
applied
sciences

Article

Heated Metal Mark Attribute Recognition Based on
Compressed CNNs Model

He Yin 1, Keming Mao 1,*, Jianzhe Zhao 1, Huidong Chang 1, Dazhi E 2 and Zhenhua Tan 1

1 College of Software, Northeastern University, Shenyang 110004, China; 1801246@stu.neu.edu.cn (H.Y.);
zhaojz@mail.neu.edu.cn (J.Z.); 1801235@stu.neu.edu.cn (H.C.); tanzh@swc.neu.edu.cn (Z.T.)

2 Shenyang Fire Research Institute, Ministry of Public Security, Shenyang 110034, China; edazhi@syfri.cn
* Correspondence: maokm@mail.neu.edu.cn; Tel.: +86-24-8365-6440

Received: 18 April 2019; Accepted: 7 May 2019; Published: 13 May 2019
����������
�������

Abstract: This study considered heated metal mark attribute recognition based on compressed
convolutional neural networks (CNNs) models. Based on our previous works, the heated metal
mark image benchmark dataset was further expanded. State-of-the-art lightweight CNNs models
were selected. Technologies of pruning, compressing, weight quantization were introduced and
analyzed. Then, a multi-label model training method was devised. Moreover, the proposed models
were deployed on Android devices. Finally, comprehensive experiments were evaluated. The results
show that, with the fine-tuned compressed CNNs model, the recognition rate of attributes meta
type, heating mode, heating temperature, heating duration, cooling mode, placing duration and
relative humidity were 0.803, 0.837, 0.825, 0.812, 0.883, 0.817 and 0.894, respectively. The best
model obtained an overall performance of 0.823. Comparing with traditional CNNs, the adopted
compressed multi-label model greatly improved the training efficiency and reduced the space
occupation, with a relatively small decrease in recognition accuracy. The running time on Android
devices was acceptable. It is shown that the proposed model is applicable for real time application
and is convenient to implement on mobile or embedded devices scenarios.

Keywords: attribute recognition; heated metal mark image; compressed CNNs; multi-label training

1. Introduction

The expansion of modern construction industry and material technology means many metal
components are being applied in domestic appliances. In the event of a fire, experts hope to find some
important clues from the scene. Metal is very important for this situation and thus was investigated.
In fire scene, metal components are retained for their inflammability. Meanwhile, special marks are
left on the surface of metal component due to physical and chemical changes when being heated.
The conditions of fire scene are complicated and marks on metal components are influenced by heating
temperature, heating duration, cooling mode, etc. These attributes are very important in fire science
since they are useful indications to analyze the location, source and situation of fire. Different attribute
conditions result in different oxidation reactions on metal surface. The fire scene is distinctive and
is very hard to be restored. Therefore, it is sensible to recognize heated metal attributes based on its
mark image.

Traditional methods use knowledge of physics and chemistry to analyze heated metal attribute by
human experts. Table 1 demonstrates the inspection for trace and physical evidences from fire scene
(a National standard of People’s Republic of China) [1]. It is basically a relationship between color of
heated metal and its heating temperature. Changes of metallographic organization due to heating
temperature was studied by Wu et al. [2,3]. Macro-inspection and micro-analytical were used to record
the attribute value on object surface by Xu et al. [4]. Stereo microscope and electron microscope have

Appl. Sci. 2019, 9, 1955; doi:10.3390/app9091955 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/9/1955?type=check_update&version=1
http://dx.doi.org/10.3390/app9091955
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1955 2 of 16

been used to find changes of chemical composition and organization structure of Zn-Fe when being
heated. However, these methods have two main drawbacks: (1) they are based on human expert for
qualitative analysis; and (2) they are impractical to implement as they have less automation. To solve
these problems, this paper presents a correlation construction between heated metal mark image and
attributes based on machine learning technology and a completely data-driven method.

Table 1. Relationship between color change of ferrous metal and heating temperature. The heating
duration time is set with 30 min.

Color Heating Temperature

dark purple 300 ◦C
sky blue 350 ◦C
brown 450 ◦C

dark red 500 ◦C
orange 650 ◦C

light yellow 1000 ◦C
white 1200 ◦C

Image recognition is a traditional problem and has been studied for decades in computer vision
and machine learning fields. The image object is first represented by feature vectors, and then a
classifier can be learned in feature space with training data.

Feature extraction and representation are key roles and many works have been published.
To deal with problems of image translation, scale variant, rotation, illumination and distortion, many
expert-designed features are proposed. SIFT (scale invariant feature transform descriptor) was
introduced by Lowe [5,6]. Gradient direction of local image can be expressed and an image patch was
encoded with 128-D feature vector. HOG (histograms of oriented gradients) was proposed by Navneet
and Bill [7]. It is computed from a group of gradient orientation histograms on image sub-regions.
The sizes of block and cell are assigned the dimension of HOG descriptor. To improve the efficiency of
SIFT, SURF (speeded-up robust features) was proposed by Bay et al. [8]. Scale-space extrema of the
determinant of Hessian matrix is used to compute interest point and SURF feature is determined with
Haar wavelets. LBP (Local binary patterns) descriptor was introduced by Wang et al. [9]. It defines
an 8-bit length number to record the difference between a pixel and its eight neighbors. The frequencies
of all 8-bit numbers are counted to represent the feature vector of an image’s local region. Based on
these basic feature extraction and representation methods, various improvement works are also
proposed. Global feature organization methods are designed. BoVW (bag of visual words) model
proposed by Li et al. [10], is one of most widely adopted methods . Each local patch of an image is
mapped to a clustered visual word, and the histogram of visual word frequency is used to represent
the whole image. SPM (spatial pyramid matching) was proposed by Grauman and Darrell [11].
It improves BoVW by dividing an image into multi-resolutions.

Since 2012, with the advent of large scale labeled dataset and GPU, deep learning, especially
convolutional neural networks (CNNs), have achieved great successes. It is essentially a multi-layered
neural network with cascade nonlinear processing units for feature extraction and representation.
Its excellent performances are derived from: (1) complex model representation with millions of
parameters; and (2) completely automatic model optimization and adjustment. LeCun et al. [12,13]
designed LeNet, a successful small scale CNNs model, is used in handwritten mail zip code recognition.
A medium-scale CNNs, AlexNet, proposed by Krizhevsky et al. [14], won ImageNet 2012 competition
by significant promotion over non-deep learning methods. More powerful models, e.g., ZFNet,
VGGNet, Inception and ResNet, etc., are designed successively by Zeiler et al. [15–18]. They improve
CNNs by using more layers, small convolutional filters, flexible convolutional filter size, combined
width and depth of model, and optimal and robust model training methods. ResNet has excellent
performance of Top-5 error (3.57%) and it outperformed humans for the first time in the ImageNet
2015 classification task.

Appl. Sci. 2019, 9, 1955 3 of 16

Some relevant works are reported. A rail surface defects type recognition method was introduced
based on CNNs model by Shahrzad et al. [19]. The model contains three convolutional layers,
three max-pooling layers and two fully connected layers. It collects and labels 24,408 object images.
A bearing fault diagnosis method is proposed for 10-type fault classification based on CNNs and an
improved Dempster–Shafer algorithm by Li et al. [20]. The CNN model used in this work contains
only three convolutional layers and one fully connected layer. By model ensemble, the final result
is combined with various evidence. A steel defect area characterization method was proposed by
Psuj [21], utilizing a magnetic multi-sensor matrix transducer. The basic model has three convolutional
layers, three max-pooling layers and one fully connected layer. Three combined models are adopted
for classification. In total, 35,000 simulated images are generated in this work. A hot-rolled steel sheet
surface defect classification was designed by Zhou et al. [22]. Eight surface defect types are defined
and 14,400 sample images are used. A civil infrastructure damage detection method was designed by
Cha et al. [23]. The structure of the model used in this method is the same as in Ref. [21]. Small patches
are cut with manually annotated crack or intact and there are 40,000 sample images in the dataset.
A structural surface damage detection method is proposed based on f aster r-cnn in Ref. [24]. Five types
of surface damage atr defined and ZFNet os selected as backbone model. In total, 2366 images are
collected as the dataset in this study. These works are similar to ours. However, they only model
applications and simple CNN model structures are used. Models containing fewer than eight layers in
Ref. [19–23] are used and ZFNet is adopted in Ref. [24]. The CNN model structures are relatively small
and state-of-the-art models are not adopted. On the other hand, complete experimental evaluation
and analysis are needed, including of training parameters, various CNN structures, etc.

Our previous work performs a case study on heated metal attribute recognition based on
CNNs [25]. We analyzed and selected seven heated metal attributes. Raw image set was generated with
special capture devices (vacuum resistance furnace, muffle furnace, and gasoline burner; test chamber
with constant temperature and humidity; and microscope) and a benchmark dataset was organized
(900 image samples, each labeled with seven attributes). The relationship between attributes and mark
image were trained with state-of-the-art CNNs models (Inception-v4, Inception-v3, ResNet, VGG16,
etc). Experimental evaluations were conducted according to various model structure, batch size,
data augmentation, and training algorithms. This work is a continued research. In this study,
the benchmark dataset was first further expanded with 900 images. Then, compressed CNNs models
were analyzed to increase the model efficiency. Because a heated metal mark image contains seven
attributes, a multi-label training based model was devised to accomplish the recognition task in
one-time completion. Moreover, the compressed CNNs models were deployed on Android platforms.
Finally, experiments were evaluated from various aspects.

The main contributions of this paper are threefold: (1) The benchmark image dataset was further
expanded (doubled). (2) Compressed CNNs models were adopted and a new model training method
was proposed based on multi-label. (3) Models were deployed and tested on Android platforms.

2. Problem Statement

According to the definition in National standard of People’s Republic of China GB/T42327905.3-2011
(inspection methods for trace and physical evidences from fire scene—Part 3: Ferrous metal work) [1],
metal types, heating mode, heating temperature, heating duration, cooling mode, cooling humidity
and placing duration were selected as attributes which need to be recognized from heated metal mark
image. The explanation of each attribute and its corresponding value range configuration are given
in Table 2. For simplicity, attribute i is abbreviated as ai. Most of these are the same as our previous
work [25], except that the heating mode in this study was divided into four types: vacuum, muffle
furnace, gasoline burner and carbon.

Given a heated metal mark image, its attributes are identified based on a classifier model.
The relationship can be formulated as Equation (1).

Appl. Sci. 2019, 9, 1955 4 of 16

y = f (x) (1)

where x is an image of heated metal mark, y denotes its attributes and f () is the classifier model.
x can be expressed as width × height × channel formation. y can be expressed as a 7-D vector,
each corresponding to an attribute.

Table 2. Attributes of heated metal defined in this study.

Attribute Abbr. Attribute Name Types (Predefined Label Values)

a1 Metal type 2 types: (1) galvanized steel; (2) cold rolled steel
a2 Heating mode 4 types: (1) vacuum; (2) muffle furnace; (3) gasoline burner; (4) carbon
a3 Heating temperature 4 degrees: (1) 400 ◦C; (2) 600 ◦C; (3) 800 ◦C; (4) 1000 ◦C
a4 Heating duration 4 degrees: (1) 15 min; (2) 30 min; (3) 40 min; (4) 45 min
a5 Cooling mode 2 types: (1) Natural cooling; (2) forced cooling
a6 Placing duration 3 degrees: (1) 24 h; (2) 36 h; (3) 48 h
a7 Relative humidity 2 degrees: (1) 65%; (2) 85%

3. Benchmark Dataset Expansion

In our previous work, 900 sample images were generated and labeled. We used the same method
to create image samples in this work. Galvanized steel and cold rolled steel were selected as basic
research objects. The metal plate was cut to equal size (1.0 cm × 1.0 cm × 1.0 mm). According to
requirements in Table 2, four devices, vacuum resistance furnace, muffle furnace, gasoline burner and
carbon furnace, were used for simulating four heating scenes. After heating with a specific temperature
(a3) and duration time (a4), metals were placed in a test chamber with constant temperature and
humidity. Thus, attributes a5, a6 and a7 were employed. Special-purpose microscope was used to
screen heated metal mark image samples. All devices used were the same as our previous work. Thus,
the figure demonstrations are omitted here. The image sample was captured with a resolution of
2152× 1616 pixels, each was labeled with seven attribute values as described in Table 2. Thus, 900 new
image samples were generated, and Figure 1 gives some demonstrations.

cold rolled

muffle furnace

nature cooling

600 ℃
15 mins

24 hours

65%

galvanized

carbon burner

forced cooling

800 ℃
45 mins

48 hours

65%

galvanized

muffle furnace

forced cooling

400 ℃
15 mins

12 hours

85%

cold rolled

vacuume

nature cooling

1000 ℃
40 mins

24 hours

85%

cold rolled

vacuume

nature cooling

800 ℃
40 mins

12 hours

85%

galvanized

gasoline burner

nature cooling

600 ℃
30 mins

48 hours

65%

Figure 1. Demonstration of generated heated metal mark image samples. Seven attributes are labeled
on the top-left position of each image.

4. Methodology

In our study, deep learning models were deployed on mobile or embedded products.
Its importance lies in the facts that: (1) It is practical for expert to investigate using mobile intelligent

Appl. Sci. 2019, 9, 1955 5 of 16

equipment in the fire scene instead of using bulky server in the lab. Doing investigation off-site is not a
bad choice. Wee want recognize attribute of heated metal mark without destroying the fire scene as far
as possible. The mark of heated metal may change if we take it back to the lab. (2) Many applications
are usually very sensitive to the response time of the program, even a small delay in service response
has a significant impact for users. As more and more applications are provided with core functions
by deep learning models, low latency inference becomes increasingly, important whether we deploy
models on cloud or on mobile side.

One way to solve this problem is committed to performing model inference on high-performance
cloud servers and transferring model inputs and outputs between clients and servers. However,
this solution poses many problems, such as high computing costs, massive data migration over mobile
networks, user privacy and increased latency. Model compression technology adopts an alternative
way for these scenarios, which requires fewer resources to perform inference. This was the focus of our
research. Key technologies, top compressed CNNs models and a proposed multi-label classification
method are described in this section.

4.1. Technologies for Model Compression

4.1.1. Weight Pruning

Network weight pruning-based methods explore the redundancy in model parameters and try
to remove noncritical ones. Weight pruning curtails redundant parameters completely from neural
networks so that one can even skip computations for pruned weights.

Srinivas and Babu [26] explored the data-free pruning method. Han et al. [27] proposed a method
to reduce the total parameters and operations. In Ref. [28], all convolutional filters are ranked with
l1-norm regularization at each pruning iteration, and m filters with minimum value are deleted.
Anwar et al. [29] adopted N Particle Filters for N convolutional layers. Each convolutional unit
is set with a value according to its accuracy on a small validation dataset, and the lower one is
removed. Pruning is considered as a combinational optimization problem in Ref. [30]. In Ref. [31],
each sparse convolutional layer can be performed with a few convolution kernels followed by a
sparse matrix multiplication. Lebedev and Lempitsky [32] imposed group sparsity constraints on
convolutional filters to prune entries of the convolution kernels in a group-wise fashion. In Ref. [33],
a group-sparse regularizer on neurons is introduced during training stage to learn compact CNNs
with reduced filters. The method in Ref. [34] adds a structured sparsity regularizer on each layer to
reduce trivial filters, channels, or even layers. In filter-level pruning, all of the aforementioned works
use l2,1-norm regularizers.

4.1.2. Quantization and Sharing

Network weight quantization compresses the model by reducing the number of bits required to
represent each weight. It generally divides continuous variation data into discrete values and assigns
each specific datum to a fixed value. For example, if a weight is represented with a 32-bit floating-point
number and we want to indicate a weight with 100 quantified values, then 7-bit representation
is sufficient.

argminC

k

∑
i=1

∑
w∈ci

|w− ci|2 (2)

Generally, K-means clustering is a simple and convenient solution to solve the problem of
quantization of CNNs weights [35], which is shown in Equation (2). C = {c1,c2,...,ck} denotes the cluster
centers we want to compute, and w means original weight. The objective function is to minimize
the squared error between all weight and center it belongs to. As a result, each w is quantized
to one cluster center. If the number of cluster centers is set with k, then log2(k) bits are used to
represent the weight value. Vanhoucke et al. [36,37] proposed 8-bit quantization and 16-bit fixed-point

Appl. Sci. 2019, 9, 1955 6 of 16

representation. They brought significant speedup, reduce memory usage and decrease loss in accuracy.
There were also many methods that directly train CNNs with binary weights, e.g., Binary-Connect [38],
BinaryNet [39], and XNORNetworks [40]. The main idea was to learn binary weights or activations
during the model training directly. The method in Ref. [41] reduced the precision of weights to
ternary values. A HashedNets model was proposed, in which the low cost hash function is used to
group weights into hash buckets for sharing [42]. In Ref. [43], a simple regularization method based
on soft weight-sharing was proposed.

4.1.3. Matrix Factorization

To reduce the time complexity, tensor factorization is a commonly used method. It is usually based
on low rank approximation theory, and a high-dimension tensor can be approximated by multiple
one-dimensional tensor products.

Lebedev et al. [44] proposed a canonical polyadic (CP)-decomposition based method that
decomposing one network layer into five layers with low complexity. The optimal solution was hard
to compute with Stochastic gradient descent (SGD) weight fine-tuning. Denton et al. [45] exploited
redundancy of convolutional layer and a tensor decomposition method was devised. It treated
two-dimensional tensor decomposition as singular decomposition, and three-dimensional tensor
decomposition as two-dimensional decomposition.

Zhang et al. [46] used Singular Value Decomposition (SVD) decomposition for parameter matrix,
and proposed a nonlinear optimization method with non-SGD. The cumulative reconstruction error
of previous layer is considered in asymmetric reconstruction. Jaderberg et al. [47] used rank 1
convolutional filter to generate M independent basic feature map, and then K × K convolutional filters
can be decomposed into 1 × K and K × 1 filters. The output is linearly reconstructed with learned
weights. Tai et al. [48] proposed a method for training low rank constraint network. A global optimizer
is used for matrix factorization and the redundancy of convolutional filter can be reduced.

Kim et al. [49] proposed a model with one or more tensor trained layer. Tensor is trained for tensor
compressing and its filters are generated based on SVD approximation. According to redundancy
inside and among channels, sparse decomposition was conducted on channels [31]. Convolutional
operation with high cost can be transformed into matrix multiplication. The matrix is then sparsified
with regularization term.

Among these model compression methods, matrix factorization based methods are most widely
used. Many top compressed CNNs models focus on this, which is illustrated in the next subsection.

4.2. Top Compressed CNNs Models

In this subsection, some state-of-the-art compressed CNNs models used in our study
are introduced.

4.2.1. MobileNet

MobileNets was first designed for mobile and embedded vision applications. It was built primarily
from depthwise separable convolutional operations [50]. It factorizes a standard convolution into
a depthwise convolution and a pointwise convolution. MobileNets applies a single filter to each input
channel, and then pointwise convolution combines the outputs with linear combination.

A standard convolution operation has the following computational cost:

DK × DK ×M× N × DF × DF (3)

where M and N are number of input and output channels, DK × DK is the size of filters, and DF × DF
represents the size of feature map. MobileNets splits this into two separate operations, one for
filtering and one for combining. Batch normalization and ReLU nonlinearity are used in each layer.
The depthwise convolution operation has the following computational cost:

Appl. Sci. 2019, 9, 1955 7 of 16

DK × DK ×M× DF × DF (4)

A linear combination of the output of depthwise convolution via 1× 1 convolution is needed
to generate new features. Thus, the total computation cost of depthwise separable convolution is
as follows:

DK × DK ×M× DF × DF + M× N × DF × DF (5)

The ratio of computational cost decrease can be shown as follows:

DK × DK ×M× DF × DF + M× N × DF × DF
DK × DK ×M× N × DF × DF

=
1
N

+
1

D2
K

(6)

Moreover, to make the model smaller and faster, two hyper-parameters are proposed,
width multiplier α and resolution multiplier ρ, which represent the ratio of reduced channels and the
size of reduced feature maps, respectively. Finally, The computational cost of depthwise convolution
operation with parameters α and ρ can be further expressed as follows:

DK × DK × αM× ρDF × ρDF + αM× αN × ρDF × ρDF (7)

MobileNet V2 was proposed for further improvement. It was constructed with inverted residuals
and linear bottlenecks techniques, which can reduce number of parameters and the loss in activation
operation. Combined with single shot detector lite (SSDLite) for object detection, MobileNet V2
is reported to be 35% faster than MobileNet V1, and have 20× less computation and 10× fewer
parameters than YOLO V2.

4.2.2. SqueezeNet

SqueezeNet was proposed for preserving accuracy with few parameters [51]. A novel building
block, Firemodule, is used as the core structure in SqueezeNet.

Three main strategies are adopted to construct the Firemodule. First, 3× 3 filters are replaced with
1 × 1 filters. This can make the number of parameters 9× smaller than before. Second, the number
of input channels to filters is decreased. The number of parameters in one standard layer can be
represented as Nchannel × N f ilter × S f ilter, where Nchannel is the number of input channels, N f ilter is the
number of filters and S f ilter is the size of filter. Squeeze layer is proposed to reduce N f ilter so the total
number of parameters can be further decreased. Third, the network is late downsampled. Usually,
layers have small activation feature maps if their stride is larger than 1, and larger activation feature
maps can lead to higher performance.

To accomplish the above strategies, Fire module was designed, which consists of a squeeze layer
and an expand layer. Squeeze layer has only 1 × 1 convolution filters (Strategy 1) and expand layer
has 1 × 1 and 3 × 3 convolution filters. Then, three hyperparameters are set: s1×1, e1×1 and e3×3,
which represent the numbers of 1 × 1 convolution filters in squeeze layer, 1 × 1 convolution filters
and 3 × 3 convolution filters in expand layer, respectively. s1×1 is set to be less than (e1×1 + e3×3),
so the squeeze layer can help to limit the number of input channels to expand layer (Strategy 2).
The SqueezeNet model is constructed by stacking many Fire modules. The number of filters per
Fire module is increased gradually, and a max-pooling with stride 2 is performed with a certain
interval (Strategy 3).

The evaluation demonstrates that the SqueezeNet architecture has 50× fewer parameters
than original AlexNet and maintains AlexNet-level accuracy on ImageNet. Based on SqueezeNet,
some works implement it on field programmable gate array (FPGA), and the model parameters can be
stored entirely within FPGA and there is no need to access off-chip storage.

Appl. Sci. 2019, 9, 1955 8 of 16

4.2.3. ShuffleNet

Shu f f leNet was proposed by Zhang et al. [52]. In this method, pointwise group convolutions are
first used to reduce the costly dense 1 × 1 convolution computation. Then, a novel channel shuffle
operation is designed to overcome the side effects of group convolution, which can help information
flow across different feature channels.

Group convolution is an effective way to significantly reduce computation cost. However,
the outputs are only derived from certain input channels. This blocks the feature exchange among
channel groups and the optimal representation cannot be obtained. We proposed a channel shuffle
operation to construct association between input and output channels comprising a convolutional
layer with g groups and its output with g × n channels. The dimension of the output is reshaped into
(g, n) and it is transposed and flattened as the input of next layer.

A Shu f f leNet unit is formed with a 1 × 1 pointwise group convolution layer and follows
channel shuffle operation layer. Shu f f leNet architecture is mainly built by a stack of Shu f f leNet
units. This structure has less computational cost in the same condition. Let the input be c× h× w
with bottleneck channels m, hw (2 cm + 9 m2) floating-point operations per seconds (FLOPs) and
hw (2 cm + 9 m2 /g) FLOPs is needed for ResNet, while only hw (2 cm/g + 9 m) FLOPs is needed for
Shu f f leNet.

It is reported that, compared with the MobileNet architecture, Shu f f leNet model obtains superior
performance of absolute 7.8% increase in ImageNet Top-1 error with cost of about 40 millions
floating-point operations per seconds (MFLOPs). The speedup on hardware has also been tested. With
comparable performance, the Shu f f leNet achieves 13× speedup over AlexNet on an off-the-shelf
ARM-based core device.

In the latest version, channelsplit operation is proposed in Shu f f leNet V2. The input of feature
channels are first split into two branch channels, respectively. One branch remains the same, and
the other branch is computed with 1 × 1 convolution, 3 × 3 depthwise separable convolution and
1 × 1 convolution. Then, the two branch features are concatenated and a channel Shuffle operation is
implemented. After the channel shuffle, it is repeated for the next unit.

The report demonstrates that Shu f f leNet V2 is about 40% faster than Shu f f leNet V1 and about
16% faster than MobileNet V2. With 500 MFLOPs, Shu f f leNet V2 is 58% faster than MobileNet V2
and 63% faster than Shu f f leNet V1.

4.3. Multi-Label Classification

For an input heated metal mark image, we aimed to recognize its attributes of metal type, heating
mode, heating temperature, heating duration, cooling mode, placing duration and relative humidity.
Each attribute can be trained with a model, with totally seven separate models. However, this has
low efficiency for computation time and storage space even using compressed models. In this study,
a multiple label classification method was adopted. Seven attributes were recognized in a single test
with one unified CNNs model.

Figure 2 gives the basic procedure. For each attribute ai, its type was represented with
one-hot encoding mode. Then, two-dimensional feature vector, four-dimensional feature vector,
four-dimensional feature vector, four-dimensional feature vector, two-dimensional feature vector,
three-dimensional feature vector and two-dimensional feature vector were encoded for attributes
a1–a7, respectively. All attributes shared the same backbone network model. All outputs were formed
into a tiled vector, and the ground truth labels were concatenated into the same pattern. Finally,
the objective function was formulated as follows.

Appl. Sci. 2019, 9, 1955 9 of 16

J(θ) = argminθ

n

∑
i=1

L(f (xi; θ), yi)

= argminθ

n

∑
i=1

7

∑
j=1

wj × L(f (xi; θj), yi
j)

(8)

As shown in Equation (8), {xi, yi} represents training image sample. Total loss was
composed of seven sub-loss, each corresponding to an attribute. θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7},
yi = {yi

1, yi
2, yi

3, yi
4, yi

5, yi
6, yi

7}, wi is weight parameter and cross-entropy is adopted for L().

Backbone CNNs

model

Output

…
…

a1

a2

a3

a4

a5

a6

a7

Tiled output

…
…

Ground

truth label

Loss

Back propagation

Figure 2. Demonstration of multi-label model training.

5. Experimental Evaluation

5.1. Experiment Setup

The performances of heated metal mark attributes recognition with compressed CNNs models
were evaluated based on a generated benchmark dataset. In this experiment, Python was used as
programming language. Tensorflow was adopted as deep learning framework and Keras was selected
as library. All experiments were evaluated on Pentium I5-8 series CPU, 32G RAM, Nvidia GTX TitanXp
12G GPU, Ubuntu OS PC.

5.2. Recognition Accuracy Evaluation

Recognition accuracy was used to evaluate recognition performance on different attribute.
As shown in Equation (9), Ri is the recognition accuracy for attribute ai, Nall

i means the number
of all testing samples containing ai, and Ncorrect

i denotes the number of correctly recognized attribute
ai. We divided the dataset into six subgroups with attribute values equally distributed. Five randomly
chosen subgroups (1500 image samples) were used for training and the remaining subgroup (300 image
samples) was used for testing. The results were obtained by averaging the five independent tests.

Ri =
Ncorrect

i

Nall
i

(9)

MobileNet, Shu f f leNet and SqueezeNet were used as backbone compressed CNNs models for
evaluation. For model input, sample image size was set as 224 × 224 × 3 pixels. Epoch was set as 50
and batch size was set as 32. Adam was used as preferred optimization method. Learning rate was set
with initial value of 0.001 and momentum was set as 0.9. Dropout was set as 0.2.

The results of average recognition accuracy are shown in Table 3. Structure of CNNs models and
data augment are listed in the first and second columns, respectively. For data augment, commonly
used transformations including random cropping, vertical and horizontal flipping, perturbation of

Appl. Sci. 2019, 9, 1955 10 of 16

brightness, saturation, hue and contrast were adopted. When the model was trained with data
augment, 40% of training image in each batch was augmented, otherwise the probability was 10%.
For a1, Shu f f leNet with data augment obtained the best performance, with value of 0.803. For a2,
SqueezeNet with data augment obtained best performance, with value of 0.837. For a3, SqueezeNet with
data augment obtained best performance, with value of 0.825. For a4, Shu f f leNet with data augment
obtained best performance, with value of 0.812. For a5, MobileNet with data augment obtained best
performance, with value of 0.883. For a6, MobileNet and Shu f f leNet with data augment obtained best
performance, with value of 0.817. For a7, Shu f f leNet with data augment obtained best performance,
with value of 0.894. For the overall performances, Shu f f leNet model ranked first.

We found that models training with data augment obtained better performance than those without
data augment. There was about 2% accuracy improvement. It can be concluded that data augment is
an effective way to train better CNN models, especially for large scale CNNs with huge parameters
and lacking of sufficient training data.

Figure 3 demonstrates the misclassified sample images. Each row corresponds to an attribute.
The red texts represent ground truth label, while yellow texts represent the predicted results.
Galvanized steel and cold rolled steel normally have different corrosion degrees at the experimental
condition. The misclassified sample images of a1 showed similar corrosion degree. For heating
temperature, higher temperatures will lead to more corrosion and rougher texture. The misclassified
sample images of a3 came from adjacent temperature. These situations can be seen as general causes
of a4, a6 and a7. For a2 and a5, the reason for misclassification is hard to describe even for the
field professional.

Table 3. Recognition accuracy for seven attributes.

CNNs Model Data Augment a1 a2 a3 a4 a5 a6 a7 overall

MobileNet yes 0.785 0.829 0.778 0.786 0.883 0.817 0.885 0.822
no 0.732 0.816 0.765 0.745 0.871 0.809 0.868 0.801

Shu f f leNet yes 0.803 0.809 0.804 0.812 0.878 0.813 0.894 0.830
no 0.731 0.798 0.789 0.810 0.848 0.805 0.865 0.807

SqueezeNet yes 0.68 0.837 0.825 0.774 0.858 0.758 0.887 0.803
no 0.657 0.829 0.814 0.752 0.849 0.674 0.862 0.777

Commonly used large scale datasets are mainly natural scene, animals, etc. These are easy to
distinguish by humans, and the differences are easy to explain visually. The heated metal mark image
we studied is a special kind of objects, the origin of its mark being caused by complex physical and
chemical reactions. Moreover, the benchmark dataset we generated inevitably contains noise, which
may influence the model performance. We need further research to explore the internal principle with
the help of other professionals.

5.3. Batch Size Evaluation

Training on different batch sizes, 8, 16, 32 and 48 was evaluated. Figure 4 demonstrates the
model accuracy versus training epoch. Here, the average accuracy over seven attribute was used.
Data augment was used and other parameters were set the same as for the experiments presented in
Section 5.2.

As shown in the figure, all models converged after about 40 training epochs. Models trained with
batchsize 32 obtained better performance, and outperformed other models by about 2%. SqueezeNet
was more stable and smooth during training, while MobileNet and Shu f f leNet fluctuated more. It was
reasonably found that for bigger batch sizes the gradient descent direction computation was more
accurate, and was gentler during model training. Smaller batch sizes led to more randomness, and it
was harder to achieve optimal performance.

Appl. Sci. 2019, 9, 1955 11 of 16

a1

a2

a3

a4

a5

a6

a7

Galvanized

Cold rolled Galvanized

Cold rolledGalvanized

Cold rolled

Galvanized

Cold rolled Galvanized

Cold rolled

Vacuum Muffle furnace Gasoline burner Carbon

Muffle furnace

Muffle furnace

Vacuum VacuumMuffle furnace Gasoline burner

400
◦
C 600

◦
C400

◦
C 1000

◦
C 800

◦
C

600
◦
C 400

◦
C800

◦
C 800

◦
C 1000

◦
C

15 mins45 mins 40 mins 30 mins 30 mins

30 mins 45 mins 45 mins30 mins15 mins

Natural Natural Natural Forced Forced

Forced Forced Natural NaturalForced

24 hours 24 hours 36 hours 36 hours 48 hours

36 hours 48 hours 24 hours 24 hours 36 hours

85% 85% 65% 65% 65%

65% 65% 85% 85% 85%

Figure 3. Demonstration of error classified samples. Red texts represent ground truth label,
while yellow texts represent the predicted results.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n
g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=24 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=24 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48(b)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n

g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n
g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=24 batchsize=48

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 5 10 15 20 25 30 35 40 45 50 55

T
es

ti
n
g
 a

cu
ra

cy

Epoch

batchsize=8 batchsize=16 batchsize=32 batchsize=48

(c)

Figure 4. Model accuracy versus training epoch on various batchsize: (a) result on MobileNet model;
and (b,c) result on ShuffleNet and SqueezeNet models, respectively. Blue, orange, gray and yellow
curves represent batchsizes equal 8, 16, 32 and 48, respectively.

Appl. Sci. 2019, 9, 1955 12 of 16

5.4. Single Label Model vs. Multi-Label Model

The plain way to train models is to train an independent CNN model for each attribute. This is
called single label model. Comparisons between single label model and multi-label model were
evaluated. Single label model was trained separately for each attribute ai. The results are shown
in Table 4.

It can be seen from the result that models with single label training obtained better performance
than those with multi-label training, with about 1–2% improvement. There were some divergences for
different attributes, but the overall trends were consistent.

Using multi-label training, model parameters could be shared. The size of model was greatly
reduced by 7×, with some performance loss. Multi-label training is not a trivial task as there are
conflicts among training parameters for recognizing different attribute. The loss scale for different
attribute may be very large, thus the model training could not be coherent for seven attributes.
Therefore, the learning process of shared parameters was unavoidably influenced.

Table 4. Single label model vs. multi-label model.

CNNs Model Single/Multi Label a1 a2 a3 a4 a5 a6 a7 overall

MobileNet multi 0.785 0.829 0.778 0.786 0.883 0.817 0.885 0.822
single 0.815 0.847 0.807 0.805 0.899 0.819 0.894 0.841

Shu f f leNet multi 0.803 0.809 0.804 0.812 0.878 0.813 0.894 0.830
single 0.824 0.829 0.811 0.824 0.870 0.824 0.912 0.842

SqueezeNet multi 0.68 0.837 0.825 0.774 0.858 0.758 0.887 0.803
single 0.767 0.842 0.831 0.792 0.877 0.764 0.891 0.823

5.5. Compressed Model vs. Heavy Model

Different CNN models contain various depth and width of layers, number of filters, size and
shape of filters, which lead to different structures, parameters and complexity. Comparisons between
compressed models and heavy models were evaluated. VGG16, ResNet50, and Inception models were
selected. The results are shown in Table 5.

Table 5. Compressed model vs. heavy model.

CNNs Model a1 a2 a3 a4 a5 a6 a7 overall

MobileNet 0.785 0.829 0.778 0.786 0.883 0.817 0.885 0.822

Shu f f leNet 0.803 0.809 0.804 0.812 0.878 0.813 0.894 0.830

SqueezeNet 0.68 0.837 0.825 0.774 0.858 0.758 0.887 0.803

VGG16 0.810 0.845 0.840 0.817 0.892 0.821 0.899 0.846

ResNet50 0.819 0.851 0.835 0.826 0.881 0.829 0.905 0.849

Inception 0.821 0.852 0.841 0.832 0.901 0.831 0.909 0.854

It can be seen that heavy CNNs models obtained better performance for all attribute than
compressed models. Inception obtained an average performance of 0.854, which was 2.4% better
than Shu f f leNet. The main reason is that heavy models contain more complex structures and
more parameters, which have the advantages of feature extraction and representation. However,
the performance differences between compressed models and heavy models were not large, at only
about 1–2%.

Appl. Sci. 2019, 9, 1955 13 of 16

5.6. Running Time Evaluation

Running time of different CNN models was evaluated. Training and testing time of MobileNet,
SqueezeNet, Shu f f leNet and ResNet50 models with various batch sizes (8, 16, 32 and 48) were
evaluated. Table 6 gives the experiment results.

MobileNet cost the longest training time among all three compressed CNNs models, at 0.192 s,
0.368 s, 0.736 s and 1.104 s for batch sizes of 8, 16, 32 and 48, respectively, during each training
iteration. SqueezeNet used the shortest training time, with about 80% of MobileNet’s. For testing time,
SqueezeNet had the minimal cost, 0.0026 s. Comparing with ResNet50 model, the running efficiency
was greatly improved with compressed CNNs models. All execution times were evaluated on PC.
For model space occupancy, 9.6 M, 3.1 M and 5 M were required for MobileNet, SqueezeNet and
Shu f f leNet, while 94.7 M was needed for ResNet50. This also demonstrated the space efficiency of
compressed CNN models. SqueezeNet model rand 10× faster than ResNet50 model, and reduced the
storage space by 30×.

Table 6. Execution time (seconds).

Execution Time Batch Size MobileNet SqueezeNet Shu f f leNet ResNet50

Training time

8 0.192 0.024 0.08 0.438
16 0.368 0.032 0.144 0.889
32 0.736 0.064 0.256 1.554
48 1.104 0.144 0.384 2.862

Testing time x 0.0095 0.0026 0.0065 0.031

Space occupation x 9.6M 3.1M 5M 94.7M

5.7. Android Devices Deployment

The models were trained on a PC Server. They were properly running on Linux with Tensorflow
framework. However, this could not be done directly on a mobile devices, and some essential
transformation and deployment were needed. The compressed CNNs models were deployed on
Android platforms, and the corresponding performances were also tested.

The file format of CNNs model on Linux was *.h5. It was first converted into format of *.pb
to deploy on Android devices. The file size of MobileNet, SqueezeNet and Shu f f leNet models were
2.82 MB, 4.02 MB and 9.06 MB, respectively, after format conversion, which were similar to their PC
format. Table 7 gives the result of model testing on selected Android platforms. Snapdragon 626,
Snapdragon 845 and Kylin 970 were used for testing. As can be seen form the result, mobile devices
showed good efficiency, and could execute the operation in tens of milliseconds, thus could support
real-time applications. Kylin 970 obtained the best performance, and it cost 0.00076 s to execute the
SqueezeNet model. This might derive from the Neural Network Processing Unit it contains.

Table 7. Execution time on Android devices (seconds).

CNNs Models Snapdragon 626 Snapdragon 845 Kylin 970 Our PC Server

MobileNet 0.055 0.021 0.014 0.0095

SqueezeNet 0.018 0.011 0.0076 0.0026

Shu f f leNet 0.039 0.015 0.0108 0.0065

6. Conclusions

Heated metal marks are important evidence for fire scene analysis. Automatic heated metal
attribute recognition using deep learning method has become popular. To further improve the
model efficiency, this study considered heated metal mark image attribute recognition based on
compressed CNNs model. We expanded the benchmark dataset. Three well known compressed

Appl. Sci. 2019, 9, 1955 14 of 16

CNNs models were used as backbone structure and a multi-label training method was adopted.
Comprehensive experiment were evaluated and analyzed, including recognition rate, influence of
batchsize, compressed model vs. heavy model, single label model vs. multi-label model, etc. Moreover,
compressed CNNs models were deployed and tested on Android devices.

Through this study, it can be concluded that using compressed CNNs model, efficiency of both
time and space are greatly improved, and recognition accuracy still lies in acceptable range. According
to the experiment evaluation, Shu f f leNet has the best over recognition accuracy, and SqueezeNet costs
the minimal running time. Therefore, users can adopt any models based on their actual demands.

Author Contributions: Conceptualization, Supervision, K.M. and J.Z. Writing-Original Draft Preparation, H.Y.,
H.C. and Z.T. Resources, D.E. Data Curation, D.E. Writing-Review & Editing, J.Z. and H.Y. Methodology,
K.M. Funding Acquisition, K.M. and Z.T.

Funding: This research was funded by National Natural Science Foundation of China (grant numbers 61772125
and 61402097), Liaoning Doctoral Research Foundation of China (grant number 20170520238) and Fundamental
Research Funds for the Central Universities (grant number N171713006).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Inspection Methods for Trace and Physical Evidences from Fire Scene—Part 3: Ferrous Metal Work; GB/T 27905.3-2011;
National Standard of People’s Republic of China: Shenzhen, China; 2011.

2. Wu, Y.; Zhao, C.; Di, M.; Qi, Z. Application of metal oxidation theory in fire trace evidence identification.
In Proceedings of the Building Electrical and Intelligent System, Shenyang, China, 11–13 November 2007;
pp. 108–110.

3. Wu, Y.; Zhao, C.; Di, M.; Qi, Z. Application of metal oxidation theory in fire investigation and fire safety.
In Proceedings of the International Colloquium on Safety Science and Technology, Shenyang, China,
27–28 October 2008; pp. 538–540.

4. Xu, Z.; Song, Y. Fuzzy identification of surface temperature for building members after fire. J. Dalian
Univ. Technol. 2005, 45, 853–857.

5. Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the IEEE International
Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157.

6. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2006, 60, 91–110.
[CrossRef]

7. Navneet, D.; Bill, T. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; pp. 886–893.

8. Bay, H.; Tuytelaars, T.; van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the 9th European
Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417.

9. Wang, X.; Han, T.X.; Yan, S. An HOG-LBP human detector with partial occlusion handling. In Proceedings
of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009;
pp. 32–39.

10. Fei-Fei, L.; Fergus, R.; Torralba, A. Recognizing and Learning Object Categories. CVPR 2007 Short Course.
Available online: http://people.csail.mit.edu/torralba/shortCourseRLOC/ (accessed on 18 March 2018).

11. Grauman, K.; Darrell, T. The Pyramid Match Kernel: Discriminative Classification with Sets of Image
Features. In Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China,
17–21 October 2005; pp. 1458–1465.

12. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

13. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe,
NE, USA, 3–6 December 2012; pp. 1106–1114.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/5.726791

Appl. Sci. 2019, 9, 1955 15 of 16

15. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the 13th
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

16. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA,
7–9 May 2015; pp. 1–14.

17. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19. Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; De Schutter, B. Deep convolutional neural networks
for detection of rail surface defects. In Proceedings of the International Joint Conference on Neural Networks,
Vancouver, BC, Canada, 24–29 July 22016; pp. 2584–2589.

20. Li, S.; Liu, G.; Tang, X.; Lu, J.; Hu, J. An Ensemble Deep Convolutional Neural Network Model with
Improved D-S Evidence Fusion for Bearing Fault Diagnosis. Sensors 2017, 17, 1729. [CrossRef] [PubMed]

21. Psuj, G. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements.
Sensors 2018, 18, 292. [CrossRef] [PubMed]

22. Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using
convolutional neural networks. Mater. Technol. 2017, 51, 123–131. [CrossRef]

23. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional
Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2018, 32, 361–378. [CrossRef]

24. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection
Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng.
2017. [CrossRef]

25. Mao, K.; Lu, D.; E, D.; Tan, Z. A Case Study on Attribute Recognition of Heated Metal Mark Image Using
Deep Convolutional Neural Networks. Sensors 2018, 18, 1871. [CrossRef] [PubMed]

26. Srinivas, S.; Babu, R.V. Data-free parameter pruning for deep neural networks. In Proceedings of the British
Machine Vision Conference, Swansea, UK, 7–10 September 2015; p. 31.

27. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal,
QC, Canada, 7–12 December 2015; pp. 1135–1143.

28. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for effecient convnets. In Proceedings
of the International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

29. Anwar, S.; Hwang, K.; Sung, W. Structured Pruning of Deep Convolutional Neural Networks. In Proceedings
of the JETC 2017, Budapest, Germany, 21–25 May 2017; Volume 13, p. 32.

30. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource
Effificient Transfer Learning. In Proceedings of the NIPS Workshop: The 1st International Workshop on
Effificient Methods for Deep Neural Networks, Barcelona, Spain, 5–10 June 2016.

31. Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.F.; Pensky, M. Sparse Convolutional Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015),
Boston, MA, USA, 7–12 June 2015; pp. 806–814.

32. Lebedev, V.; Lempitsky, V.S. Fast convnets using group-wise brain damage. In Proceedings of the IEEE
Conference on Computer Vision Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2554–2564.

33. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact CNNs. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 662–677.

34. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. Adv. Neural
Inform. Process. Syst. 2016, 29, 2074–2082.

35. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 4820–4828.

36. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on cpus. In Proceedings of the
Conference on Neural Information Processing Systems Deep Learning and Unsupervised Feature Learning
Workshop, Sierra Nevada, Spain, 16–17 December 2011.

http://dx.doi.org/10.3390/s17081729
http://www.ncbi.nlm.nih.gov/pubmed/28788099
http://dx.doi.org/10.3390/s18010292
http://www.ncbi.nlm.nih.gov/pubmed/29351215
http://dx.doi.org/10.17222/mit.2015.335
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.1111/mice.12334
http://dx.doi.org/10.3390/s18061871
http://www.ncbi.nlm.nih.gov/pubmed/29880774

Appl. Sci. 2019, 9, 1955 16 of 16

37. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision.
In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015;
Voume 37, pp. 1737–1746.

38. Courbariaux, M.; Bengio, Y.; David, J. Binaryconnect: Training deep neural networks with binary weights
during propagations. In Proceedings of the Annual Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 3123–3131.

39. Courbariaux, M.; Bengio, Y. Binarynet: Training deep neural networks with weights and activations
constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

40. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary
convolutional neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 8–16 October 2016; pp. 525–542.

41. Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064.
42. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing neural networks with the hashing

trick. In Proceedings of the Machine Learning Research Workshop Conference, Montreal, QC, Canada,
12 December 2015; pp. 2285–2294.

43. Ullrich, K.; Meeds, E.; Welling, M. Soft weight-sharing for neural network compression. arXiv 2017,
arXiv:1702.04008.

44. Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.V.; Lempitsky, V.S. Speeding-up Convolutional Neural
Networks Using Fine-tuned CP-Decomposition. arXiv 2014, arXiv:1412.6553.

45. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within
convolutional networks for efficient evaluation. In Proceedings of the NIPS 2014, Montreal, QC, Canada,
8–13 December 2014.

46. Zhang, X.; Zou, J.; He, K.; Sun, J. Accelerating Very Deep Convolutional Networks for Classification and
Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1943–1955. [CrossRef] [PubMed]

47. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank
Expansions. In Proceedings of the BMVC 2014, Nottingham, UK, 1–5 September 2014.

48. Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; E, W. Convolutional neural networks with low-rank regularization.
In Proceedings of the ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

49. Kim, Yo.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks
for Fast and Low Power Mobile Applications. In Proceedings of the ICLR 2016, San Juan, Puerto Rico,
2–4 May 2016.

50. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

51. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1 MB model size. arXiv 2016, arXiv:1602.07360.

52. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for
Mobile Devices. arXiv 2017, arXiv:1707.01083.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2015.2502579
http://www.ncbi.nlm.nih.gov/pubmed/26599615
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Benchmark Dataset Expansion
	Methodology
	Technologies for Model Compression
	Weight Pruning
	Quantization and Sharing
	Matrix Factorization

	Top Compressed CNNs Models
	MobileNet
	SqueezeNet
	ShuffleNet

	Multi-Label Classification

	Experimental Evaluation
	Experiment Setup
	Recognition Accuracy Evaluation
	Batch Size Evaluation
	Single Label Model vs. Multi-Label Model
	Compressed Model vs. Heavy Model
	Running Time Evaluation
	Android Devices Deployment

	Conclusions
	References

