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Featured Application: Lateral torsional buckling of beams is a very important issue in the design
of steel structures. Currently, this phenomenon is accounted for in a simplified way, namely by
determining the critical moment of lateral torsional buckling for the theoretical fork support. The
literature on the subject does not provide clear analytical solutions for other support conditions.
This paper reports an original approach to the elastic restraint of warping and the elastic restraint
of lateral rotation of beams at the support nodes. A decided advantage offered by the proposed
solution is more optimal design of steel beams.

Abstract: The study shows the results of theoretical investigations into lateral torsional buckling of
bisymmetric I-beams elastically restrained against warping and against rotation in the plane of lateral
torsional buckling (i.e., against lateral rotation) at the support nodes. The analysis accounted for the
whole variation range of node stiffnesses, from complete warping freedom to full restraint, and from
complete lateral rotation freedom to full restraint. It was assumed the beams are simply supported
against bending about the major axis of the section. To determine the critical moment, the energy
method was used. Both the twist angle function and the lateral deflection function of the beam were
described using power polynomials with simple physical interpretation. Computer programmes were
developed to make numerical and symbolic “computations”. General approximation formulas for
the critical moment for lateral torsional buckling were derived. The formulas covered the basic and
most frequently found loading diagrams. Detailed computations were performed for different values
of the index of fixity against warping and against rotation in the plane of lateral torsional buckling.
The critical moments determined using the programmes devised and approximation formulas were
compared with the values obtained with LTBeam software (FEM). A very good congruence of results
was found.

Keywords: critical moment for lateral torsional buckling; elastic restraint against warping; elastic
restraint against lateral rotation; the energy method; power polynomials; approximation formulas

1. Introduction

Due to high strength of steel, beams of this material used in structures are characterized by
small thicknesses of section walls. Therefore, they are susceptible to various forms of stability loss.
One of the basic forms of general stability loss of beams in bending is the lateral torsional buckling.
Consequently, in the design of steel beams, lateral torsional buckling should be taken into account, as
it can significantly reduce load-bearing capacity and affect the safety of the entire structure.

In such cases, bisymmetrical I-sections are the most commonly used. This happens because,
compared with other profiles of similar heights (e.g., C or Z sections), I-sections show considerable
stiffness in warping torsion [1], which increases the beam resistance to the lateral torsional buckling. In
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metal structures, single-span beams are the most common, which is related to, e.g., ease of assembly. In
many technically important cases, beam static schemes are found, in which beams are freely supported
in bending with respect to the stronger axis of the section. Additionally, they are elastically restrained
against warping and rotation relative to the weaker axis of the section at the supports. As a result, the
calculation model widely used for such beams so far (i.e., theoretical fork support) leads to a gross
simplification. In contrast, the model proposed in the paper, which takes into account the beam elastic
fixing at support nodes, allows a much more accurate representation of actual boundary conditions.
This produces a more accurate value of the critical moment of beam lateral torsional buckling, and
more optimal design of such elements.

The literature on different issues related to lateral torsional buckling (LTB) of beams is vast,
yet in a majority of cases it focuses on the determination of critical moments with the assumption
that fork support is used. For such idealised support conditions, among others, the impact of the
following was investigated: (a) distribution of the bending moment [2–7], (b) points at which various
transverse loads are applied over the section height [2,8–11], (c) elastic restraint against torsion over
the beam length [11–17], (d) geometric ratios of monosymmetric sections [3,5,9], (e) coped beams and
“incomplete” end plates [14,18–23], and (f) point lateral bracings [16,17,24–27].

In real steel structures (e.g., grates, frames or framework structures), however, complex support
conditions of beams and girders occur. In addition to the elastic restraint against rotation about the major
axis of the section (i.e., in the plane of the beam greater stiffness), a restraint of warping and rotation with
respect to the minor axis in the support sections is also found. Theoretical, e.g., [14,18,19,21,22,28–34],
and also experimental investigations [20,23,30] indicate that taking into account the actual conditions
of beam support at the structure nodes can significantly affect the value of the elastic critical moment.

The problem of the beam elastic restraint at the support sections was analysed, among other,
in studies [14,19,28–30,32–36], but in most cases, they dealt exclusively with the elastic restraint
against warping.

Lindner and Gietzelt [30] were concerned with theoretical and experimental determination of
the critical loading of beams stiffened with end plates at supports. The authors derived a formula
for the critical moment for lateral torsional buckling in which a limited freedom of warping of the
support sections was taken into account. The effect of the thickness of end plates on the value of the
critical moment was shown in the graphs. Then, in study [14], the impact of various constructional
details on the critical moment and the ultimate resistance of beams was analysed. In the discussion,
the influence of “complete” end plates connected to flanges and the web, and also “incomplete” end
plates connected only to the web was taken into consideration.

In study [19], Giżejowski discussed different aspects of lateral torsional buckling of beams that
have limited rotational freedom at supports. The author considered a situation in which the bent
element is strengthened (“complete” end plates used and connected to the structure at the nodes), and
the one in which the beam is weakened compared with fork support (e.g., the use of “incomplete”
end plates welded only to the web, and of coped beam flanges at the support nodes). The author
reported an advantageous effect of the additional stiffness of “complete” end plates connected to other
structural members. However, for connections in which “incomplete” end plate is welded only to
the web, and at the same time, the section is reduced due to flange coped, lower critical resistance of
the beam is found compared with the fork support. That may have a disadvantageous effect on the
evaluation of the member resistance, and consequently, on the structural system reliability.

In study [29], the impact of “complete” end plates on the increase in the critical moment for lateral
torsional buckling was considered. Computations for different cases of beams were done analytically
and validated using the Finite Element Method (Abaqus). In studies [18,22], the influence of reduced
connection of beams (“incomplete” end plate welded only to the web and coped flanges of the section)
on the critical moment was analysed. It was confirmed that such a structural design options lower the
value of the critical load compared with the fork support.
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In study [28], Kowal and Malec determined the critical moments for beam lateral torsional
buckling for the case of stiffening against warping with the support ribs with closed circular section.
The solution to the problem was obtained for a single-span beam, and a cantilever beam loaded with
a constant bending moment over the member length. In such a case, the solution to the differential
equation for lateral torsional buckling is known. It was shown that the use of support ribs with closed
section significantly increased the critical loading of the beams of under consideration. In study [37],
the influence of various types of supporting ribs with a closed cross-section on the critical moment of
the lateral torsional buckling for differently loaded beams was examined. Detailed calculations were
made for uniformly loaded beams. It was found that from the technical and practical standpoint, ribs
made of channels offer the most favourable option as they do not need to be cut along the length as is
the case with circular tubes.

The impact of different types of stiffeners (ribbings) against warping that are located at the site
of beam support, on the value of the critical moment was examined in study [33]. The formulas for
flexural stiffness of ribs and for the degree of elastic restraint against warping for a few types of rib
arrangements were provided. It was confirmed that the greatest restraint of section warping is ensured
by closed ribs that show the highest torsional stiffness. The analytical results were compared with
FEM findings (Abaqus). Study [35] reported theoretical and experimental investigations into beam with
cold-bent open sections, to which the transverse load was applied outside the section shear centre. The
impact of the partial stiffening against warping in the support sections was analysed. The experimental
and theoretical results were compared with FEM data (Abaqus).

Gosowski, e.g., in studies [24,25], took into account the influence of point bracings located in the
plane of lateral torsional buckling, and also the impact of point elastic bracings that confine warping
on the value of the critical moment. The author analysed single- and multi-span beams and also
and beams with cantilevers. Experimental investigations were conducted for selected arrangements
of point elastic bracings. The author demonstrated that point elastic bracings significantly affected
the values of the critical loads of the examined beams. The results of theoretical analyses and the
experimental results were presented in the graphic form.

Study [34] reported the results of theoretical investigations into lateral torsional buckling of
bisymmetric I-beams elastically restrained against warping at the supports. To describe the twist angle,
power polynomials were employed. They were the “deflection functions” of single-span beams, both
hinged and restrained. “Hinged” polynomials were coupled with “restrained” ones by means of the
index of fixity (κ) acc. the original concept first proposed in [38,39]. Programmes for numerical and
symbolic computations were devised. Also, approximation formulas for the determination of the
critical moments for the most commonly found beam loading diagrams were derived. The results of
analytical calculations were validated with FEM computations. It was demonstrated that “coupled”
power polynomials make suitable tools for the approximation of the twist angle function of the element
in those cases, in which elastic restraint against warping at support nodes occurs. Detailed analyses
were carried out for the beams with end plates, however the proposed solution [34] allows taking into
account any type of ribs at the end of beam.

The studies quoted above essentially do not provide unambiguous analytical formulas for the
critical moment for lateral torsional buckling that would simultaneously account for the effect of the
elastic restraint against warping and restraint against lateral rotation at the support nodes. Such
computations can surely be performed using the FEM method, e.g., LTBeam software that utilises finite
bar elements, or by applying more advanced modelling (3D) with the use of the Abaqus software, in
which shell or volumetric elements are employed. However, it should be emphasised that in order
to enhance structural reliability, already at the design stage, FEM computations should be verified
with analytical estimation, even a simplified one. Approximation formulas of that kind could allow
more advanced preliminary design, or for basic loading diagrams, could be employed at the proper
design stage.
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In order to correctly model support conditions in the LTBeam software, it is necessary to precisely
determine and put into the programme appropriate stiffnesses of the elastic restraint. It should be
noted that earlier versions of LTBeam, i.e., 1.0.11, contained an error in the inputting of the data on the
degree of elastic restraint against warping. The error was eliminated from the latest version of the
LTBeamN, namely 1.0.3.

With regard to the analysis of lateral torsional buckling with the Abaqus software, it is much more
complicated to correctly define spring stiffeners at the supports. It is obvious the best solution would
be to model a larger part of structure with the representation of relevant details of connection to the
beam of concern. Such models, however, take much longer time to build and make it necessary for the
designer to have wide experience in FEM spatial modelling. A design engineer needs a faster tool
for estimating the critical moment, even at the expense of lower approximation accuracy. Therefore,
LTBeam software and approximation formulas need to be relied on. The simplest solution is obviously
to assume the fork support regardless of the node structure, yet such an approach will gradually become
outdated. Modern computational models aim at more precise rendering of the actual conditions of
the structure operation. The goal is to adopt a more informed approach to the structural reliability of
members, not relying on unknown bearing capacity reserves but on objective criteria.

In this study, the authors were concerned with lateral torsional buckling of single-span beams
with bisymmetric I-sections. They are elastically restrained against warping and against rotation in the
plane of lateral torsional buckling (i.e., against lateral rotation) at the support nodes. In bending with
respect to the major axis of section stiffness, simple support conditions are found at the supports. In
the analysis of lateral torsional buckling, the energy method [10] was used. The twist angle function
and the function of the beam lateral deflection were approximated with appropriately selected power
polynomials [34]. Programmes for numerical and symbolic “computations” were developed and
approximation formulas were derived to estimate the elastic critical moment for lateral torsional
buckling for most frequently found loading diagrams. Detailed computations were made for beams
with different values of the index of fixity (against warping κω and against lateral rotation κu) with the
assumption of the symmetry of boundary conditions with respect to the beam midspan. The results
received were compared with FEM results (LTBeam [40]).

2. Elastic Restraint Against Warping and Against Lateral Rotation at the Support Nodes

The static diagram of the beam elastically restrained against warping and against lateral rotation
at the support nodes is shown in Figure 1. The springs in colour symbolically represent the elastic
restraint in the support sections, i.e., in red—warping restraint (αω), and in blue—lateral rotation
restraint (αu).
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Figure 1. Static diagram of the beam: (a) bimoment (B) and moment (Mz) at the support, (b) elastic restraint
against warping (αω) and against lateral rotation (αu), (c) twist angle φ(x) and lateral deflection u(x).
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The degree of elastic restraint against warping εω [33–35] can be determined from formula:

εω =
αωL
EIω

(1)

where: αω—stiffness of the elastic restraint against warping [33–35] acc. formula:

αω =
−B
dφ
dx

(2)

where: B—bimoment at the site of beam support, φ—twist angle, dφ
dx —warping of the section.

The degree of elastic restraint εω acc. formula (1), ranges from εω = 0 for complete warping
freedom to εω =∞ for full prevention of warping.

In this study, the degree of elastic restraint against rotation in the plane of lateral torsional buckling
εu, was derived. It was written in the following form:

εu =
αuL
EIz

(3)

where: αu—stiffness of the elastic restraint against lateral rotation acc. formula:

αu =
Mz
du
dx

(4)

where: Mz—bending moment with respect to the minor axis of the section at the support, u—lateral
deflection, du

dx —rotation about axis z.
The degree of elastic restraint εu, acc. formula (3), ranges from εu = 0 for complete rotational

freedom to εu =∞ for full prevention of rotation in the plane of lateral torsional buckling.
In order to account, in an explicit manner, for the beam elastic restraint, in the twist angle function

φ(x) and the lateral deflection function u(x), the dimensionless indexes of fixity against warping κω [34]
and against lateral rotation κu were introduced acc. formulas:

κω =
αωL

2EIω + αωL
κu =

αuL
2EIz + αuL

(5ab)

Indexes of fixity range from κω = 0 (κu = 0) for complete freedom of warping or lateral rotation,
respectively, to κω = 1 (κu = 1) for complete blockage of warping or lateral rotation.

Inverse relations, i.e., αω(κω) and αu(κu), have the following form:

αω =
2κωEIω
(1− κω)L

αu =
2κuEIz

(1− κu)L
(6ab)

The relations holding between the degree of elastic restraint εi (1) and (3) and the index of fixity κi
(5ab) (for i = ω, u) are as follows [34,38,41]:

κi =
εi

2 + εi
εi =

2κi
1− κi

(7)

3. Twist Angle Function and Lateral Deflection Function

In study [42], in which lateral torsional buckling of fork-supported beams was analysed, the
function of the twist angle of the section was approximated using power polynomials that described
“the deflection function” of the hinged beam (Table 1, polynomials WPi). In Table 1, formulas for the
polynomials of deflection were written in the dimensionless coordinates ρ = x/L. To account for the
elastic restraint against warping in the beam support section, in study [34], the twist angle function (φ)
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was extended. That was done by introducing additional polynomials that describe “the deflection
function” of the restrained beam (Table 1, polynomials WUi). “Hinged” polynomials (WPi) were
coupled with “restrained” polynomials (WUi) by means of the index of fixity against warping κω
(5a) [34] acc. formula:

φ(x) =
3∑

i = 1

ai((1− κω)·WPi + κω·WUi) (8)

where: ai—free parameters of the twist angle function, WPi, WUi—polynomials acc. Table 1.

Table 1. Polynomials used and their physical interpretation (where ρ = x/L) [34,43].

Item Polynomials Physical Interpretation

1 2 3

1 WP1 = ρ− 2ρ3 + ρ4
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κω (5a) [34] acc. formula: 

( ) ( )( )UiPi
i

i WWax ⋅+⋅=
=

ωω κκϕ -1
3

1
 (8)

where: ai—free parameters of the twist angle function, WPi, WUi—polynomials acc. Table 1. 
 

Table 1. Polynomials used and their physical interpretation (where ρ = x/L) [34,43]. 

Item Polynomials Physical Interpretation 
1 2 3 

1 43
1 2 ρρρ +−=PW  

 

2 543
2 61510 ρρρρ −+−=PW  

 

3 6543
3 24727326 ρρρρρ +−+−=PW  

 

4 432
1 2 ρρρ +−=UW  

 

5 5432
2 254 ρρρρ −+−=UW  

 

6 65432
3 92729132 ρρρρρ +−+−=UW  

 
 

The polynomials used (Table 1) satisfy the boundary conditions of the twist angle function for 
the fork support WPi (ϕ = 0, ϕ” = 0 for x = 0 and x = L), and for full restraint WUi (ϕ = 0, ϕ’ = 0 for x = 0 
and x = L), respectively. 

In this study, to account for the elastic restraint of the beam against lateral rotation at the 
support nodes, the lateral deflection function (u) was written in a way analogous to (8). Thus 
“hinged” polynomials (WPi) and “restrained” polynomials (WUi) were “coupled” by means of the 
index of fixity κu (5b) acc. formula: 
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i

i WWbxu ⋅+⋅=
=

κκ-1
3

1
 (9)

where: bi—free parameters of the lateral deflection function. 
The polynomials used (Table 1) satisfy the boundary conditions of the lateral deflection function for 
the fork support WPi (u = 0, u” = 0 for x = 0 and x = L) and for full restraint WUi (u = 0, u’ = 0 for x = 0 
and x = L). 

Functions (8) and (9) make it possible to model boundary conditions at the nodes for the elastic 
restraint against warping and against lateral rotation for arbitrary (i.e., from 0 to 1 interval) values of 
the indexes of fixity κω acc. (5a) and κu acc. (5b). 

4. The Critical Moment for Lateral Torsional Buckling  

The energy method was used to determine the critical moment (Mcr) of a single-span beam with 
bisymmetric I-section while taking into account elastic restraints (κω, κu) at the support nodes. The 
total potential energy of the beam—load system was determined from formula: 
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deflection function” of the restrained beam (Table 1, polynomials WUi). “Hinged” polynomials (WPi) 
were coupled with “restrained” polynomials (WUi) by means of the index of fixity against warping 
κω (5a) [34] acc. formula: 

( ) ( )( )UiPi
i

i WWax ⋅+⋅=
=

ωω κκϕ -1
3

1
 (8)

where: ai—free parameters of the twist angle function, WPi, WUi—polynomials acc. Table 1. 
 

Table 1. Polynomials used and their physical interpretation (where ρ = x/L) [34,43]. 

Item Polynomials Physical Interpretation 
1 2 3 

1 43
1 2 ρρρ +−=PW  

 

2 543
2 61510 ρρρρ −+−=PW  

 

3 6543
3 24727326 ρρρρρ +−+−=PW  

 

4 432
1 2 ρρρ +−=UW  

 

5 5432
2 254 ρρρρ −+−=UW  

 

6 65432
3 92729132 ρρρρρ +−+−=UW  

 
 

The polynomials used (Table 1) satisfy the boundary conditions of the twist angle function for 
the fork support WPi (ϕ = 0, ϕ” = 0 for x = 0 and x = L), and for full restraint WUi (ϕ = 0, ϕ’ = 0 for x = 0 
and x = L), respectively. 

In this study, to account for the elastic restraint of the beam against lateral rotation at the 
support nodes, the lateral deflection function (u) was written in a way analogous to (8). Thus 
“hinged” polynomials (WPi) and “restrained” polynomials (WUi) were “coupled” by means of the 
index of fixity κu (5b) acc. formula: 

( ) ( )( )UiuPiu
i

i WWbxu ⋅+⋅=
=

κκ-1
3

1
 (9)

where: bi—free parameters of the lateral deflection function. 
The polynomials used (Table 1) satisfy the boundary conditions of the lateral deflection function for 
the fork support WPi (u = 0, u” = 0 for x = 0 and x = L) and for full restraint WUi (u = 0, u’ = 0 for x = 0 
and x = L). 

Functions (8) and (9) make it possible to model boundary conditions at the nodes for the elastic 
restraint against warping and against lateral rotation for arbitrary (i.e., from 0 to 1 interval) values of 
the indexes of fixity κω acc. (5a) and κu acc. (5b). 

4. The Critical Moment for Lateral Torsional Buckling  

The energy method was used to determine the critical moment (Mcr) of a single-span beam with 
bisymmetric I-section while taking into account elastic restraints (κω, κu) at the support nodes. The 
total potential energy of the beam—load system was determined from formula: 
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deflection function” of the restrained beam (Table 1, polynomials WUi). “Hinged” polynomials (WPi) 
were coupled with “restrained” polynomials (WUi) by means of the index of fixity against warping 
κω (5a) [34] acc. formula: 

( ) ( )( )UiPi
i

i WWax ⋅+⋅=
=

ωω κκϕ -1
3

1
 (8)

where: ai—free parameters of the twist angle function, WPi, WUi—polynomials acc. Table 1. 
 

Table 1. Polynomials used and their physical interpretation (where ρ = x/L) [34,43]. 

Item Polynomials Physical Interpretation 
1 2 3 

1 43
1 2 ρρρ +−=PW  

 

2 543
2 61510 ρρρρ −+−=PW  

 

3 6543
3 24727326 ρρρρρ +−+−=PW  

 

4 432
1 2 ρρρ +−=UW  

 

5 5432
2 254 ρρρρ −+−=UW  

 

6 65432
3 92729132 ρρρρρ +−+−=UW  

 
 

The polynomials used (Table 1) satisfy the boundary conditions of the twist angle function for 
the fork support WPi (ϕ = 0, ϕ” = 0 for x = 0 and x = L), and for full restraint WUi (ϕ = 0, ϕ’ = 0 for x = 0 
and x = L), respectively. 

In this study, to account for the elastic restraint of the beam against lateral rotation at the 
support nodes, the lateral deflection function (u) was written in a way analogous to (8). Thus 
“hinged” polynomials (WPi) and “restrained” polynomials (WUi) were “coupled” by means of the 
index of fixity κu (5b) acc. formula: 

( ) ( )( )UiuPiu
i

i WWbxu ⋅+⋅=
=

κκ-1
3

1
 (9)

where: bi—free parameters of the lateral deflection function. 
The polynomials used (Table 1) satisfy the boundary conditions of the lateral deflection function for 
the fork support WPi (u = 0, u” = 0 for x = 0 and x = L) and for full restraint WUi (u = 0, u’ = 0 for x = 0 
and x = L). 

Functions (8) and (9) make it possible to model boundary conditions at the nodes for the elastic 
restraint against warping and against lateral rotation for arbitrary (i.e., from 0 to 1 interval) values of 
the indexes of fixity κω acc. (5a) and κu acc. (5b). 

4. The Critical Moment for Lateral Torsional Buckling  

The energy method was used to determine the critical moment (Mcr) of a single-span beam with 
bisymmetric I-section while taking into account elastic restraints (κω, κu) at the support nodes. The 
total potential energy of the beam—load system was determined from formula: 
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The polynomials used (Table 1) satisfy the boundary conditions of the twist angle function for the
fork support WPi (φ = 0, φ” = 0 for x = 0 and x = L), and for full restraint WUi (φ = 0, φ’ = 0 for x = 0
and x = L), respectively.

In this study, to account for the elastic restraint of the beam against lateral rotation at the support
nodes, the lateral deflection function (u) was written in a way analogous to (8). Thus “hinged”
polynomials (WPi) and “restrained” polynomials (WUi) were “coupled” by means of the index of fixity
κu (5b) acc. formula:

u(x) =
3∑

i = 1

bi((1− κu)·WPi + κu·WUi) (9)

where: bi—free parameters of the lateral deflection function.
The polynomials used (Table 1) satisfy the boundary conditions of the lateral deflection function

for the fork support WPi (u = 0, u” = 0 for x = 0 and x = L) and for full restraint WUi (u = 0, u’ = 0 for
x = 0 and x = L).

Functions (8) and (9) make it possible to model boundary conditions at the nodes for the elastic
restraint against warping and against lateral rotation for arbitrary (i.e., from 0 to 1 interval) values of
the indexes of fixity κω acc. (5a) and κu acc. (5b).

4. The Critical Moment for Lateral Torsional Buckling

The energy method was used to determine the critical moment (Mcr) of a single-span beam with
bisymmetric I-section while taking into account elastic restraints (κω, κu) at the support nodes. The
total potential energy of the beam—load system was determined from formula:

Π = Us,1 + Us,2 + Us,3 − T (10)
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where: Us,1—elastic strain energy of beam bending and torsion; Us,2—energy of the elastic restraint
against warping; Us,3—energy of the elastic restraint against lateral rotation; T—work done by
external forces.

The elastic strain energy of the beam bending and torsion [10] was expressed with the equation:

Us,1 =
1
2

EIz

∫ L

0

(
d2u
dx2

)2

dx + GIt

∫ L

0

(
dφ
dx

)2

dx + EIω

∫ L

0

(
d2φ

dx2

)2

dx

 (11)

The energy of the elastic restraint against warping (Us,2) [34] and against lateral rotation (Us,3)
was determined from formulas:

Us,2 =
αω
2

(dφ
dx

)2

x = 0
+

(
dφ
dx

)2

x = L

 Us,3 =
αu

2

(du
dx

)2

x = 0
+

(
du
dx

)2

x = L

 (12ab)

The work done by external forces is a function of the loading diagram and the co-ordinate of the
point of load application. For instance, for a simply supported beam (Figure 2), loaded with linearly
varied distribution of transverse load, for an arbitrary co-ordinate (zg) of the point of load application
over the section height, the work done by external forces can be written as follows:

T =
qz

2

(∫ L

0
φ

d2u
dx2

(
L
3
−

x2

3L

)
xdx +

zg

2

∫ L

0
φ2dx

)
(13)
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where: Us,1—elastic strain energy of beam bending and torsion; Us,2—energy of the elastic restraint 
against warping; Us,3—energy of the elastic restraint against lateral rotation; T—work done by 
external forces. 

The elastic strain energy of the beam bending and torsion [10] was expressed with the equation: 
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The energy of the elastic restraint against warping (Us,2) [34] and against lateral rotation (Us,3) 
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The work done by external forces is a function of the loading diagram and the co-ordinate of the 
point of load application. For instance, for a simply supported beam (Figure 2), loaded with linearly 
varied distribution of transverse load, for an arbitrary co-ordinate (zg) of the point of load application 
over the section height, the work done by external forces can be written as follows: 
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Figure 2. Exemplary diagram of beam loading. qz(x)—function of transverse load. 

To determine Mcr, a programme for numerical computations, namely 
McrLT_elastic_warping_rotation_2.nb (MLTB,EL,2 for short) was developed in the environment of the 
Mathematica® package. The programme allows the determination of the critical load as a function of 
the indexes of fixity (κω, κu), for arbitrary geometric parameters of the bisymmetric I-section, an 
arbitrary value of the co-ordinate (zg) of the load application point (see Figure 2), for beam loading 
diagrams that are most commonly found in practice ( Table 2;  Table 3). In the programme, the first 
three terms (a1,2,3) of the twist angle function acc. (8) and the first three terms (b1,2,3) of the lateral 
deflection function acc. (9) were employed. 

In study [34], McrLT_elastic_fix.on.warp._sym.cal.nb programme was developed to make 
symbolic “computations” for those cases, in which elastic restraint against warping (κω) occurs. In 
order to receive possibly simple approximation formulas, only the first term {a1((1 − κω)WP1 + κωWU1)} 
of the beam twist angle function (8) was employed. Still, a very good congruence between the results 
thus obtained and those produced by FEM (LTBeam, Abaqus) was noted. 

In this study, McrLT_elastic_warping_rotation_sym.cal.nb programme was formulated, in 
analogous terms, in the environment of the Mathematica® package. The programme is geared 
towards symbolic “computations”, and it accounts for both elastic restraint against warping (κω) and 
against rotation in the plane of lateral torsional buckling (κu). In this case, for the loading diagrams 
shown in Tables 2 and 3, the first term of the twist angle function (8) and the first or the second term 
{bi((1 − κu)WPi + κuWUi)}i = 1 or 2 of the lateral deflection function (9) were employed. 
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Figure 2. Exemplary diagram of beam loading. qz(x)—function of transverse load.

To determine Mcr, a programme for numerical computations, namely McrLT_elastic_warping_rotation_2.nb
(MLTB,EL,2 for short) was developed in the environment of the Mathematica® package. The programme
allows the determination of the critical load as a function of the indexes of fixity (κω, κu), for arbitrary
geometric parameters of the bisymmetric I-section, an arbitrary value of the co-ordinate (zg) of the load
application point (see Figure 2), for beam loading diagrams that are most commonly found in practice
(Table 2; Table 3). In the programme, the first three terms (a1,2,3) of the twist angle function acc. (8) and
the first three terms (b1,2,3) of the lateral deflection function acc. (9) were employed.

In study [34], McrLT_elastic_fix.on.warp._sym.cal.nb programme was developed to make symbolic
“computations” for those cases, in which elastic restraint against warping (κω) occurs. In order to
receive possibly simple approximation formulas, only the first term {a1((1 − κω)WP1 + κωWU1)} of the
beam twist angle function (8) was employed. Still, a very good congruence between the results thus
obtained and those produced by FEM (LTBeam, Abaqus) was noted.

In this study, McrLT_elastic_warping_rotation_sym.cal.nb programme was formulated, in analogous
terms, in the environment of the Mathematica® package. The programme is geared towards symbolic
“computations”, and it accounts for both elastic restraint against warping (κω) and against rotation in
the plane of lateral torsional buckling (κu). In this case, for the loading diagrams shown in Tables 2
and 3, the first term of the twist angle function (8) and the first or the second term {bi((1 − κu)WPi +

κuWUi)}i = 1 or 2 of the lateral deflection function (9) were employed.
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Table 2. Coefficients B1, B2, B3, B4 and D1 for selected diagrams of transverse load.

Item Load Diagram Coefficients

1 2 3

1
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The formula for the critical moment for lateral torsional buckling, which addresses the indexes 
of fixity (κω, κu) and an arbitrary ordinate (zg) of the point of transverse load application with respect 
to centre of the section sheer (see Figure 2), has the following form: 
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where: B1, B2, B3, B4 and D1—coefficients acc. Table 2. 
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Item Load Diagram Coefficients 
1 2 3 
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( ) ( )2
1 525631215211 ωω κκκ +−⋅−⋅= ....B u  
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For loads applied at the section shear centre (zg = 0), the formula for the critical moment is 
reduced to the following form: 
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The formula for the critical moment for lateral torsional buckling, which addresses the indexes 
of fixity (κω, κu) and an arbitrary ordinate (zg) of the point of transverse load application with respect 
to centre of the section sheer (see Figure 2), has the following form: 
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For loads applied at the section shear centre (zg = 0), the formula for the critical moment is 
reduced to the following form: 
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+ 0.0002·

(
0.015− κ5

u

)
·κω + 0.001·

(
−0.002− κ5

u

)
·κ5
ω

3
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Pz

L/2

L

qz

L
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B1 = 7.68·(1.2− κu)·
(
1.476− 2.429κω + κ2

ω

)
B2 = 19.66·B4·(1.2− κu)·

(
1.457− 2.4κω + κ2

ω

)
B3 = 235.929·B4·(1.2− κu)·(1.2− κω); B4 = α1 − α2κω + α3κ2

ω
D1 = β1 + β2zg
auxiliary coefficients:
α1 = 1.474·

(
1.675− 2.588κu + κ2

u

)
; α2 = 2.429·

(
1.664− 2.58κu + κ2

u

)
α3 = 1.653− 2.571κu + κ2

u
β1 = 0.033·(29.373− κu) + 0.005·(−0.512− κu)·κω + 0.103·

(
−0.279 + κ5

u

)
·κ5
ω

β2 = 0.001·
(
0.174 + κ2

u

)
+ 0.0002·

(
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u

)
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(
0.024− κ5

u

)
·κ5
ω

Table 3. Coefficients C1, C2, C3 and D1 for the beam loaded with moments concentrated at supports.

Item Load Diagram Coefficients

1 2 3

1
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Formula (16), derived for concentrated moments from the interval −0.5 < ψ ≤ 1 (see Table 3), in 
which symmetric or slightly asymmetric (with respect to the beam midspan) lateral torsional 
buckling mode occurs, was approximated with the first term of the twist angle function (8) and the 
first term of the lateral deflection function (9). However, for the interval −1 ≤ ψ ≤ −0.5, where much 
more asymmetric mode of lateral torsional buckling is found, the best results were obtained for the 
first term of the twist angle function (8) and the second term of the lateral deflection function (9). 

The design of approximation formulas makes it possible to develop relatively simple 
spreadsheets. 

L

M Mψ

L

M Mψ

ψ ∈ 〈−1÷−0.5〉

C1 = 207.407·
(
1.667− 2.611·κu + κ2

u

)
·

(
1.457− 2.4·κω + κ2

ω

)
C2 = 2488.889·

(
1.667− 2.611·κu + κ2

u

)
·(1.2− κω)

C3 =
√
(1−ψ)2

·

(
α1 − α2κω + α3κ2

ω

)
D1 = β1 + β2κ2

ω + β3κ
6
ω −

(
β4 + β5κω + β6κ

6
ω

)
·e3ψ

auxiliary coefficients:
α1 = 1.347·

(
1.248− 2.234·κu + κ2

u

)
; α2 = 2.321·

(
1.241− 2.228·κu + κ2

u

)
α3 = 1.235− 2.222·κu + κ2

u; β1 = 0.022·
(
48.545− 0.727·κu + κ10

u

)
β2 = 0.206·

(
−0.068− 0.981·κ7

u + κ10
u

)
β3 = 0.615·κ7

u; β4 = 0.132·
(
12.909− 5.114·κu + κ10

u

)
β5 = 0.167·

(
0.593− 1.06·κ7

u + κ10
u

)
; β6 = 0.857·

(
0.251 + κ7

u

)
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which symmetric or slightly asymmetric (with respect to the beam midspan) lateral torsional 
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first term of the lateral deflection function (9). However, for the interval −1 ≤ ψ ≤ −0.5, where much 
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L

M Mψ

L

M Mψ

ψ ∈ (−0.5÷ 1
〉

C1 = 48·(1.2− κu)·
(
1.457− 2.4·κω + κ2

ω

)
C2 = 576·(1.2− κu)·(1.2− κω)

C3 =
√
(1 +ψ)2

·

(
α1 − α2κω + α3κ2

ω

)
D1 = β1 + β2κ2

ω + β3κ
6
ω −

(
β4 + β5κω + β6κ

6
ω

)
·e−2,5ψ

auxiliary coefficients:
α1 = 1.44·

(
1.457− 2.429·κu + κ2

u

)
; α2 = 2.4·

(
1.457− 2.414·κu + κ2

u

)
α3 = 1.44− 2.4·κu + κ2

u; β1 = 0.029·
(
35.103− 0.345·κu − κ10

u

)
β2 = 0.011·

(
0.027 + 0.182·κu − κ6

u

)
β3 = −0.025·

(
0.36 + κ2

u

)
; β4 = 0.019·

(
5.684 + 1.789·κu − κ10

u

)
β5 = −0.002·

(
0.5 + 4.5·κ2

u − κ
10
u

)
; β6 = −0.006·

(
2.333 + κu − κ10

u

)
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The formula for the critical moment for lateral torsional buckling, which addresses the indexes of
fixity (κω, κu) and an arbitrary ordinate (zg) of the point of transverse load application with respect to
centre of the section sheer (see Figure 2), has the following form:

Mcr = D1

−B1EIzzg +
√

EIz
(
B2GItL2 + B3EIω + B2

1EIzz2
g

)
B4L2 (14)

where: B1, B2, B3, B4 and D1—coefficients acc. Table 2.
For loads applied at the section shear centre (zg = 0), the formula for the critical moment is reduced

to the following form:

Mcr = D1

√
EIz(B2GItL2 + B3EIω)

B4L2 (15)

As regards the beam loaded with moments concentrated at the ends (for −1 ≤ ψ ≤ 1, Table 3),
the formula for the critical moment for lateral torsional buckling, which accounts for arbitrary (0 ÷ 1)
values of the indexes of fixity (κω, κu), has the following form:

Mcr = D1

√
EIz(C1GItL2 + C2EIω)

C3L2 (16)

where: C1, C2, C3 and D1—coefficients acc. Table 3.
Formula (16), derived for concentrated moments from the interval −0.5 < ψ ≤ 1 (see Table 3), in

which symmetric or slightly asymmetric (with respect to the beam midspan) lateral torsional buckling
mode occurs, was approximated with the first term of the twist angle function (8) and the first term
of the lateral deflection function (9). However, for the interval −1 ≤ ψ ≤ −0.5, where much more
asymmetric mode of lateral torsional buckling is found, the best results were obtained for the first term
of the twist angle function (8) and the second term of the lateral deflection function (9).

The design of approximation formulas makes it possible to develop relatively simple spreadsheets.

5. FEM Verification

To verify the results of numerical calculations performed acc. MLTB,EL,2 programme and the results
of analytical calculations made with approximation Formulas (14), (15) and (16), LTBeam software
(FEM) [40] was used. The software allows the adoption of the classic boundary conditions i.e., fork
support or complete fixity. Also, it accounts for the beam elastic restraint against the section warping
and against rotation in the plane of lateral torsional buckling. As mentioned already, the LTBeam
software version 1.0.11 contains an error in the units of the coefficient of the elastic restraint against
warping (αω). The error results in the lowering of the actual value of αω when it is given in the
commonly used unit [kNcm3/rad]. The drawback was eliminated in the LTBeamN latest version,
i.e., 1.0.3.

For the sake of comparison, in checking computations, predetermined values of the indexes of
fixity κω and κu were assumed. In this case, the stiffness of the elastic restraint against warping (αω)
and the stiffness of the elastic restraint against lateral rotation (αu), which are necessary to make LTBeam
computations were determined from Formula (6ab).

Figure 3 shows the form of lateral torsional buckling of the beam (Figure 3b) for the critical
moment determined with the LTBeam programme.

An exemplary IPE300 beam, with span L = 5 m, was loaded with a concentrated force applied at
the midspan to the upper flange of the beam (zg = +h/2). The elastic restraint against warping (κω = 0.75)
and lateral rotation (κu = 0.5) of the beam at support nodes were taken into account. The critical
moment of the lateral torsional buckling of beam was obtained, having the value of Mcr = 163.71 kNm
(Figure 3a). The critical moments for beams analysed in this paper, for different types of sections, spans
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and load diagrams, and for different degrees of elastic restraint against warping and against lateral
rotation, were determined in the way presented above. The results are discussed in Section 6.
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6. Examples

To make a comparative analysis, steel beams (E = 210GPa, G = 81GPa) made from IPE300, HEA300,
HEB300 sections with a span of L = 5 and 7 m, and beams fabricated from IPE500, HEA500, HEB500
sections with a span of L = 8 and 10 m were assumed. In computations, the loads were as those in the
diagrams shown in Tables 2 and 3. For the diagrams in Table 2, transverse loads were applied to the
top flange (zg = +h/2), to the section weight axis (zg = 0) and to the bottom flange (zg = −h/2). When the
loads were moments concentrated at supports (Table 3), the whole range of variation of the ratio of the
moments (−1 ≤ ψ ≤ 1) was taken into account for the following parameter values ψ = {−1; −0.75; −0.5;
−0.25; 0; 0.25; 0.5; 0.75; 1}. Analyses were carried out for the full range of variation of the index of fixity
against warping κω (from 0 to 1) and against lateral rotation κu (from 0 to 1) for the following values
of κi = {0; 0.25; 0.5; 0.75; 0.9; 1}. Computations were run for various combinations of the values of
indexes κω and κu. For each of the beams analysed, the critical moment for lateral torsional buckling
was determined acc. MLTB,EL,2 programme using 3 terms of both series (8) and (9). The critical moment
was estimated with Formulas (14), (15) and (16), and then compared with the values obtained from
FEM (LTBeam). As the number of received values of the critical moment of beams was large, the paper
reports only selected results of detailed cases (Tables 4 and 5, Figure 4; Figure 5). Cumulative analyses
of results (for all cases included in the paper) are presented in Table 6.
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Table 4. Comparison of Mcr for beam IPE300 (L = 5 m).

Item Load Diagram κω κu
Mcr [kNm]

LTBeam MLTB,EL,2 % 6-5 Formula (14) % 8-5

1 2 3 4 5 6 7 8 9

1
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22 0.75 176.0 177.9 1.1 174.4 −0.9
23 0.9 185.0 187.4 1.3 182.7 −1.2
24 1 191.9 194.6 1.4 187.9 −2.1
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26 0.25 176.1 177.9 1.0 174.4 −1.0
27 0.5 187.4 189.5 1.1 185.3 −1.1
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0 191.8 194.0 1.1 189.8 −1.0
32 0.25 202.3 204.9 1.3 200.7 −0.8
33 0.5 215.0 217.9 1.3 212.9 −1.0
34 0.75 230.5 234.1 1.6 226.2 −1.9
35 0.9 241.9 246.1 1.7 235.4 −2.7
36 1 250.5 255.3 1.9 242.6 −3.2
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1 0 −1 622.6 641.0 3.0 624.7 0.3
14 0.9 0.25 −0.75 534.1 539.8 1.1 535.6 0.3
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20 0.75 0.75 0.75 259.3 259.4 0.1 259.7 0.2
21 1 1 1 342.4 342.5 0.1 347.2 1.4Appl. Sci. 2019, 9, 1944 14 of 18 

 

Figure 4. The critical moment of lateral torsional buckling of beam as a function of the index of fixity 
κω, for selected index of fixity κu : (a) beam with concentrated force load, (b) beam with uniformly 
distributed load. 

The comparison of the critical moments of lateral torsional buckling (Figure 4), obtained for the 
full warping restraint (κω = 1) in relation to its full freedom (κω = 0), shows +71% (Figure 4a) and +81% 
(Figure 4b) increase in Mcr, basically regardless of the value of the κu index. The dependence Mcr(κω) 
is strongly non-linear throughout the whole range of the κω restraint index (from 0 to 1). 

Figure 5 shows the courses of variation of critical moments of lateral torsional buckling of the 
beam, for geometric parameters according to Figure 4, depending on the value of the index of fixity 
against lateral rotation κu (from 0 to 1) for selected values of the index of fixity against warping κω = 
{0; 0.25; 0.5; 0.75; 0.9; 1}. 
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distributed load.
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20 0.75 0.75 0.75 259.3 259.4 0.1 259.7 0.2 
21 1 1 1 342.4 342.5 0.1 347.2 1.4 

 

In addition to the comparison of the values of Mcr, the results compiled in Tables 4 and 5 can be 
employed in the tests on the correctness of the design of Formulas (14) and (16) in spreadsheets. 

Table 6 lists the maximum percentage differences between the results obtained by the authors 
and those produced using LTBeam for beams IPE300, HEA300, HEB300, IPE500, HEA500 and 
HEB500. 
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In addition to the data shown in Table 6, it should be noted that for Scheme 1, the values 
received with MLTB,EL,2 programme differed from +0.5 to +2.6% (HEB300, L = 5 m), and the results 
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Table 4 lists exemplary results of calculations obtained for IPE300 beam, with a span of L = 5 m,
loaded with a concentrated force applied to the upper flange (zg = +h/2) at the midspan. Percentage
differences in the results obtained with MLTB,EL,2 programme (Column 6) relative to the LTBeam
programme (Column 5) are shown in Column 7. Analogous comparison of the results obtained with
Formula (14) (Column 8) and the LTBeam programme (Column 5) can be seen in Column 9.

When compared with LTBeam, the critical moments determined using MLTB,EL,2 programme
showed the differences of +0.6 to +1.9% (Table 4). The application of the approximation Formula (14)
produced the values that differed from −3.4 to −0.5% in comparison with FEM.

Table 5 lists exemplary results of computations for IPE300 beam, L = 5 m, and selected values of
indexes κω and κu, and loading diagrams acc. Tables 2 and 3. The percentage differences in the results
obtained with the MLTB,EL,2 programme (Column 7) relative to the LTBeam programme (Column 6) are
shown in Column 8. Analogous comparison of the results obtained from the Formulas (14) and (16)
(Column 9) and the LTBeam programme (Column 6) is given in Column 10.

In addition to the comparison of the values of Mcr, the results compiled in Tables 4 and 5 can be
employed in the tests on the correctness of the design of Formulas (14) and (16) in spreadsheets.

Table 6 lists the maximum percentage differences between the results obtained by the authors and
those produced using LTBeam for beams IPE300, HEA300, HEB300, IPE500, HEA500 and HEB500.

In addition to the data shown in Table 6, it should be noted that for Scheme 1, the values received
with MLTB,EL,2 programme differed from +0.5 to +2.6% (HEB300, L = 5 m), and the results obtained
acc. Formula (14) showed differences of from −3.8 (IPE500, L = 10 m) to +4.1% (HEA300, L = 5 m)
compared with LTBeam. As regards Scheme 2, MLTB,EL,2 program gave critical moments that differed
from 0 to +0.7% (HEA500, L = 10 m), and the differences for Formula (14) were from −3.0 to +2.6%
(HEA300, L = 5 m). For Scheme 3, MLTB,EL,2 programme values differed from −0.5 to +0.7% (HEB500,
L = 10 m), and Formula (14) values showed differences of −2.3 to +3.3% (HEA300, L = 5 m). Finally, for
Scheme 4, MLTB,EL,2 programme generated critical moments that were 0 to +4.9% (HEA300, L = 5 m)
different, and acc. Formula (16), from −3.2 (HEA300, L = 5 m) to +4.0% (IPE300, L = 7 m).

Figure 4 presents the courses of variation of Mcr for a beam made of an IPE300 profile with a span
L = 5 m, depending on the value of the index of fixity against warping κω (from 0 to 1) for selected
values of the index of fixity against lateral rotation κu = {0; 0.25; 0.5; 0.75; 0.9; 1}. Concentrated force
load (Figure 4a) or uniformly distributed load (Figure 4b) was applied to the upper flange of the beam
(zg = +h/2). Critical moments of the beam were determined with Formula (14).

The comparison of the critical moments of lateral torsional buckling (Figure 4), obtained for the
full warping restraint (κω = 1) in relation to its full freedom (κω = 0), shows +71% (Figure 4a) and +81%
(Figure 4b) increase in Mcr, basically regardless of the value of the κu index. The dependence Mcr(κω)
is strongly non-linear throughout the whole range of the κω restraint index (from 0 to 1).

Figure 5 shows the courses of variation of critical moments of lateral torsional buckling of the
beam, for geometric parameters according to Figure 4, depending on the value of the index of fixity
against lateral rotation κu (from 0 to 1) for selected values of the index of fixity against warping κω = {0;
0.25; 0.5; 0.75; 0.9; 1}.

The comparison of the critical moments of lateral torsional buckling (Figure 5), obtained for the
full lateral rotation restraint (κu = 1) in relation to its full freedom (κu = 0), shows +29% (Figure 5a)
and +43% (Figure 5b) increase in Mcr, basically regardless of the value of the κω index. In this case,
the dependence Mcr(κu) is mildly non-linear throughout the entire range of the κu restraint index
(from 0 to 1).

In the case (Figure 4; Figure 5) warping and lateral rotation are fully restrained at supports (i.e.,
κω = κu = 1) of the IPE300 beam with the span L = 5 m, nearly +120% (Figures 4a and 5a) and +159%
(Figures 4b and 5b) increase in the critical moment Mcr was found compared with the conditions of full
freedom of warping and lateral rotation (i.e., κω = κu = 0), which correspond to fork support.
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7. Conclusions

A natural trend in the development of modern design methods is to account for the factors that
influence the structure bearing capacity and reliability.

When actual conditions of beam support at the nodes are well represented, critical moments can
be computed more accurately. Consequently, the coefficient of lateral torsional buckling and the design
resistance of the beam can also be calculated more precisely. Such an approach allows taking more
informed decision regarding the structural reliability of members. Intuitive estimation of the bearing
capacity reserves is substituted with objective criteria.

The comparison of the critical moments (Tables 4–6), which were determined using MLTB,EL,2
programme and estimated from Formulas (14), (15) and (16), with the values obtained from LTBeam
revealed a very good congruence of the results. The critical loads were computed for: (1) different
variants in the selection of the indexes of fixity (κω, κu) which changed in the interval from 0 to 1; (2)
various (characteristic) points at which transverse loads were applied (top flange, weight axis of the
section and bottom flange); and (3) full range of variation in the ratio of the moments concentrated at
the supports (−1 ≤ ψ ≤ 1).

The results obtained by the authors indicate that the estimations of the critical moments produced
with the Formulas (14), (15) and (16) derived in the study, give approximations that are sufficient
from the engineering standpoint. If the formulas mentioned above are written in the spreadsheet, it is
necessary to compare the results obtained with Tables 4 and 5.

With an increase in the indexes of fixity (κω, κu), the value of the critical load of the beams grows.
The critical moment for lateral torsional buckling is affected, to a greater extent, by the restraint of the
support sections of the beam against warping.

Finally, in order to ensure the recommended level of structural reliability already at the design stage,
it should be recommended to check computer calculations with the use of an available analytical method.
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