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Abstract: Sign language recognition (SLR) is a bridge linking the hearing impaired and the general
public. Some SLR methods using wearable data gloves are not portable enough to provide daily sign
language translation service, while visual SLR is more flexible to work with in most scenes. This
paper introduces a monocular vision-based approach to SLR. Human skeleton action recognition is
proposed to express semantic information, including the representation of signs’” gestures, using the
regularization of body joint features and a deep-forest-based semantic classifier with a voting strategy.
We test our approach on the public American Sign Language Lexicon Video Dataset (ASLLVD) and a
private testing set. It proves to achieve a promising performance and shows a high generalization
capability on the testing set.

Keywords: sign language recognition; monocular vision; deep forest

1. Introduction

Sign language plays an indispensable role in the soundless world. It has been widely used across
the world as the language of the hearing impaired. However, it is still a prominent problem for the
hearing impaired to communicate with people who have normal hearing. Written communication
on paper is a common method, but it has the disadvantage of inefficiency. Great effort is needed to
help the hearing impaired to communicate well with the normal people, and using sign language
recognition (SLR) techniques is an efficient way because SLR can convert the sign language into text or
even voice. For example, a hearing impaired person could use a portable device to simultaneously
communicate with someone. The SLR tool recognizes the signs and then shows the messages on
the screen or speaks them out. It requires the device to work online under the condition of limited
computing resources and power.

Research in the field of SLR can be divided into two categories [1,2]. One is static gesture,
mainly used to represent letters of the alphabet, and the other is dynamic gesture, covering most sign
languages.To recognize both static and dynamic gestures, feature extraction and semantic identification
are the keys. The visual method and the wearable method are two main methods to acquire sign
language features. The former uses monocular/stereo/depth cameras to capture gesture images and
extract visual features [3]. The latter uses data gloves, which are equipped with embedded sensors, to
get the joints” locations directly [4-6].

Despite the flexible motion of human hands, data gloves can accurately obtain the
three-dimensional information of a gesture in space [7]. Their disadvantage is that the operator
must wear data gloves, which weakens the naturalness and flexibility of human—computer interaction.
Besides, the price of the data glove is another reason for its limited use and promotion.
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The visual SLR method using depth/stereo cameras, such as Kinect®, can generate outstanding
results using a depth vision feature [8,9]. Kinect® is a motion-sensing device produced by Microsoft
that is based on a time-of-flight camera. These cameras have a large overhead of hardware, and they
are sensitive to environments like variant illumination. Compared with the depth/stereo camera,
the monocular camera has a lighter structure and is less expensive, but requires robust recognition
algorithms. Since the monocular camera only produces RGB images without depth information, it
requires a powerful algorithm to achieve a promising result compared with depth/stereo cameras [2].
In the field of semantic recognition, there are two tendencies: the traditional methods, including
hidden Markov models (HMMs) and dynamic time warping (DTW) [10,11], and the machine learning
methods such as support vector machine (SVM) and deep neural networks (DNNs) [12].

The HMM model was mainly used in the field of speech recognition in the early days [13,14].
Although the HMM has achieved great success in speech recognition, its performance in SLR is not
satisfactory. The reason is that the traditional HMM method needs to establish HMM models for each
gesture separately, affecting the real-time performance of the system. In contrast, the DTW method is
simple and effective. The optimal dynamic programming matching algorithm can be used to improve
the accuracy rate of SLR [15]. Since DTW is based on a template matching algorithm, it is difficult for
it to learn from data, which limits its robustness.

Machine learning methods have the characteristics of high parallelism, adaptability, and certain
learning capabilities [16,17]. In particular, DNNs normally have various network models, which satisfy
different application requirements. The accuracy of the DNNs depends on the number of training
samples. In the field of sign language, as shown in Table 1, there is no public sign language dataset
that has a large number of various signs and meanwhile has a sufficient volume of samples for each
sign. It is hard for DNNSs to achieve good performance if there are only between one and three samples
for a sign. In addition, the computational overhead is also an obstacle in practical applications.

Table 1. Public sign language datasets.

Index Dataset Country  Number of Signs Sample Number
1 DGS Kinect 40  Germany 40 3000
2 SIGNUM Germany 25 33,210
3 Boston ASLLVD USA 3300 9800
4 ASL-LEX USA 1000 1000
5 LSA64 signs Argentina 64 3200

This paper introduces a novel SLR method for dynamic gestures that has high robustness and
a strong generalization performance. We propose a combined joint model with both hand and arm
joints to represent a human’s pose. Considering the characteristics of joints, we employ the extracted
joints as the body features to explain the sign language. Overall, our SLR model involves two steps: In
the first step, a visual skeleton extraction method is used to encode the body joint information via the
OpenPose detector [18]. In the second step, a small sample data is used to train a classifier based on
the deep forest model [19], which is compared with the SVM-based one.

The paper is organized as follows: In Section 2, the paper introduces relevant research from the
aspect of skeleton detection. In Section 3, the basic modeling formulation is presented with the visual
skeleton extraction method, the joint feature re-encoding method, the semantic classification, and the
voting mechanism. In Section 4, the experiment is carried out with the public dataset and our private
testing set, respectively. Finally, the conclusion is given in Section 5.

2. Related Work

Before the emergence of end-to-end learning, the main steps of visual sign language
recognition could be divided into three parts: human skeleton detection, feature extraction, and
semantic classification.
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In terms of human skeleton detection, most traditional methods use the color-based skin
segmentation model, which detects the human skeleton by the difference between the human'’s
color and the background color [20]. Nada et al. presented a dynamic skin detector based on face color
tone and a skin-blob tracking technique for hand segmentation. It has a recognition rate of 97% in
a signer-independent mode [21]. In recent years, along with the rise of depth cameras, e.g., Microsoft’s
Kinect, many researchers have tried to combine depth information with appearance information. It
can provide RGB images, depth images, and skeleton data [22]. Dong et al. adopted a 3D hand
template with joint angle features with Microsoft’s Kinect [23]. Silvia et al. used seven vision-based
features from the RGB-D images and achieved accuracy results above 80% on average in Brazilian Sign
Language [24].

After obtaining the human skeleton data, it is necessary to extract features from them. There are
two types of features: graphical features and interaction information between skeleton. Graphical
features involve the Fourier, Zernike moments, the pseudo-Zernike moments, the Hu moments, the
complex moments, the Gabor features, and others [25,26]. Ozbay and Safar used the Hausdorff
distance and Hu invariants to process hand movements in a universal sign language recognition
system [27]. Since the depth camera is able to convert human body images into human joint
information, the meanings of signs are embedded in the distribution of joints [28]. Kishore et al.
proposed a characterization of sign language gestures articulated at different body parts as 3D
motionlets, which describe the signs with a subset of joint motions [29].

In the area of semantic classification, HMMs and DTW have been used to classify features since
early times [30]. Pradeep et al. performed the recognition process using an HMM. The results showed
the efficiency of the proposed framework, with an accuracy of 83.77% on occluded gestures [31].
However, due to the high efficiency of SVM, many scholars have tended to use SVM and make some
improvements on it. Naresh combined linear discriminant analysis (LDA) and SVM to form the basis
of tenfold classification to recognize sign language symbols. His work ensures 97.3% accuracy on a
random sign symbolic dataset of gestural communication [32].

When neural networks, and especially deep learning methods, arose, the boundaries between
feature extraction and semantic classification in SLR became blurred and even disappeared. A neural
network can automatically learn and extract classification features from the input images [33].
Kiran et al. applied convolutional neural networks (CNNs) in the recognition of 3D motion-captured
sign language. The 3D spatiotemporal information of each sign was interpreted using joint angular
displacement maps (JADMSs), which encoded the sign as a color texture image [16]. Although deep
neural networks show strong performance, the performance of neural networks depends on the size
and quality of the datasets.

3. Framework

3.1. Problem Formulation

Human speech conveys information through sound, while sign language conveys information
through body gestures. To identify sign language, gestures should be described precisely. In sign
language, gestures mainly involve the movements of hands and arms. Therefore, gestures can be
described by the continuous posture of hands and arms including position, movement, and shape.
Position and movement can be represented using a human skeleton model. Since the shape of hands
and arms has little effect on the meaning of sign language, modeling with the skeleton, especially
joints, is sufficient for SLR. This paper presents a combined joint model with both hand and arm joints.
Figure 1 shows the 48-marker template designed to represent hand and arm joints. The number of
markers is defined as

Njoints = Narm + Npgna +1, (1)

where N, is the number of arm joints, denoted as [y, ..., J¢ (blue points in Figure 1), Nj;,4 is the
number of finger joints, denoted as J7, . . ., J4g (green points in Figure 1), and an extra root joint Jy (black
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point in Figure 1), for each joint ]Z ={ pi, c]t} € R3 with pj; = (x{,y{) at each frame t. p]; and c{ are
defined as the position vector and the position confidence of the joint.
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Figure 1. 48 markers of hand and arm joints with one root joint.

The framework of the SLR method is illustrated in Figure 2. The input is the raw image sequence
from a monocular camera. The keypoints, regarded as the joints of the skeleton, are extracted
frame-by-frame, and then the position vector and its confidence are calculated in term of the keypoints.
In addition, we regularize the position vector into the normal position vector using a scaling coefficient
generated from the position vector. The regularized position vectors are used as the input of the deep
forest-based classifier. The output is the classifier combined with the confidence, which is used to

generate the result by a voting strategy.
Source Video Data

Keypoints Data

y v

Positon Vector Confidence

A

Scaling Coefficient

A
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Final Result

Figure 2. Flowchart of our sign language recognition (SLR) approach.

A

3.2. Feature Extraction

We employ OpenPose to obtain the joints information. OpenPose is a library for real-time
keypoints detection [18]. OpenPose is a bottom-up algorithm of human pose estimation using part
affinity fields (PAFs). It is a kind of real-time system to jointly detect human body, hands, and facial
keypoints from a single image. Here, we explore one chest point, 6 arm joints (corresponding to the
shoulders, the elbows, and the wrists), and 42 hand points (corresponding to the palms and the fingers).
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The anatomical keypoints of people are extracted from an RGB image. PAFs are used to describe
the direction of pixels in the skeleton, denoted as L(p), and the confidence maps for body part location
are represented by S(p), where p represents the locations of the keypoints in the image. The network
uses a VGG pre-trained network as the encoder. The detection and association of keypoints are
conducted simultaneously via two branches: the confidence map prediction and the affinity fields
prediction. Finally, the confidence maps and PAFs are parsed to generate the 2D keypoints of people.
The overall loss functions are defined as

T

=Y (fs+f1), ¢)

t=1

J
Y Y Wp)-lISi(p) =S (P32, ®)
p

=1

C
ZZ “ILe(p) — Lé(p)I3, @)
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where S represents the ground-truth part confidence map, J represents the keypoints, L} represents
the ground-truth part affinity vector field, C represents the limbs of the human body, W(p) represents
the indicator function to diminish the loss of missing annotation, and || - || stands for the
Euclidean distance.

3.3. Regularization

Due to differences in human body size, distance from lens, and viewpoints of cameras,
the distribution of joint points varies greatly in different images. A scaling method is used to make
features consistent. At each frame t, the scaling coefficient k; is defined as

k= —1  cR, 5)

O L

where L refers to shoulder width and the length of upper arms and lower arms, which is defined as

i =1or4
Li— ||Pt PtH 1 cR. ]
t {Ilm Y, i=2350r6 ©)

In the default coordinates, the origin of the coordinates is located at the lower left corner of the
image, which cannot reflect hand movement efficiently due to the symmetry of the human body’s
left and right parts. Hence, another regularization method is used to make data symmetrical. In each
frame t, the regularized position vector of each joint is defined as

ol =pl—p?, j=1t048. @)

The complete definition of the regularization process is

R =£(J}) = (r},c}) € &, ®)
, , 0
withrl{:f(p)—ktvt g ;Ztl € R?, 9)
=1

where f is the regularization function, and R} and 7] represent the regularized point and the regularized

position vector, respectively. k; and v{ are the scaling coefficient and the regularized position vector,
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respectively. ci is the coordinate confidence. p]t and L! are the position vector and the size of human
body, respectively.
In each frame ¢, a confidence C; is used to evaluate the total confidence, which is defined as

N J
LioC
N

Cr = , N = 49. (10)

3.4. Semantic Classification

Deep neural networks ask for a huge amount of training data. It is hard to apply in certain tasks
where there are only small-scale data. It is necessary to find an alternative to the deep neural networks.
In this paper, we explore a deep forest-based classifier, which is fit for working on small-scale datasets.
This classifier combines the characteristics of deep learning and random forests [19]. The framework
of the Deep Forest is shown in Figure 3.

Source Data
e |
! |
|
| | Random Forest 1 | | Random Forest 2 | | Complete-Random Forest 1 | | Complete-Random Forest 2 | :
! |
Layer 1 | |
|
| | Classification Result 1 | | Classification Result 2| | Classification Result 3| | Classification Result 4| :
! |
D J
e  A—— |
! |
! |
| | Random Forest 1 | | Random Forest 2 | | Complete-Random Forest 1 | | Complete-Random Forest 2 | |
Layer 2 : :
! |
| | Classification Result 1 | | Classification Result 2| | Classification Result 3| | Classification Result 4| |
! |
D J
S,
| ? |
Layer m 1 R <:_
S H
| Classification Result 1 | | Classification Result 2| | Classification Result 3| | Classification Result 4|

Final Result

Figure 3. Deep forest-based classifier.

In our task, for each frame ¢, the input feature matrix is defined as

F = (rtl,rtz,...,rfs)T
= Lyt iyt Xyt e R, (11)

with the regularized position vector ri € R?. Deep forest consists of several layers Ly,L, to Ly, where
m depends on the training data. In the layer L;,i = 1 to m, there are two random forests (RF;; and
RFj5) and two complete-random forests (CRF;; and CRFj;). Each random forest contains 500 decision
trees, selecting the feature with the largest Gini value from randomly picked features. In contrast, each
complete-random forest contains 500 decision trees, really randomly selecting a feature at each node
of the tree [34]. The combination of two random forests and two complete-random forests decided
by the performance and the model size gives an optimized result. The input of the first layer is the
source data S}. The output of the first layer Re} is cascaded with the source data F! as the input of
the second layer F? = [Re}, F}] € R1?%. Each layer L;,i = 2 to m has the output of the previous layer
Rei~! cascaded with the source data F} as input F/ = [Re! ™!, F!] € R1?8,i = 2 to m. In order to avoid
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over-fitting, each forest training uses K-fold cross-validation. Each sample is used as k — 1 training
and k — 1 inspections, so the probability of each forest generation is not the training result from the
same batch of training data, but is averaged by k — 1 results after the cross-check. After the training of
layer L, the training model is used to estimate a testing set, and a cutoff accuracy A, is selected. If the
accuracy of the obtained result A, is less than A, the training is terminated. This step automatically
determines the number of layers m. There are 3 layers in the deep forest classifier in Section 4. Each
sample will find a path in each tree to find its corresponding leaf node, and the training data in this leaf
node is likely to have different categories. The statistics of various categories can be obtained through u
categories. u is the total number of semantics in the semantic data set, and the probability distribution
of the entire forest is generated by averaging the proportions of all trees. Finally, the semantic category
with the highest probability of each sample is selected as the recognition result for the sample.

3.5. Voting Mechanism

A sign language word is presented by a series of gestures captured by a monocular camera as
a video consisting of t frames. For each frame ¢, the prediction NP, = (pp, pra, - - -, ptk)T € RF is
generated by the trained classifier. py is the possibility of each category within k categories. To decide
the final prediction of the whole gesture, a voting strategy is employed to differentiate and select NP;.
The weighted prediction on frame ¢ is defined as

WP, = NP -C;
= (Cipn, Cipsa, - -, Cip)T € RE, (12)

where C; is the confidence of prediction for frame ¢. The final prediction on the gesture is defined as

Cipun+Copar+...+Cipn

i
L WP B C1P12+Czpiz+--~+cmn
p =

FP = e RF. (13)

Cipi+Copokt.+Cipik
t

The meaning of a sign language symbol is decided by the category with the top prediction score.
The meaning of the sentence is decided by categories with top n prediction scores. The category
none is excluded as it has no meaning. The n is given in advance according to the symbol number of
the sentence.

4. Experiments and Results

We use the public dataset ASLLVD and a private testing set in the experiments. The ASLLVD
consists of more than 3300 American Sign Language (ASL) signs in video clips, including nouns, verbs,
adjectives, and pronouns. Each sign is illustrated by 1-6 native ASL signers. In total, there are more
than 9800 clips of signs. This dataset includes multiple synchronized videos showing the signs from
different viewpoints. We only explore the front view of the monocular camera. Body joint features and
sign recognition result examples are shown in Figure 4.

The classifiers are trained with the annotated images. In our experiments, four classifiers, the
state-of-the-art deep forest and the standard classifiers including support vector machine, decision
tree, and logistic regression have been used and compared in this experiment. We list the performance
of all four classifiers, while only the SVM and deep forest are chosen as the typical classifiers to make
an in-depth analysis.
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Figure 4. Visualized features and extracted vectors of sign recognition from the American Sign
Language Lexicon Video Dataset (ASLLVD).

In the experiment, there are 10 steps, and 10 signs are randomly chosen at the first step. Each
sign includes around 3 video clips, and each clip consists of between 40 and 500 frames. All frames
are labeled with their corresponding signs. Then, 20 signs are selected in the second step, 30 signs
in the third step, and so on. Lastly, 104 signs are used to train the classifiers (we add 4 extra signs in
that these signs can make up some common sentences). All of the experiments are conducted on a
workstation with an Intel Xeon E5-1620 CPU, with 16GB RAM and a Nvidia GTX 1080 Ti GPU. The
average training time of the deep forest classifier is about 5143 s.

The samples of 104 signs (about 24,385 samples) are randomly split into 80% training data
(19,508 samples) and 20% testing data (4877 samples). We adopt precision, recall, and F1 score to
evaluate the performance of multi-sign recognition. The F1 score is the harmonic average of the
precision and recall, where an F1 score reaches between 0 and 1. The F1 score of the four classifiers in
10 experiments is shown in Figure 5. It is defined as

Precision = L
casion = Tp I Fp
TP
Recall = TP+ EN
F, o= 2 Precision - Recall (14)

" Precision + Recall’

where TP, FP, and FN refer to the number of true positive, false positive, and false negative samples.

In the random 10-sign experiments, all classifiers show good performance with F1 scores over
97%, as shown in Figure 5. However, with the increase in signs, the F1 score of the standard classifiers
appears to decrease. The F1 score of the standard classifiers declines below 90% for 100 signs, while
the deep forest classifier still has an F1 score of 97.7%. This can be explained as the standard classifiers
are more useful for binary classification than multiple classification.
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Figure 5. Performance of the support vector machine (SVM) classifier and the deep forest classifier.
The performances of the two typical classifiers on the top 20 signs in the testing data are illustrated
in the form of box-plots in Figure 6. The names of signs, the number of frames, precision, recall, and F1

score are listed in the columns “Signs”, “Number”, “Precision”, “Recall”, and “F1”. In each classifier,
the 20 signs with top number of test samples are listed in Table 2.
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Figure 6. Boxplot comparison between four classifiers.
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Table 2. Performance of SVM and deep forest classifiers for the top 20 signs.

SVM Deep Forest

Sign Number Precision Recall F1 Sign Number Precision Recall F1
None 396 1.00 1.00  1.00 None 396 1.00 1.00  1.00
Same 124 0.91 094 093 Same 124 0.98 099 099
Walk 109 0.77 095  0.85 Walk 109 0.93 098 096
Man 108 0.54 072 0.62 Man 108 0.95 0.89 092
Happy 107 0.90 097 094 Happy 107 0.98 099 099
Excuse 102 1.00 1.00  1.00 Excuse 102 0.96 098 097
Run 97 0.97 0.99 098 Run 97 0.96 0.99 097
Workout 94 0.95 1.00 097  Workout 94 1.00 1.00  1.00
Again 89 0.92 093 093 Again 89 0.92 093 093
Live 84 0.93 092 092 Live 84 1.00 098 099
Look 80 0.66 097 078 Look 80 0.94 1.00  0.97
Hamburger 79 0.90 094 092 Hamburger 79 0.82 095  0.88
Hurt 75 0.93 099 095 Hurt 75 0.99 1.00  0.99
Bird 74 0.86 0.99 092 Bird 74 1.00 096 098
Cat 73 0.87 090  0.89 Cat 73 1.00 096 098
Old 66 0.79 0.58  0.67 Old 66 0.98 098 098
Cold 65 0.93 0.98  0.96 Cold 65 0.97 098 098
Banana 64 1.00 1.00 1.00 Banana 64 0.97 1.00 0.98
Church 63 1.00 098  0.99 Church 63 0.98 098 098
Sleep 63 0.73 092  0.82 Sleep 63 1.00 1.00  1.00
Average - 0.88 087  0.86 Average - 0.98 098 098

Total 4877 - - - Total 4877 - - -

As shown in Table 2, SVM and deep forest have average F1 scores of 86% and 98%, respectively.
The performances of these two classifiers are quite different on some signs. For example, for the
sign hot, SVM gets 0.00 for precision, recall, and F1 score, while deep forest gets 1.00, 0.92, and 0.96,
respectively. Moreover, for the sign milk, SVM gets precision, recall, and F1 scores of 0.48, 0.76, and
0.58, respectively, while deep forest gets 1.00 for all scores. The minimum precision, recall, and F1
scores fpr deep forest are 0.82, 0.79, and 0.86, respectively. This shows that the deep forest classifier has
a better performance than the SVM classifier.

In the private testing dataset, 11 signs chosen to make up 6 daily words/sentences are illustrated
in Table 3. We use a monocular camera to capture sign language videos of two people in two scenes: an
office and a corridor with a black background. Six video clips are captured, containing 37 to 158 frames
each. Figure 7 shows the visualized features and extracted vectors from the private testing dataset. All
signs are picked from the 104 signs of the ASLLVD. The sign none, which has no meaning, is used to
label the beginning and the end of a clip.

Table 3. Private testing set.

Index Signs Word/Sentence
1 Apple Apple
2 Banana Banana
3 Drink .
4 Water Drink-Water
5 Father
6 Walk Father-Walk
7 Hello
8 Where Hello-Where-Toilet
9 Toilet
10 Dog
1 Yesterday Walk-Dog-Yesterday
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Figure 7. Visualized features and extracted vectors from our private testing dataset.

The deep forest and the SVM classifiers trained on the public ASLLVD with 104 signs are used
in the test directly. A test clip is split into frames, and each frame is annotated by using these two
classifiers. The results are handled based on the voting strategy. According to the expected number
of signs, the corresponding top frequent signs are picked to combine the sentence. Table 4 shows
the weighted results of each words. The top 5 weighted results are listed in the columns Predictionl,
Prediction2, Prediction3, Prediction4, and Prediction5. The total column presents the number of frames
for each sentence. The recognition numbers for each sign are weighted and listed in the brackets. Two
widely used evaluation scores, precision of frames (PoF) and recall of signs (RoS), are employed to
illustrate the results.

Table 4. Results for the testing data.

Word/Sentence Prediction1 Prediction2 Prediction3 Prediction4 Prediction5 Total Classifier PoF RoS

Apple(40) - - - - Deep Forest 1.00 1/1

Apple Apple(34) Hello(6) - - - 40 SVM 085 1/1
Banana Banana(60) None(25) Again(16) Come(14) Walk(7) 158 Deep Forest 045 1/1
Banana(63) None(25) Hamburger(19)  Friend(16) Come(15) SVM 047 1/1

e Drink(11) None(6) Water(4) Come(4) Home(3) Deep Forest 0.48 1/2
Drink-Water Drink(9) Eat(8) None(4) Come(d)  Water(® > SYM 027 12
Father-Walk Walk(11) None(8) Father(4) Again(4) Egg(4) 50 Deep Forest 036 1/2
Walk(10) None(8) Know(8) Hello(6) Father(5) SVM 024 1/2

g s Toilet(36) Home(28) Hello(19) Finish(15) Drink(8) Deep Forest 044 2/3
Hello-Where-Toilet 1. 61y Boy(18) Man(10) Hearing(7)  Hello(7) 124 SVM 049 1/3
. 5 Walk(14) Milk(9) Dog(8) Hello(6) Other(4) Deep Forest 040 2/3
Walk-Dog-Yesterday v 11 40) Egg(8) Milk(s) Dog(7) Hello(6) > SYM 023 1/3

The PoF score is defined as N
C

Ny — N/
where N¢, N4, and Ny represent the number of correctly classified frames, the total number of frames,
and the number of no-meaning none frames.

PoF = (15)
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The RoS score is defined as
RoS = —, (16)

where S¢ represents the number of correctly recognized signs and S 4 represents the number of signs
that should be recognized.

A high recognition rate for words with single symbol is shown in Table 4. For example, the word
apple has an excellent recognition rate of 100% because we clip the video by reserving only the key
frames from the whole video. For the word banana, the sign banana has 60 weighted frames, which is
far more than that of the M3 sign again. After that, double-sign sentences can be recognized within a
moderate recognition rate since some other signs are recognized by mistake. In the sentence drink-water,
the sign drink scores 11 weighted frames, but the sign water only scores 4 weighted frames and the
incorrect sign come and home score 4 and 3 weighted frames. A similar result appears in the sentence
father-walk. In the triple sign sentences, since the transition frames between the key frames be a large
proportion of the frames, the meaning of sentences might be confused. In the sentence he/llo-where-toilet,
the core signs toilet and hello are correctly recognized, although some frames are wrongly recognized
as home and finish. In next step, we will focus on this issue, which can be handled by neural language
process models such as long short-term memory (LSTM) [35,36]. Overall, the correctly classified
frames are dominant, and a promising performance is achieved in the isolated words. However,
in terms of multi-word sentences, the desired signs sometimes might be missing or confused with
other signs because the transition frames between two signs might be recognized incorrectly, and the
ASLLVD dataset provides isolated signs for training. It is still not highly effective for multi-word
sentences.

5. Conclusions

In this paper, we propose a monocular vision-based sign language recognition system that is
flexible and accurate for translating visual gesture semantic information into words. The state-of-the-art
human keypoint feature extraction system, OpenPose, is employed to accurately provide the keypoint
position of the human skeleton from a single image sequence. Then, we further propose a feature
regularization to normalize various features and use a deep forest-based classifier to train our model
on a small dataset, including the public ASLLVD and our private testing set. It has proven to achieve
a high generalization performance on varied datasets and be effective in real-world applications.

In the development of this system, some improvements have been identified that can be made
in future. The voting strategy is not quite robust for complex semantic sentences. Considering the
real-time performance, we do not employ a network with memory unit such as LSTM and gated
recurrent unit (GRU) [37,38]. These methods have been proven effective in the field of natural language
processing and are possible solutions to improve the performance of our sign language recognition
system. Moreover, future investigation of other sign languages like Chinese is necessary to gain more
accurate representation, and thus, various datasets from more participants are important to extend
and validate our proposal.
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