid EPA, which binds to the peroxisome
proliferator-activated receptor of mitochondria [92]. Ethyl-EPA improves the neuronal function by

http://hdsa.org/wp-content/uploads/2015/01


Brain Sci. 2020, 10, 43 7 of 20

inhibiting caspase and reducing mitochondrial damage by reducing the activity of the c-Jun N-terminal
kinase (JNK) pathway [93,94]. Treatment with ethyl-EPA (2 g/day) showed a stable/improved motor
function. However, intent-to-treat analysis showed no significant change between ethyl-EPA and
placebo for total motor score 4 (TMS–4) subscale in HD patients (stage III) [95]. Patients with fewer
CAG repeats showed significant improvement in TMS-4.

In a phase III, double-blind randomized control trial, ethyl-EPA did not show improvement in
TMS, cognition or global impression over 6 months. After 6 months, all participants (both those in the
treatment and placebo group) were given ethyl-EPA. Those in the original treatment group showed a
better motor function (indicated by TMS scores). This suggests that ethyl-EPA needs a longer period
before improvement can be observed which might possibly reflect a disease modification [96]. In a
recent study, no significant improvement of the treatment group over placebo group was found in
measures of TMS or UHDRS scores [59].

3.4.4. Cystamine and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) Blockers

Both cystamine and MPTP increase the survival effects of HD cells and inhibit oxidative
damage [60].

3.4.5. Meclizine

Meclizine, an antihistamine drug, inhibits oxidative metabolism and apoptosis, and is
neuroprotective in drosophila model. Energy metabolism deficits and neuronal degeneration are
hallmarks of HD, so treatment with meclizine is a potential strategy, especially since it crosses the
BBB [20,61] (Table 1 and Figure 2). There is no human clinical trial for this drug listed in clinicaltrials.gov.

3.5. Targeting Transcriptional Dysregulation

3.5.1. Sodium Phenylbutyrate

Administration of sodium phenylbutyrate (an HDAC inhibitor) to N171-82Q symptomatic mice
showed less brain atrophy and extended survival rates. Further, it increased and decreased histone
acetylation and methylation, respectively, in the rodent brain. It also downregulated caspases involved
in apoptosis [62]. A dose-response study highlighted that sodium phenylbutyrate was safe, secure,
effective and well-tolerable in HD patients [97].

3.5.2. HDACi4b

HDACi4b (a pimelic diphenylamide HDAC inhibitor) improves motor impairment as well as
decreases neurodegeneration in mouse models of HD. Oral administration of HDACi4b to mice showed
improvement in these motor deficits. These mice also showed less striatal atrophy and brain-size
reduction. HDACi4b reversed hypoacetylation of the H3 histone subunit that occurs in the presence of
mHTT, and mRNA expression was returned to normal levels [63].

3.5.3. Suberoylanilide Hydroxamic Acid (SAHA)

Histone acetylation in the brain is increased by SAHA (by inhibiting HDAC) which improves
motor impairments in transgenic R6/2 mice. SAHA can be taken orally because it crosses the BBB,
however, this has not been tested in humans [64].

3.5.4. Mithramycin and Chromomycin

Treatments with mithramycin and chromomycin (anthracyclin derivatives) promote epigenetic
histone modifications in cultured R6/2 and N171-82Q transgenic cell lines, providing a basis for clinical
trials for HD [65,98,99].

clinicaltrials.gov
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3.6. Agents Targeting Mutant Huntingtin

3.6.1. RNA Interference (RNAi) and Antisense Oligonucleotide (ASO)

ASO and RNAi execute their knockdown function by allele and nonallele-selective
manners [100–102]. As an example, modified ASO (peptide nucleic acid i.e., PNA) enables the
selective recognition of the mutant allele and selective inhibition of mHTT expression in human
fibroblasts [103]. RNAi reduced neuropathology, improved motor behavior and extended viability in
HD [102,104,105].

3.6.2. Intrabodies and Artificial Peptides

In transgenic mouse models of HD like R6/2, N171-82Q, YAC128, and BACHD, treatment with
intrabody gene therapy improved body weight, motor function, cognitive, and neuropathological
manifestation [66,106].

3.7. Nucleic Acid-Targeting Therapies

3.7.1. Therapies Targeting DNA

Currently, zinc finger proteins (ZFPs) and CRISPR-Cas9 (clustered regularly interspaced short
palindromic repeats-CRISPR-associated system) are under investigation.

ZFPs

ZFPs are one of the most abundant protein groups and have various functions, including regulation
of DNA, RNA, and protein function. They can bind to specific sequences of DNA and can be used
as therapeutic compounds. ZFPs reduce mHTT expression without affecting the expression of other
genes/wild-type HTT [67,102,107].

CRISPR-Cas9

CRISPR-Cas9 is involved in viral defense mechanisms of bacteria which recognize and destroy
foreign DNA. CRISPR-Cas9 is involved in the excision of CAG repeats to make harmless alleles
and silence the mHTT expression by insertion of stop codon/missense mutations [68,108–110].
In HD140Q-knockin mice, it was demonstrated that CRISPR-Cas9 can be used to reduce mHTT
and improve motor function, but not to increase the lifespan of these mice [69]. Ekman et al. showed
that CRISPR-Cas9 can be used for mHTT editing, which can extend survival and improve motor
function in the R6 mice following intrastriatal delivery [111].

3.7.2. RNA Targeting Therapies

The four major methods to inhibit the function of mHTT mRNA are: ASOs, RNAi compounds,
novel viral vectors, and small-molecule splicing modulators.

ASO Approaches

ASO are single-stranded DNA (ssDNA) molecules that primarily bind to a specific sequence on
RNA and regulate post-transcriptional gene expression [112]. The ssDNA diffuses well in the CNS and
is taken up by neurons. Therefore, the injection of ASOs into the cerebrospinal fluid (CSF) results in
ubiquitous delivery of drugs and suppresses the production of mHTT [70] (Table 1). However, ASO
delivery has some side effects, like thrombocytopenia which was observed in some human trials of
ASOs [113]. ASO can ameliorate transcriptional dysregulation and reduce the level of mHTT and
improve behavior in the YAC128, YAC18, and BACHD mouse models of HD [114,115].

IONIS-HTTRx is an important ASO. It has 12–25 nucleotides and transforms phosphodiester
linkages to phosphorothioate. IONIS-HTTRx caused a remarkable reduction in HTT mRNA and protein
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expression [71]. The injection of ASOs (conjugated with peptides), produced wide CNS distribution
and longer life span in the spinal muscular atrophy (SMA) mouse model [116]. In a recent study of
phase I–IIa trial, HTTRx lessened the concentration of mutant HTT in CSF of HD patients. Therefore,
ASO compounds not only suppress the expression of HTT mRNA and the huntingtin protein in CNS,
but also in CSF [117].

RNAi Approaches

RNA interference is a gene-silencing process that uses short interfering RNA (siRNA), short
hairpin RNA (shRNA), bi-functional shRNA and microRNA (miRNA). The combination of neural
progenitor stem cell therapy and RNAi therapy can ameliorate symptoms in mouse models of HD [118].
In the animal models (R6/1, R62, N171-82Q, RAT AAV-HD70d) of HD, siRNA, shRNA, and miRNA
treatments have been used to reduce neuropathology and improve motor function [6,72,104]. AMT-130
(adeno-associated virus vector) contains an artificial miRNA which produces a huntingtin-lowering
molecule. Side effects include peripheral neuropathy observed in clinical trials of siRNA. RNAi has
been tested in rodents and its delivery system has been tested in nonhuman primates [119].

Small Molecule Approach

Small molecules like RG7800 showed ocular complications in the ∆7 mouse model of spinal
muscular atrophy (SMA) [120], while the phase I trial of the molecule RG7916 (risdiplam) was recently
completed (NCT02633709). RG7800 and RG7916 are splicing modifiers, which change the way the
pre-mRNA is spliced so that it contains all the information necessary to make a functional protein.
They promote the production of a full-length and functional protein from the gene. RG7800 increases
the survival motor neuron (SMN) protein level by modifying the splicing of the SMN2 mRNA. RG7800
is shown to promote the inclusion of exon 7 in SMN2 mRNA, generating full-length mRNA, using
fibroblasts from an SMA type I patient. In the SMA mouse model, the treatment of RG7800 showed a
dose-dependent increase in SMN protein levels [121]. Oral administration of RG7800 in SMA patients
increased the functional SMN protein level up to two-fold from baseline [122]. New work is now
underway to identify these molecules and their possible role in the lowering of mutant HTT gene and
protein expression [102,123].

3.8. Other Therapeutics Advancements

3.8.1. Ubiquilin

Ubiquilin overexpression in R6/2 mice decreased aggregation in the hippocampus and cortex and
increased lifespan. However, its overexpression did not improve motor symptoms, and did not change
the amount of aggregates in the striatum [75,76].

3.8.2. Chaperonins

TRiC (CCT1-CCT8 subunit) is an example of chaperonin which is involved in the folding of about
9–15% of the normal proteins [77] and inhibits aggregation of mHTT [78]. It reduced the number of
inclusions, fibrillar oligomers, and insoluble mHTT fragments.

3.8.3. AFQ056

AFQ056 did not improve chorea in a randomized double-blind clinical trial [79].

3.8.4. BN82451

BN82451 inhibits cyclooxygenases and provides antioxidant, anti-inflammatory and
neuroprotective effects [80]. It also improved motor function and survival, decreased brain atrophy,
neuronal atrophy, and neuronal mHTT inclusions in the R6/2 mice [81]. Recently, a phase II clinical
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trial has been completed in male HD patients. As per clinicaltrials.gov (NCT02231580), no results have
been published.

3.8.5. Antipsychotic Drugs

Antipsychotic drugs are used to treat chorea associated symptoms because they block or modulate
dopamine receptors. Many antipsychotic drugs (especially typical antipsychotics) produce motor
dysfunction resembling Parkinson’s disease (PD). Currently, a phase III trial comparing TBZ with
olanzapine and tiapridal is under evaluation [39].

3.8.6. Antiapoptotic Drugs

Caspase cleavage (mainly caspase-3 and -6) occur in mHTT [83]. Mutating the caspase cleavage
sites on mHTT leads to neuroprotection and prevents neurodegeneration in yeast artificial chromosome
(YAC) mice that express mHTT. Caspase-3 and -6 resistant mice did not develop HD neurodegeneration,
indicating that cleavage at these caspase sites plays an important role in neurodegeneration of
HD [82,123,124].

3.8.7. Diet

Various studies indicate that a Mediterranean-type diet may delay the onset of other
neurodegenerative diseases, like AD, PD, dementia and cognitive impairment [125]. Recently a
study highlighted that a Mediterranean-type diet affects the time to HD phenoconversion. In fact,
eating high amounts of dairy products was associated with an increased risk of phenoconversion.
This may be due to a lower level of urate, which leads to a faster progression and manifestation of
HD. These types of diet-related studies need further investigation [84,107,126]. Intermittent fasting
promotes autophagy and cleared the mHTT [127].

3.9. Some Promising Clinical Trials

3.9.1. Cysteamine (CYST)

Cysteamine controls oxidation levels through increasing concentration of glutathione, activation
of protein catabolism through the hindrance of transglutaminase and induction of heat shock proteins
(HSPs) effects [128]. Inhibition of transglutaminase is the putative mode of action and is observed in
R6/2 and zQ175 mouse models of HD [129]. The Cysteamine-HD phase II/III trials indicated a delay in
the release of cysteamine in HD patients.

3.9.2. Pridopidine

Pridopidine is a modulator of the dopamine 2 receptor [130] and activates the sigma-1 receptor [131].
In the most recent trials of pridopidine, no improvement in motor symptoms (unified Huntington’s
Disease rating scale - total motor score (UHDRS-TMS)) was observed with placebo [132–134]. High level
of pridopidine is found in brain-derived neurotrophic factor (BDNF) and diminishes mHTT aggregate
size and improved motor performance in R6/2 mice [135,136]. In an early-stage HD, improvement in
the total motor score (TMS) was observed in treated patients [136,137].

3.9.3. Triheptanoin

Triheptanoin is a triglyceride that reverses the metabolic defects in HD by supplying substrates to
the Krebs cycle [138]. Recently, a phase II study using triheptanoin was conducted in the early phase
of HD patients (listed at clincialtrials.gov under #NCT02453061).

clinicaltrials.gov
clincialtrials.gov
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3.9.4. Latrepirdine (Dimebon)

Latrepirdine stabilize and enhance mitochondrial membranes and functions. In a short duration
trial, latrepirdine promoted cognitive improvement (MMSE) in mild to moderate HD patients [11,139].
At the time of writing this, a total of 13 clinical trials using latrepirdine have been reported on clinicaltrials.
gov (NCT00497159, NCT01085266, NCT00920946, NCT00387270, NCT00988624, NCT00827034,
NCT00990613, NCT00824590, NCT00931073, NCT00831506, NCT00788047, NCT00825084).

3.9.5. Amantadine

Amantadine is a weak NMDA receptor blocker [140] and increases dopamine release [141].
Amantadine reduces dyskinesias in HD, without provoking parkinsonism [142].

3.9.6. Lamotrigine

Lamotrigine is an antiepileptic drug and decreases glutamate release by blocking voltage-gated
sodium channels [143,144]. It reduces motor symptoms and elevates mood in HD patients [145].

3.9.7. Selisistat

Selisistat is a selective SirT1 inhibitor which removes acetyl groups on proteins, including mHTT.
Therefore, blocking the deacetylation of mHTT should activate clearance. In early-stage HD patients,
selisistat improved TMS, but not in most measures of cognition, mood, and functionality [146,147].

3.9.8. Tauroursodeoxycholic Acid/Ursodiol

Tauroursodeoxycholic acid (TUDCA) is a bile acid and has antiapoptotic properties in a mouse
model of HD. Mice given TUDCA showed less striatal atrophy, apoptosis, and reduced locomotor and
sensory-motor defects [148]. A commercially available uroursodeoxycholic acid precursor, ursodiol,
has been examined in a phase I trial, but to date, not reported.

3.9.9. Laquinimod

Laquinimod reduces the expression of Bax, responsible for the release of cytochrome C from
mitochondria and activation of caspases, causing apoptosis and production of toxic mHTT fragments.
This drug improves motor function and reduces depressive behaviors in mice. It is recently undergoing
a phase II clinical trial in human HD patients [149]. Laquinimod ameliorates myelination deficiency
and behavioral deficits in the YAC128 mouse model of HD [150,151].

3.9.10. Kynurenine Inhibitors

The enzyme indoleamine 2,3 dioxygenase (IDO1) catalyzes the conversion of tryptophan into
kynurenine. Kynurenine is then metabolized into 3-hydroxykynurenine (3-HK) and quinolinic acid,
both of which are neurotoxic and are increased in HD. In contrast, kynurenine is also metabolized into
kynurenic acid, which is neuroprotective. In HD, an imbalance exists between the neurotoxic products
and neuroprotective products and targeting the rate-limiting step of IDO1 could effectively shift the
balance toward neuroprotective [152]. Kynurenine 3-monooxygenase is the enzyme that catalyzes
the conversion of kynurenine into 3-HK. Treating microglial cells from R6/2 mice with a kynurenine
3-monooxygenase inhibitor (Ro 61–8048) showed dramatically reduced 3-HK levels compared to the
vector containing cells [153].

4. Conclusions and Future perspectives

The current therapeutic investigations of HD mainly focus on excitotoxicity, dopamine pathway,
caspase inhibitors, mHTT aggregation, mitochondrial dysfunction, transcriptional dysregulation, and
diet. The application of robust molecular imaging and digital biomarkers may provide a valuable
therapeutic boost to the design of clinical trials. Additionally, the increased openness of regulatory

clinicaltrials.gov
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agencies for effectiveness will also promote the development of clinical trials. The advancement
of modern technologies, and the availability of various promising agents/molecules enable the
development of therapies which will further improve the quality of research and outcomes in HD
patients. The most promising drugs are those that target the production of mHTT protein and block
its actions.
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Eicosapentaenoic acid EPA
Electron transport chain ETC
Food and Drug Administration FDA
Huntington disease HD
Huntingtin gene HTT
micro RNA miRNA
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