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Featured Application: Comparing with traditional measuring techniques based on electrical
engineering, the novel measuring techniques for transient voltage in AC high-voltage power grid
based on optical electric-field sensor is of fast response speed, wide bandwidth, small size, light
weight and safety.

Abstract: Transient voltages in the power grid are the key for the fault analysis of a power grid,
optimized insulation design, and the standardization of the high-voltage testing method. The
traditional measuring equipment, based on electrical engineering, normally has a limited bandwidth
and response speed, which are also featured by a huge size and heavy weight. In this paper, an
integrated optical electric-field sensor based on the Pockels effect was developed and applied to
measure the transient voltages on the high-voltage conductors in a non-contact measuring mode.
The measuring system has a response speed faster than 6 ns and a wide bandwidth ranging from
5 Hz to 100 MHz. Moreover, the sensors have the dimensions of 18 mm by 18 mm by 48 mm and a
light weight of dozens of grams. The measuring systems were employed to monitor the lightning
transient voltages on a 220 kV overhead transmission line. The switching transient voltages were also
measured by the measuring system during the commissioning of the 500 kV middle Tibet power grid.
In 2017, 307 lightning transient voltages caused by induction stroke were recorded. The characteristics
of these voltage waveforms are different from the standard lightning impulse voltage proposed by
IEC standards. Three types of typical switching transient voltage in 500 kV AC power grid were
measured, and the peak values of these overvoltages can reach 1.73 times rated voltage.

Keywords: optical; electric-field; sensor; measurement; transient voltage; AC power grid;
Pockels effect

1. Introduction

The wide existence of the transient voltage in the power grid threatens the insulation system of
high-voltage plants, which often causes the grid faults [1]. The accurate measurement of transient
voltage is the key for the fault analysis, the optimized insulation design and the standardization of
high-voltage testing techniques.

Various types of transient voltages can be found in a power grid. The fastest transient voltages
(i.e., very fast front overvoltage, VFFO) usually appear at a gas-insulated switchgear (GIS), which
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is caused by the operation of the GIS disconnectors [2–4]. A VFFO commonly has high frequency
components of approximately 100 MHz and a rising time of several nanoseconds [5]. For the fast-front
transient voltages, the rising time is normally in the range of 0.1 µs to 20 µs [5]. In terms of a transient
voltage caused by normal operation, the rising time is in the range of microseconds. It is noted that
these transient voltages are usually superimposed on the power-frequency voltage, which requires
a wide bandwidth and fast response speed for the voltage measuring system to be well measured.
Moreover, portability and safety are also advised for developing a voltage measuring system.

Subject to the requirements of insulation and capacity, traditional electrotechnical voltage
measuring techniques usually bring huge sized and heavy weighted equipment, especially for
those applied in an extra-high voltage (EHV) or ultra-high voltage (UHV) power grids. It is also noted
that their bandwidth and response speed are unfavorably limited. For example, the capacitance-voltage
transformer (CVT) which is a commonly used voltage measuring device in the high-voltage AC
power grid typically has a weight of hundreds of kilograms (for 500 kV) and a bandwidth lower than
1 kHz [6–8]. Besides, the bushing tap is applied mainly to measure the transient voltage during a
substation commissioning, of which the performance is mainly affected by the manufacturing process
and the bushing structure. As a consequence, the upper bandwidth is generally not higher than 5 MHz
for a bushing tap technique [9–11]. In addition, the portability cannot be achieved on these techniques.

Thus, subject to the future demand of the power system, it is highly expected to develop a safe
and easy-to-apply voltage measuring technique. For a quasi-static problem, since the electric field is
considered to be irrotational, the space electric field around a conductor is linear to the potential of
the conductor. Based on the measuring technique for the electric field, a non-contacted measuring
method for transient voltage could be possible. On the other hand, as the development of optical
sensing technology, several electro-optical effects have been used for measuring electric fields. The
electro-chromatic effect has a response time of ~100 s, and it is suitable only for extremely low-frequency
electric field measurement [12,13]. The Kerr effect is a quadratic electro-optic effect and normally has a
small electro-optic coefficient. Thus, the sensors based on the Kerr effect have a low sensitivity [14,15].
The Pockels effect is known as a linear electro-optic effect, which means the output voltage is linear to
the measured electric field. The sensor based on the Pockels effect normally has a fast response speed,
small size, and are passive. It is particularly used for the measurement of high-amplitude transient
electric field [16].

In this paper, based on the linear correspondence between the transient voltage and the transient
electric-field caused, a non-contact transient voltage measuring technique was proposed. An integrated
optical electric-field sensor based on the Pockels effect was introduced to implement the field
measurement. The measuring system was developed and tested for its bandwidth and response
speed. A series of measured lightning transient voltages and typical switching transient voltages were
presented. Finally, the characteristics of these measured transient voltages and the decoupling issues
were discussed.

2. Measuring Method and Measuring System

2.1. Method

For a quasi-static problem, the voltage U(t) of the conductor is linear to the electric field E(t)
caused by it, which can be expressed as:

U(t) = kE(t). (1)

Normally, the voltage waveform of a transient process includes the power-frequency component
and the transient component. Since the amplitude of the power-frequency voltage is known for a power
grid, by comparing the amplitudes of the power-frequency voltage and the measured power-frequency
electric field, the coefficient k in (1) can be given.
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In an actual AC power system, the transmission line contains three phase conductors, which
unavoidably lead to the coupling effect for the non-contact measuring technique as illustrated in
Figure 1. Beneath each phase conductor, an electric-field sensor is installed denoted as Sensor A, Sensor
B, and Sensor C for the corresponding phase.
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Figure 1. Schematic diagram of the measuring principle. Ua, Ub, Uc—potentials on phase conductors;
PSA, PSB, PSC—positions where electric field sensors are set; EaA, EbA, EcA—electric field produced by
Ua, Ub, and Uc, respectively at position PSA.

Sensors are arranged at the height level with enough air insulation clearance against corresponding
conductors. As conductors are energized, the potentials of three-phase conductors produce electric
fields at sensor’s locations denoted by PSA, PSB, and PSC in Figure 1. Taking PSA as an example,
the electric field at PSA is a compound electric field contributed by EaA, EbA, and EcA which can be
decomposed into the components in the x-axis (EaA-x, EbA-x, EcA-x) and z-axis (EaA-z, EbA-z, EcA-z)
respectively. The total electric field at PSA (EA) can be given by:

EA(t) = EA−x(t) + EA−z(t)i

=
[

kaA−x kbA−x kcA−x
]

Ua(t)
Ub(t)
Uc(t)

+ [
kaA−z kbA−z kcA−z

]
Ua(t)
Ub(t)
Uc(t)

i, (2)

where k is a coefficient equalling to the ratio of electric field detected to the origin potential. The first
letter in the subscript of k represents the phase conductor producing the aimed electric field, and the
second letter represents the phase under investigation. To integrate three phases, the electric field
matrix can be written as follows:
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Based on either (4) or (5), the voltage waveforms on a conductor can be given by measuring the
electric fields in the case that the k matrix is known.

2.2. Sensor

An integrated optical electric-field sensor is developed based on the Pockels effect [17–19]. In
this optical sensor, an optical waveguide is fabricated on a LiNbO3 substrate by titanium diffusion.
The refractive index of the optical waveguide would be changed under an external electric field (E).
Thus, while a polarized light passes through the optical waveguide, there would be a phase difference
between its vertical and horizontal components. The modulated polarized light was transmitted to a
common path interferometer via a polarization maintaining optical fiber, while the phase difference
caused by external electric-field is demodulated into light intensity. Eventually, the light intensity is
transferred into an electrical signal (Uout) by a laser receiver. The relationship between E and Uout is
given as [20,21]:

Uout = A ·
[
1 + b · cos

(
φ0 +

E
Eπ
π
)]

(6)

where A represents the photoelectric conversion coefficient and the transmission loss. b denotes the
extinction ratio. φ0 can be controlled near π/2 through the production of the sensor. In the case that the
external electric field is much smaller than the half-wave electric field (Eπ), by Taylor’s expansion, (6)
can be rewritten as:

Uout = A ·
[
1 + b ·

E
Eπ
π
]
. (7)

Thus, the output voltage of the optical electric-field measuring system is linear to the external
electric field.

Figure 2 shows the schematic diagram of the developed optical sensor which has the dimensions
of 18 mm by 18 mm by 48 mm and a weight of dozens of grams. The sensors, as well as the
input and output fibres, are made of dielectric materials which could guarantees the safety under
high-voltage conditions. Moreover, the sensor indicates a good directivity as it is sensitive to the
electric-field component perpendicular to the front of the sensor. On the field measurement, the sensor
is usually facing the measured conductor. Thus, instead of (4), (5) is normally used to compute the
transient voltage.
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Figure 2. Integrated optical electric-field sensor. (a) schematic diagram; (b) product photo.

2.3. Measuring System

The measuring system contains an optical electric-field measuring unit and a data processing unit.
The optical electric-field measuring unit includes optical sensors, a laser source, a laser receiver, and
transmission fibers. The output analog signals of the laser receiver are converted into digital signals
by a high-speed data acquisition card (HS-DAQ) with 4 acquisition channels and a sampling ratio of
40 MS/s. The digital signals are temporarily stored in the internal storage and further analyzed by the
central processor to determine whether a transient process occurs. While the system is triggered by the
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transient voltage, the transient voltage waveform from 20 ms before to 80 ms after the triggering will
be stored into the local storage hard disk. Simultaneously, 400 milliseconds voltage waveform after the
triggering time would also be recorded with a sampling ratio of 20 kS/s. All these signals are timed by
a GPS module with the error of less than 100 ns. The field measured signal will be transmitted to the
central station by a 4G wireless communication module. Thus, the HS-DAQ, the central processor,
the internal storage, the hard disk, the GPS module, and the communication module constitute the
data processing system. Except for the sensors and optical fibers, all the other devices integrated into
a cabinet or a portable suitcase and powered by an isolated power supply. The general connection
diagram of the measuring system is shown in Figure 3.
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Due to the nature of randomness for the lightning strike, the sensors used for measuring lightning
transient voltages are installed outdoor for a long term. To protect them from environmental effects,
sensor containers are used, which are supported by a grounded metal tube to the same level of the
base of adjacent insulators, as shown in Figure 4a. For the measurement of switching transient voltage,
the sensors are just supported by an insulating rod temporarily, as shown in Figure 4b. On both
arrangements, the clearances between the sensor and the high-voltage conductor are no shorter than
the necessary distance specified in [5].
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Figure 4. Field arrangement of sensors. (a) Field arrangement of sensors for monitoring the lightning
transient voltage; (b) Field arrangement of sensors for measuring the switching transient voltage.

2.4. Performance Test

To ensure that the developed measuring system meets the performance requirements for the
transient voltage measurement, a series of tests including the response speed and frequency response
have been carried out in the laboratory.
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A 5 kV 1.2/30 µs lighting impulse was imposed on a circular-shape plane-plane gap with the
gap distance of 10 cm and the radius of 50 cm. A 996:1 standard impulse voltage divider was
employed to offer the standard measuring result. The normalized measuring results of the developed
measuring system and the standard divider are shown in Figure 5a. To determine the response time
of the measuring system which is in the range of nanoseconds, a bounded wave electromagnetic
pulse simulator, composed of charging transformer, impulse capacitor, sharping switch, parallel-plate
transmission line, and matching resistor was employed to generate a pulse with 6 ns for the rise time
and 38 ns for the half time. A 104.2:1 standard resistive divider was used to offer standard measuring
results. The normalized measuring results are shown in Figure 5b, which indicates that the response
time of the measuring system is less than 6 ns.
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To conduct the frequency response test, a signal generator was employed to generate a standard
sinusoidal voltage from 5 Hz to 250 kHz. The frequency response of a higher frequency range is
determined by a sharp voltage impulse which was imposed on a transverse electric and magnetic field
(TEM) cell. The amplitude-frequency response is shown in Figure 6. Except for individual resonant
frequencies, the curve of the amplitude-frequency response is flat from 5 Hz to 100 MHz.
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Based on the characteristics of transient voltages defined in [5], performances of the measuring
system developed in this paper have satisfied the requirements for measuring field transient voltages
in AC high-voltage power grid.
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3. Results

3.1. Lightning Transient Voltages

3.1.1. Field Test Overview

Considering the randomness of lightning strikes, the measuring system was installed for a certain
duration in a 220 kV Yan-Zhuang overhead transmission line connecting the Yanshenshang substation
(Y-substation) and the Zhuangshang substation (Z-substation) with 78 towers and the length of 39.8 km.
The area of the transmission lines has an average ground flash density about 1.012 times/km2 in 2015
and 2.155 times/km2 in 2016. Measuring systems were arranged on the entrances of Y-substation and
Z-substation respectively.

The causes for the transient voltage in a substation are various, including the operations, lightning
strikes, electro-magnetic interferences, etc. To distinguish the actual lightning transient voltage, the
measuring systems are synchronized with the lightning location system of China (LLS). The LLS
includes over 940 lightning detection terminals covering most areas of China. Its average detection
efficiency is higher than 90% and the location errors are smaller than 500 m. The errors of GPS clock
using in the measuring system and LLS are both in one hundred nanoseconds.

A ground flash event usually contains the first stroke and several subsequent strokes. The period
between two continuous strokes is usually longer than 30 ms [22]. Since the length of Yan-Zhuang line
is 39.8 km, the difference of the triggering time of the measuring systems and the LLS will not be longer
than 150 µs. Thus, the recorded data is considered to be a lightning transient voltage waveform caused
by an involved ground flash, while the measuring system is triggered and the LLS has recorded a
ground flash near the Yan-Zhuang line in 1 ms. Moreover, both the event that the measuring equipment
is triggered and a ground flash strike to the point near the monitored transmission line are of small
probabilities. When two small probability events happen almost at the same time, it is believed that
these two observed processes are the same event.

3.1.2. Typical Measurement Results

In 2017, a total of 832 pieces of data had been recorded by the two measuring systems. 650 pieces
of data had been recorded by the system in Z-substation and 184 pieces of data had been recorded by
the system in the Y-substation. 307 pieces of data can be synchronized with a ground flash recorded by
the LLS.

Once a lightning stroke was recorded by two measuring systems, the double-end traveling wave
location method (DTLM) is activated to determine the position along the Yan-Zhuang line and nearest
to the lightning stroke point.

On 13:58:27, May 14th, 2017, the two measuring systems were triggered in succession and the
original recorded voltage waveforms from the sensors of phase C are shown in Figure 7. Obvious
voltage fluctuations can be seen in the dotted box. After filtering out the power frequency signal, the
lightning transient voltage waveforms are shown in Figure 8. As shown in the figures, the arriving time
of lightning transient voltage for the Y-substation and Z-substation are estimated to be 341,862.1 µs
and 341,911.1 µs, respectively. The time difference is 49.0 µs. According to DTLM, the initial position
(which is usually the position nearest to the lightning stroke point on the transmission line) of the
lightning transient traveling wave is about 12.41 km away from the Y-substation, which is between
No. 25 tower and No. 26 tower. Meanwhile, LLS indicated that there was a lightning stroke with a
return stroke current of −49.5 kA near No. 23 tower. The location error could be caused by the sag
of transmission lines, the distortion of transient voltage during transmitting, the nonideal traveling
velocity, and the randomness of the lightning stroke.
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3.2. Switching Transient Voltages

3.2.1. Field Test Overview

Series of switching transient voltages were measured by a portable measuring system during
the commissioning of 500 kV middle Tibet power grid. In this power grid, the transmission lines are
mostly longer than 150 km with an average altitude beyond 3000 m. The operations for the transient
voltage measurement mainly include:

(1) switching on the no-load long overhead transmission line;
(2) switching on the no-load power transformer in the substation;
(3) switching off the no-load power transformer in the substation.

For the operation (1), the sensors were arranged under the end terminal of the transmission lines
and the sensors were arranged under the entrance conductors of the transformers for the operation (2)
and (3).

3.2.2. Typical Measuring Results

(1) Transient voltages during switching on the Tang-Xiang transmission line
Tang-Xiang transmission line connects the 500 kV Batang substation and the 500 kV Xiangcheng

substation. The length of this line is about 190 km with the common-tower double-transmission
scheme. Before the energization, the line is disconnected at both sides with a suspended potential.
The sensors are arranged under the conductors on the Batang substation. The energization process is
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accomplished by switching on the breakers on the Xiangcheng substation to connect the line to the
500 kV bus bar.

The typical measuring result after the decoupling process for this type of switching transient
voltage is shown in Figure 9. The maximum overvoltage (Umax) of 679.6 kV appeared on the Phase C
which is 1.66 times of the rated value. While the conductor of Phase C was energized, a negative edge
of the voltage formed on Phase B at the Xiangcheng side which then reached the Batang side (sensor
installed) at t1 (18.226 ms). Then this edge further transmitted back to the Xiangcheng substation
and then reflected back to the Batang side at t2 (19.596 ms). During the period between t1 and t2, the
traveling wave has passed through the transmission line twice. Thus, the actual average velocity of the
traveling wave on this line is estimated to be about 2.77 × 108 m/s. Moreover, this estimated velocity
from field measured data can be used in the fault determination in the future.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 13 

The typical measuring result after the decoupling process for this type of switching transient 

voltage is shown in Figure 9. The maximum overvoltage (Umax) of 679.6 kV appeared on the Phase C 

which is 1.66 times of the rated value. While the conductor of Phase C was energized, a negative edge 

of the voltage formed on Phase B at the Xiangcheng side which then reached the Batang side (sensor 

installed) at t1 (18.226 ms). Then this edge further transmitted back to the Xiangcheng substation and 

then reflected back to the Batang side at t2 (19.596 ms). During the period between t1 and t2, the 

traveling wave has passed through the transmission line twice. Thus, the actual average velocity of 

the traveling wave on this line is estimated to be about 2.77 × 108 m/s. Moreover, this estimated 

velocity from field measured data can be used in the fault determination in the future. 

 

Figure 9. Transient voltage during switching on the Tang-Xiang transmission line. 

(2) Transient voltages during switching on a power transformer to the bus bar 

The transient voltages on switching the #3 power transformer onto the 500 kV bus bar on Batang 

substation were measured and the typical measured results were shown in Figure 10. To avoid 

involving overvoltage caused by magnetizing rush current during switching on a no-load power 

transformer, the closing resistors, and phase selection closing strategy were used during the 

operations. According to Figure 10, the breaker of Phase A were closed firstly and the voltage on the 

Phase A conductor reached the rated value immediately. Though the breaker for Phase B and Phase 

C were still open, the voltage on these two phases rose to about half of the rated value. This is because 

the flux linkage in the power transformer had been established by the winding of Phase A and the 

winding for the three phases are in the same flux linkage. About four and a quarter periods later 

(85.84 ms), the breakers of Phase B and Phase C were closed, and a transient overvoltage of 

approximately 554.2 kV (1.36 p.u.) can be found on Phase C. 

 

Figure 10. Transient voltage during switching on the #3 power transformer on Batang substation. 

(3) Transient voltages during switching off a power transformer from the bus bar 

While switching off the no-load power transformer under non-zero running current, since the 

current flowing through an inductance never suddenly changes, the residual running current will 

Figure 9. Transient voltage during switching on the Tang-Xiang transmission line.

(2) Transient voltages during switching on a power transformer to the bus bar
The transient voltages on switching the #3 power transformer onto the 500 kV bus bar on Batang

substation were measured and the typical measured results were shown in Figure 10. To avoid
involving overvoltage caused by magnetizing rush current during switching on a no-load power
transformer, the closing resistors, and phase selection closing strategy were used during the operations.
According to Figure 10, the breaker of Phase A were closed firstly and the voltage on the Phase A
conductor reached the rated value immediately. Though the breaker for Phase B and Phase C were still
open, the voltage on these two phases rose to about half of the rated value. This is because the flux
linkage in the power transformer had been established by the winding of Phase A and the winding for
the three phases are in the same flux linkage. About four and a quarter periods later (85.84 ms), the
breakers of Phase B and Phase C were closed, and a transient overvoltage of approximately 554.2 kV
(1.36 p.u.) can be found on Phase C.
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(3) Transient voltages during switching off a power transformer from the bus bar
While switching off the no-load power transformer under non-zero running current, since the

current flowing through an inductance never suddenly changes, the residual running current will
charge the capacitance connecting to the transformer. This energization process would produce
transient overvoltage. The amplitude of the overvoltage mainly depends on the current upon switching
off the power transformer. Theoretically, a larger current leads to a higher overvoltage.

The transient voltage while switching off the #3 power transformer from the 500 kV bus bar
on Batang substation is shown in Figure 11. The breaker of Phase C was opened while the voltage
just crossed the zero level with a low value. For a no-load power transformer, it can be treated as
an inductance of which the current lags the voltage by 90◦, indicating the current flowing through
Phase C was near its peak value while the breaker opened. In this case, there is an overvoltage with
an amplitude of −703.9 kV (1.73 p.u.) on Phase C, while the voltages on Phase A and Phase B are
relatively lower.
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Figure 11. Transient voltage during switching off the #3 power transformer on Batang substation.

4. Discussion

4.1. Data Decoupling

According to the measuring principle, a decoupling process is necessary to recover the actual
voltage waveforms on a high-voltage conductor from the original measured data, for which the
coefficient matrix is the key. Under an ideal condition, the coefficient matrix can be found by static
electric field analysis. However, the actual on-site situation brings about unpredictable variations
to the matrix. Therefore, determining the matrix from field measured data is more effective and
reasonable. In [23], an example for acquiring the coefficient matrix according to the field measured data
is presented in which three capacitor voltage dividers for three phases are switched onto the bus bar by
disconnectors. Since the switching processes for the three phases are not absolutely synchronized, the
changes of transient voltages would appear asynchronously on the conductors. Taking Phase A as an
example, if a sharp voltage change happens in Phase A, all the sensors for the three phases will record
an electric field change. According to the definition of k, the first column of the coefficient matrix
could be determined. Using the same method, the second and third columns could also be found by
recording a sharp voltage change on Phase B and Phase C. Moreover, based on the phase difference and
amplitude among three-phase power frequency voltage, several equations could also be established to
solve the k coefficient in (5). Above three switching transient measurement results are all decoupled.

For the 220 kV Yan-Zhuang overhead transmission line, no asynchronous transient process has
been recorded by far. Thus, it is unfortunate that no opportunity has been given to solve the decoupling
coefficients. Instead, a calibration work has been planned on the next power outage of this line.
In the calibration, the impulse voltage will be applied to each phase conductor by turns to obtain
the decoupling coefficients. However, since the data recorded is all triggered by induction strokes,
the three-phase waveforms of transient voltages are synchronized with the same variation trend.
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Moreover, the coefficients in the matrix of (5) have the same polarity. With linear superposition, in (5),
the variation trends of the measured electric field waveform (E) and the transient voltage waveform
(U) would be the same in the time domain.

Setting the waveform on Phase A, Phase B, and Phase C are UA(t), UB(t), and UC(t), respectively.
Since they have the same variation trend, they can express as:

UA(t) = maUn(t) (8)

UB(t) = mbUn(t) (9)

UC(t) = mcUn(t) (10)

where Un(t) is a normalized waveform, and ma, mb, and mc are the amplitude coefficients for UA(t),
UB(t), and UC(t), respectively. Taking Ea-z(t) in (5) as an example, it can be express as:

EA−z(t) = (kaA−zma + kbA−zmb + kcA−zmc)Un(t) (11)

It is obvious that the composite electric field has the same variation trend with the original transient
voltages. In other words, they will have the same value of time parameters, such as the rising time and
half wave time. However, the amplitude value needs to implement the decoupling process.

4.2. Characteristics of Lightning Transient Voltages

The general waveform of the measured lightning transient voltage is a damped oscillation curve.
The duration of oscillation can be several milliseconds. The distribution of rising time (tr) and half
wave time (th) are shown in Figure 12. The rising time (tr) of measured lightning transient voltage
varies from several microseconds to about 200 microseconds. The distribution of tr is mainly in the
region from 10 µs to 50 µs with a middle value of approximately 34.3 µs. The half wave time (th) varies
from several tens of microseconds to about 350 microseconds. The distribution of th is mainly in the
region from 40 µs to 160 µs with a middle value of about 105.25 µs. These features are much different
from those of the standard lightning impulse voltage [24]. Thus, it is necessary to conduct research on
the insulation performances under the standard lightning impulse voltage and the actual lightning
voltage they suffered.
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5. Conclusions

To measure the transient voltages in an AC power grid safely, a non-contact measuring method
was developed. An integrated optical electric-field sensor based on the Pockels effect was developed, as
well as the measuring system. These measuring systems were used to monitor the lightning transient
voltages and measure the typical switching transient voltages.
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(1) The measuring system has a response time less than 6 nanoseconds and a relatively flat
amplitude-frequency characteristic from 5 Hz to 100 MHz. Its performances meet the requirements for
measuring transient voltages in an AC power grid.

(2) In 2017, 307 lightning transient voltage waveforms were recorded on a 220 kV overhead
transmission line. All of these transients were caused by induction strokes with damped oscillation
waveforms illustrated. Their rising time varies from several microseconds to about 200 microseconds,
of which the middle value is 34.3 µs. The distribution of rising time mainly ranges from 10 µs to 50 µs.
The half wave time varies from several tens of microseconds to about 350 microseconds, of which
the middle value is 105.25 µs. The distribution of half wave time mainly ranges from 40 µs to 160 µs.
These features are much different from those of the standard lightning impulse voltage.

(3) Three types of typical switching transient voltages, including switching on the no-load long
transmission line, switching on the no-load power transformer, and switching off the no-load power
transformer, were measured during the commissioning of 500 kV middle Tibet power grid. A 1.73 p.u.
overvoltage was recorded during switching off the no-load power transformer because the breaker cut
off the current near its peak value.

(4) Based on the wave transmission theory, the lightning stroke position, the actual transmission
velocity of the traveling wave can be estimated with an accurate time of the transient voltage.

The new measuring technology based on optical electric-field sensor supply a more convenient
field measuring method for transient voltages.
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