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Featured Application: This study aims to improve the absolute position error of robot manipulators
for vehicle assembly line without using an expensive external apparatus.

Abstract: It is well known that most of the industrial robots have excellent repeatability in positioning.
However, the absolute position errors of industrial robots are relatively poor, and in some cases the
error may reach even several millimeters, which make it difficult to apply the robot system to vehicle
assembly lines that need small position errors. In this paper, we have studied a method to reduce the
absolute position error of robots using machine vision and neural network. The position/orientation
of robot tool-end is compensated using a vision-based approach combined with a neural network,
where a novel indirect calibration approach is presented in order to gather information for training
the neural network. In the simulation, the proposed compensation algorithm was found to reduce the
positional error to 98%. On average, the absolute position error was 0.029 mm. The application of the
proposed algorithm in the actual robot experiment reduced the error to 50.3%, averaging 1.79 mm.

Keywords: error compensation; hand-eye calibration; absolute accuracy; neural network

1. Introduction

The repeated and monotonous manual work is continuously reintegrated by flexible manufacturing
systems. To build a flexible manufacturing system, adopting an intelligent robot system is essential
to distinguish workpieces within a workspace, perceive a situation and manipulate themselves
autonomously [1]. Among the intelligent robot systems, vision-based robot systems have been
developed continuously to improve the quality and efficiency of the manufacturing system such
as arc welding, materials handling, painting and even assembly [2–4]. Especially, picking up an
object and assembling it to another subsystem accurately is the most important task in an automated
manufacturing system [5–7]. To do this task correctly, a robot should be calibrated precisely in advance,
and then the robot should be connected with visual sensing systems to observe objects and compute the
poses of objects. Although industrial robots generally have high-precision repeatability, the absolute
position accuracy of them is not so high due to the kinematic error or assembly tolerance of the
robot mechanism [8,9]. In order to improve accuracy, various approaches have been proposed in the
literature based on choosing a mathematical error model for robot calibration. From the actual robot
experiment, the partial pose or whole pose data of the robot end-effector is gathered, and then it is
used to estimate the real robot kinematic parameters. However, the processes of robot calibration
considered in the methods are complex, and high precision measurement devices are required to
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track the nominal pose and the real pose of the robot end-effector. For small-range 3D measurements,
touch probes or telescoping-ball bar devices are commonly used. On the other hand, for large-range
measurement camera-based systems, coordinate measuring machines (CMM) and laser trackers are
typically used [10–14]. However, these types of devices are very expensive to be implemented in robot
calibration, and even ineffective.

The conventional robot calibration is often implemented with these convenient devices, but there
are still some remaining issues. In fact, the cost of measurement devices and the complexity of the
mathematical error model are one of the concerns in the production line. Furthermore, these approaches
directly track the pose of the robot end-effector with respect to the device’s coordinate and estimate the
robot base coordinate by applying the inverse kinematic process. However, this approach does not
guarantee high calibration accuracy. In addition, for the vision-based robot system in the industrial
field environment, it is essentially desirable that the system is capable of performing calibration without
any expensive external apparatus or elaborate setups, which is the system self-calibration [5,6].

Lots of work about robot calibration techniques without using expensive external devices are
reported in the literature. Meng et al. [15] proposed a method for robot calibration using vision
technology. This approach only requires a ground-truth scale in the reference frame to estimate
the pose of the manipulator. However, the proposed method adopts corner detection to extract the
corners of the chessboard; its algorithm is easily affected by noise, leading to the failure of corner
detection. Then, calibration errors are increased. Gong et al. [16] proposed a method for calibrating
and compensating the robot system kinematic error using its internal laser sensor based on distance
measurements. However, this approach is restricted by the sensor accuracy not using the absolute
position measurement system to measure the robot end-effector. On the other hand, Yin et al. [17]
presented an approach for evaluating the kinematic errors of the robot based on the fixed-point
constraints to estimate the robot’s end-effector. The method is limited to aligning the tool-center-point
(TCP) of a robot to fixed points in the robot workspace. The predicted position of the robot’s end-effector
estimated by the fixed-point and the laser stripe could be misaligned. These techniques are often
inconvenient, time consuming and it may not be feasible for some certain applications. To overcome
the above limitations, we develop a novel and flexible indirect calibration method for the vision-based
robot application that need small position errors. This is a straightforward and efficient method
to reduce the absolute position error. Our method does not require the complex solution of the
kinematics parameter equations and the complicated procedures of the traditional robot compensation
methods. As a result, we successfully reduced the absolute position error the robot’s end-effector in
the workspace, the position/orientation of the robot’s end-effector is compensated without modifying
the parameters of the robot. Using the robot’s end-effector as an input for a neural network, and the
camera attached on the end-effector to observe the object and gather information for training the
neural network, the absolute position error of the robot’s end-effector is improved. The proposed
method is well suited for easy deployment of the robot visual system in the different manufacturing
environments because no external measuring equipment or no complicated setup is required in the
error compensation and makes the calibration procedure more convenient to implement.

The purpose of our research in this paper is to improve the degree of work in an object picking
application by compensating the absolute position error of a six-axis industrial robot by applying a
vision-based measurement system. First, the position/orientation of the end-effector was estimated
using a vision-based approach combined with the neural network. A novel indirect approach
proposed in this paper was used to collect the data in the workspace and to train the neural network,
and the calibration methodology among the robot base coordinate, camera system frame and the
workspace is described in detail. Then, some simulations and experiments were performed to evaluate
the performance of the proposed indirect calibration, and the results were compared in detail to
demonstrate the excellence of the proposed method. Finally, some experiments to pick up objects using
an industrial robot were conducted to guarantee the positioning performance of the proposed algorithm.
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2. Overview of the Problem

The goal of the error compensation approach is to reduce the position error of the robot tool in the
real world during the online operation. The added information, usually the real coordinate value of
objects, must be precisely determined with respect to the robot coordinate [18]. One can estimate the
pose of the object based on its 3D object model known a priori. The pose of the model in the frame (B)
is written as

B
Wx =

[
tW

θW

]
, (1)

where t and θ denote the position and the orientation of the object from the world coordinate to the
robot base coordinate, respectively. Based on the B

Wx pose, the transformation matrix describing the
model frame (W) relative to the base frame (B) can be determined as follows:

B
WT =

[ B
WR(θW) B

Wt
01×3 1

]
. (2)

However, the robot has its own error, so that the real pose of the object corresponding to the robot
coordinate is different compared to the B

Wx pose. We denote the real pose as B
Wx′ . Figure 1 shows that

the positions of these two objects differ from the coordinates of the robot.
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Figure 1. Difference between expected and actual robot position.

In order to pick up objects using the robot, the robot moves to a fine search position. The 3D pose
of the correct object is then calculated through the sensor and produces the object coordinates. After
calculating the pickup posture considering the 3D posture of the object, the trajectory of the robot is
modified to reach the expected position B

Wx.
In a real-life scenario, however, the robot will reach an actual location B

Wx′ due to a robot’s error.
From a general point of view, there is a full pose corresponding to the pose B

Wx of an object that allows
the controller to control the robot’s reach. The important problem is that in order to get to the expected
pose correctly, the controller will have to do an error compensation, and the actual pose of the robot
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will be moved to the expected pose. To solve this problem, we proposed a method using a neural
network and a machine vision to predict a new pose B

Wxnew after training the data inside the workspace.
Figure 2 describes the architecture of the proposed error compensation algorithm for the object

picking system. It consists of two stages: the initial stage and the robot operation stage. The first stage
includes the pre-error compensation and error compensation operation. In the pre-error compensation,
the operator has to register the reference pattern in the workspace; calibrate the camera in order to
detect the 3D pose of the pattern as shown in Block 1. Next, the reference pattern will be detected in the
error compensation operation; hand-eye calibration work is implemented to build up the coordinate
relationship between camera and robot frames, and the position of the robot will be estimated in this
operation based on the neural network as shown in Block 2. Finally, the whole process of object picking
is described in the robot operation stage, which includes the go-to-fine-search-position to pick-object as
shown in Block 3. The main technical functions of the proposed robot error compensation are training
the workspace for the robot using the indirect calibration approach.
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3. Proposed Error Compensation Method

3.1. Pattern Detection and Pose Estimation

In this study, the world coordinate system is located on the pattern board, which is the calibrated
workspace for the robot. For simple detection and pose estimation of the pattern board, we designed a
specific pattern image as seen in Figure 3a. The circles on the pattern board are numbered as seen in
Figure 3d, four bigger circles. The pattern board consists of the key feature made of four big circles,
which are used to create the workspace coordinate, and the rest of the circles with smaller size are
used for the pose estimation. The operation of the pre-compensation system is divided into two stages:
the pattern detection and pose estimation. For pattern image detection we moved the robot to the
pattern board, then the hole geometry was extracted from the image. In the pose estimation stage,
the Perspective-n-Point (PnP) method based on the RANSAC-algorithm was used to estimate the
coordinate of the pattern corresponding to the camera system.
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In the pattern detection stage, we extracted the holes section from image data via the edge
detection algorithm as shown in Figure 3b. We applied a Difference-of-Gaussian (DoG) filter to remove
noise and improve the geometry shape of the holes. DoG is accomplished by convolving the image
with a Gaussian filter at different scales. As a result, key-points were extracted from multiple scales,
based on the maximum/minimum value of DoG:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) , (3)

where G(x, y, σ) = 1
2πσ2 e−(x

2+y2)/2σ2
.

In order to increase the reliability of pattern detection, the ellipse fitting techniques were
additionally applied for circle detection as shown in Figure 3c. The ellipse-fitting algorithm is a
common task in machine vision to estimate the centers and radius of the circle. Let denote a set of
2D data points P = {xi}

n
i=1, where xi = (xi, yi), a family of curves C(a) parameterized by the vector a,

and the distance metric δ(C(a), x) which measures the distance from a point x to the curve C(a).
The problem is to find the value amin for which the error function ε2(a) =

∑n
i=1 δ(C(a), xi) attains its

global minimum. Hence, the curve best fits the data. In this study, the fitting algorithm based on the
“approximate mean square distance” metric [19], minimizes the unusual objective function,

ε2(a) =
∑n

i=1 F(a, xi)
2∑n

i=1 ‖ ∇xF(a, xi) ‖
2 =

‖ Da ‖2

‖ Dxa ‖2 + ‖ Dya ‖2
, (4)
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where the matrices Dx and Dy are the partial derivatives of D with respect to x and y.
Based on the detection stage, key-points localization is suitably implemented using a pose

estimation algorithm. To estimate the pose of the pattern, many approaches have been proposed in
the literature. For this work, we applied the RANSAC algorithm to estimate the pose. RANSAC
is an iterative method proposed to solve the PnP problem [20]. Since then, it has been applied
to many machine vision areas such as PnP, visual SLAM, homographic estimation, fundamental
or essential matrix estimation, etc. Let assume we have a set of pairs of matched 2D-3D points
(corresponding):

(
xi, XW

i

)
, as shown in Figure 3d, four major feature points are used to define the

workspace coordinate. The final solution is the transformation matrix TC
W that transforms from the

workspace coordinate to camera coordinate.
Since we applied robust image processing algorithms such as pattern detection and ellipse fitting

to increase the performance of 3D position and orientation, the proposed system becomes more reliable
on data preparation for the neural network used to compensate the error position.

3.2. The Hand-Eye Calibration

The initial vision-based robot involved determining the coordinate relationship between the robot
coordinate and the sensor coordinate [21,22]. Common setup of the sensor can be located at a fixed
position or can be mounted on the tool of the robot according to a specific application. In this work,
the sensor was attached to the tool of the robot for a better field of view in the workspace. The setup of
the sensor was fixed on that position during the calibration. If there was any rearrangement about the
setting, the calibration was implemented again.

Figure 4 represents the coordinate frames used to perform the hand-eye calibration in this paper,
where (B), (E), (C) and (W) are the coordinates of the robot base, the robot, the camera, and the
world, respectively. The relationship between each coordinate can be described by a homogenous
transformation matrix.
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In the literature, several approaches have been published to solve the hand-eye calibration;
the problem yields a homogeneous matrix equation of the AX = XB form as the following:

rarx = rxrb , (5)

(ra − i3)tx = rxtb − ta , (6)

where i3 is 3× 3 unit matrix ra, rb ∈ SO3 are rotation matrices corresponding to the robot and camera
transformation, respectively. rx ∈ SO3 , tx ∈ R3 are the rotation matrix and translation matrix,
respectively, which denotes X. The linear optimization method is a common solution to solve this
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equation based on the assumption that A, B satisfy the rigid transformation or their rotation angles in
Equation (5) are equal. However, in most cases, their A, B, and X might not satisfy rigid transformation.
A direct solution based on the iterative computation with Jacobian optimization is proposed by
Jianfei et al. [23]. Given multiple pairs, (Ai, Bi) f or i = 1, . . . , n, where i represents the sequence
number of the equation AX = XB. The problem of hand-eye can be stated using the properties of
Kronecker product (⊗), the Equations (5) and (6) can be written as:

F(i) =
(
ra(i) ⊗ i3 − i3 ⊗ rt

b(i)
)
vec(rX) , (7)

G(i) = (ra(i) − i3)tai − tXtbi + tai , (8)

where vec is an operation, which stretches a matrix as the row’s direction, vec(RX) ∈ R9 is the
vector obtained by stacking the columns of tX, and F(i), G(i) are the vectors of (9× 1) and (3× 1)
separately. Find the rotation θmin ∈ R3 and the translation tmin ∈ R3 for which the error function
L(θ, t) = min

∑
i [‖ F(i) ‖2 + ‖ G(i) ‖2] attains its global minimum, where L(θ, t) is the objective

function of optimization for solving the hand-eye problem. Let J(i) be the Jacobian formula for
the object function, H = [F(i), G(i), . . . , F(n), G(n)]T can be represented of multi-equations such as
Equations (7) and (8). Then the interactive formula for optimization is given as:

J∆X = −H , (9)

Xn+1 = Xn + ∆X . (10)

The transformation X(θ, t) is then the solution that best fits the multiple pairs (Ai, Bi) f or i = 1, . . . , n.
A linear solution can be found using singular value decomposition (SVD) or using a pseudo-inverse.

After solving the hand-eye problem, the object position in the world coordinate corresponding to
the robot coordinate can be described as follows:

HB
W = HB

EXHC
W , (11)

HB
i = HB

WPW
i , (12)

where X is obtained from the work above, HB
E is provided by the robot controller, HC

W is calculated by
the pattern detected from the camera, and PW

i is the 3D position of the object in world coordinate.

3.3. Feature Training Using Neural Network

A non-parametric kinematics calibration is an approach using intelligent algorithms to reduce the
position error without modifying robot parameters [9]. Its advantage is that the position is compensated
directly, by which the calibration process can be simplified. Several approaches to error compensation
without robot parameter modification are introduced in the literature [24,25]. The real position of
the robot can be tracked by using external devices such as a laser tracker, stereo vision, etc. Then,
the non-linear approach is used to estimate the error between the actual position and the real position
to minimize the error of the robot.

In this paper, we proposed an error compensation method based on advanced machine-vision
algorithms and neural network to guide the robot to pick the object. Figure 5 shows the difference
between the direct and the indirect approach presented in this paper. When applying the indirect
approach, the robot’s end-effector is set to be interpolated, assuming that the coordinate conversion value
from the measuring object to the camera coordinate system is obtained accurately. The transformation
from the camera coordinate to the root always has a constant value. In addition, the real position of the
end-effector and commanded position B

EPa from the robot controller is different, so the actual position
of the robot controller in the world coordinate frame is defined as:

B
EPa = HB

WHW
C X−1 , (13)
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where X, HB
W ∈ SE(3) are obtained from the above, and HW

C ∈ SE(3) is calculated from the camera.
To collect information from the workspace, the robot moves to all defined 3D grids to obtain images
from the camera to determine the position of the object, where the 3D grid is the workspace where the
robot will be trained during the error-compensation stage; finally, the actual position of the robot is
calculated by the controller and stored in memory. This data is used for training purposes. Figure 6
shows our proposed method.
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The next step is to perform training using measured data. In this paper, we applied a neural
network to estimate the actual location of the robot. Neural networks are currently the state of the art
method in machine learning [26].

In our experiment, we used a three-layer feedforward neural network to classify different types of

defects. Let V =
(
VT

1 , VT
2 , . . . , VT

m

)T
be the weight matrix connecting the input and the hidden layers,

where V j =
(
V j1, . . . , V jn

)
for j = 1, 2, . . . ,m. Let W =

(
WT

1 , WT
2 , . . . , WT

p

)T
be the weight matrix between
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the hidden and the output layers, where Wk = (Wk1, Wk2, . . . , Wkm) for k = 1, 2, . . . , p. Given input

x = (x1, . . . , xn)
T
∈ Rn, and the final output vector o =

(
o1, . . . , op

)T
∈ Rp is given:

ok = f (Wk.y− bk) = f

 m∑
j=1

Wkjy j − bk

, k = 1, . . . , p. (14)

where {bk}
p
k=1 is the biases from hidden to output layers, and y = (y1, . . . , yn)

T
∈ Rm is the output of

the hidden layer. The distance error is measured based on mean square error, defined as

E(W, V) =
1
2

H∑
h=1

||zh − oh ||
2 , (15)

where zn = (z1, . . . , zn)
T
∈ Rn is the desired output from the dataset. The update rules based on

gradient descent for the weight vector are

W(l+1)
kj = W(l)

kj + η
δE

(
W(l), V(l)

)
δWkj

, (16)

V(l+1)
kj = V(l)

kj + η
δE

(
W(l), V(l)

)
δVkj

. (17)

where l = 0, 1, 2, . . . ; k = 1, 2, . . . , p; j = 1, 2, . . . , m; and i = 1, 2, . . . , n.

4. Simulation for Robot Model

To improve errors based on the direct approach, the simulation was performed based on PUMA
robot parameters before and after compensation using a neural network. For the comparison, two
robot models were created: the nominal model and the error model. All DH parameters of the error
model added to the nominal model with uniformly distributed noise. Let εlength and εangular be the
length error magnitude (mm) and angular error offset (deg). The noises added to the nominal model
parameters with length error ∆εlength(mm) and angular error ∆εangular(deg) are given as:

∆εlength = G(xl, σl)∗ εlength , (18)

∆εangular = G(xa, σa)∗ εangular , (19)

where G(x•, σ•) = 1
2πσ•2 e−x•2/2σ•2

, x•, σ• are the mean and standard deviation. The geometric errors
in the robot-link could be written as ∆ai, ∆αi, ∆di, ∆θi while the original parameters of the robot-link
ith were denoted as ai, αi, di, θi. The parameters of error model are as following: ai

r = ai + ∆ai (mm),
αi

r = αi + ∆αi (mm), di
r = di + ∆di (mm).

Where ∆• is the noise determined in Equations (18) and (19). The actual values for two kinematic
models are shown in Tables 1 and 2, respectively. In this simulation, εlength = 10 mm, and εangular = 2deg.

Table 1. DH parameters of the nominal model.

Link No. θi/rad di/mm ai/mm αi/rad

1 θ1 0 0 1.5708
2 θ2 0 432 0
3 θ3 150 20 −1.5708
4 θ4 432 0 1.5808
5 θ5 0 0 −1.5708
6 θ6 0 0 0
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Table 2. DH parameters of the error model.

Link No. θi/rad di/mm ai/mm αi/rad

1 θ1 2.42463 3.433 1.65256
2 θ2 5.92042 433.966 0.031139
3 θ3 150.023 20.0033 −1.441
4 θ4 436.297 0.317539 1.5975
5 θ5 5.57796 1.30921 −1.4774
6 θ6 4.17643 6.27515 0.1111

Firstly, the simulation was based on the neural network combined with the laser tracker system.
The simulation describes the use of an artificial neural to estimate the robot’s end-effector where the
actual positions of end-effector in the workspace are known. The robot is moved to all 3D grid points,
all position errors in the 3D grid are measured and recorded by the laser tracker system, and these
position errors are stored in the memory to train the neural network. The simulation results are shown
in Figure 7. The errors have been improved after the compensation. However, a direct approach using
a laser tracker is not well suited for vision-based robot applications because of the cost-effectiveness of
the external measuring device and the elaborate setup for the calibration procedure.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 17 

Link No. 𝜽𝒊/𝐫𝐚𝐝 𝒅𝒊/𝐦𝐦 𝒂𝒊/𝐦𝐦 𝜶𝒊/𝐫𝐚𝐝 
1 𝜃  2.42463 3.433 1.65256 
2 𝜃  5.92042 433.966 0.031139 
3 𝜃  150.023 20.0033 −1.441 
4 𝜃  436.297 0.317539 1.5975 
5 𝜃  5.57796 1.30921 −1.4774 
6 𝜃  4.17643 6.27515 0.1111 

Firstly, the simulation was based on the neural network combined with the laser tracker system. 
The simulation describes the use of an artificial neural to estimate the robot’s end-effector where the 
actual positions of end-effector in the workspace are known. The robot is moved to all 3D grid 
points, all position errors in the 3D grid are measured and recorded by the laser tracker system, and 
these position errors are stored in the memory to train the neural network. The simulation results are 
shown in Figure 7. The errors have been improved after the compensation. However, a direct 
approach using a laser tracker is not well suited for vision-based robot applications because of the 
cost-effectiveness of the external measuring device and the elaborate setup for the calibration 
procedure. 

  

(a) (b) 

  

(c) (d) 

Figure 7. The error compensation results. (a) position error (mm) (b) compensated position error 
(mm) (c) angular error (deg) (d) compensated angular error (deg). 

Figure 7. The error compensation results. (a) position error (mm) (b) compensated position error (mm)
(c) angular error (deg) (d) compensated angular error (deg).



Appl. Sci. 2019, 9, 1940 11 of 17

Secondly, to illustrate the validity of the proposed method, this section performs error compensation
in the simulation environment of the PUMA 560 robot model. For comparison, two robot models
were created the same as above. The data generated in this simulation for solving the hand-eye vision
problem and training the neural network is also described in this section.

4.1. Simulation Procedure

The procedure for the simulation process is divided into two phases. In the first phase, data
is collected from both models. An error compensation assessment is then performed. For the first
step, for the hand-eye calibration (AX = XB), real data for the transformation matrix Ai was generated
by the nominal robot model and data for the transformation matrix Bi was generated by the robot
error model. Next, in the training for the neural network section, m (m = 686) set of samples were
used, and 200 random samples on various positions and orientations in the work coordinate frame
were examined for testing. In addition, the distance between the neighboring of each grid points was
28.5 (mm) in all three directions X, Y, and Z, which is an empirical interval for a mid-size calibration
space. In total, the workspace includes 343 cells (7× 7× 7 mm3). At each cell, two different orientations
were taken.

In the error compensation stage, a generalized feed-forward neural network is used. This network
consists of one hidden layer. As presented in Figure 8, there are 50 neurons in the hidden layer.
The desired position and orientation x = (x1, . . . , x6)

T
∈ R6 of the robot’s end-effector is taken as

input layer nodes, and the related position/orientation o = (o1, . . . , o6)
T
∈ R6 for robot controller is

taken as the output layer nodes.
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4.2. Simulation Results

After training the neural network, we used 200 test data to evaluate the performance of
position/orientation error, and the results are shown in Figure 9.

In Figure 9, the blue area is the result of the robot system before training, while the red area is

the result after applying neural network training. The position error tError =
(
tx, ty, tz

)T
∈ R3 and

θError =
(
θx, θy,θz

)T
∈ R3 are defined as follows:

tError = testimated − treal , (20)

θError = θestimated − θreal . (21)

As you can see in Figure 9, the errors have been greatly reduced when using the method proposed
in this paper. In addition, you can see that applying the neural network to the indirect compensation
approach significantly reduces the mean and standard deviation of error.
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Table 3 shows that the mean error decreased significantly when the error was compensated using
the neural network compared to when the error was not compensated. The mean position errors after
compensation are etx = −0.0295 (mm), ety = −0.0079 (mm), and etz = −0.0496 (mm), for which the errors
are reduced by 98% on average. As shown in Table 4, the standard deviation for position/orientation
error was greatly reduced: etx = 0.3583 (mm), ety = 0.5101 (mm), and etz = 0.03634 (mm), approximately
94% of error reduction on average.

Table 3. Mean error of the measurement system position-accuracy.

Measurement

Mean Error

Translation/mm Rotation/rad

etx ety etz eθx
eθy eθz

Before 0.9883 −1.3173 2.3743 0.0008 −0.0062 −0.0032

After −0.0295 −0.0079 −0.0496 −0.0000 0.0002 0.0000

Reduced % 97.01% 99.4% 97.9% 100% 96.77% 100%

Table 4. Standard deviation error.

Measurement

Standard Deviation Error

Translation/mm Rotation/rad

etx ety etz eθx
eθy eθz

Before 12.4182 10.4763 8.7984 0.0202 0.0215 0.0171

After 0.2632 0.4256 0.3881 0.0006 0.0006 0.0006

Reduced % 97.88% 95.93% 95.58% 97.02% 97.21% 96.49%

5. Experimental Results

We used a Hyundai Hi5 (HA006 model) 6-axis industrial robot to conduct the experiment.
A high-resolution (12 Mp) baser camera with a focal length of 8 mm was attached to the end effector of
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the robot. In addition, a pneumatic gripper was attached to the robot’s end-effector to enable the robot
to grasp objects. The overall robot system is shown in Figure 10.
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5.1. Experiments on Position/Orientation Error

To evaluate the performance of the proposed system, we compared the calculated amount of
movement of the robot to the actual amount of movement. The amount of robot movement can
be easily calculated using Equation (13). In this error evaluation process, 686 data samples were
used for neural network training, and 200 data samples were used for testing the neural network.
The test results are shown in Figure 11. Although the actual results are not as good as the results from
the simulation environment, they have reduced the position/orientation error sufficiently. The after
compensation value of mean error-position in each direction as shown in Table 5 are etx = −1.3897 (mm),
ety = −2.4289 (mm), and etz = 1.554 (mm), for which the error was reduced by 50.3% on average.

In Table 6, the standard deviation for position/orientation errors after compensation are greatly
reduced: etx = 0.6998 (mm), ety = 0.8826 (mm), and etz = 0.4484 (mm), approximately 69% of
error reduction on average. The proposed method showed good performance as a result of the
experiment. In Figure 11, the after-compensation error (red line) is smaller and smoother than the
before compensation error (blue line) when applying the error compensation technique. This illustrates
that the absolute position error of the robot’s end-effector is improved. Considering the calculated
data from the simulation and experiment as shown in Tables 3–6, respectively, the compensation
improvement of the experimental cases is smaller than the result of the simulation cases. The main
reason is that it is really difficult in the real experiment to consider all factors that lead to the
absolute position error of the robot’s end-effector such as tolerances, eccentricities, wear-out, payload,
temperature and insufficient knowledge of model parameters for the transformation between robot
poses, etc. [5]. However, our algorithm did reduce the absolute position error in real experiments
by 50.3%, which can verify the proposed compensation algorithm to be utilized successfully in the
real application.
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Table 5. Mean error of the measurement system position accuracy.

Measurement

Mean Error

Translation/mm Rotation/rad

etx ety etz eθx
eθy eθz

Before −2.9269 −4.9840 2.9249 −0.0004 0.0007 0.0008

After −1.3897 −2.4289 1.5540 −0.0002 0.0004 0.00045

Reduced % 52.52% 51.27% 46.87% 50% 42.86% 43.75%

Table 6. Standard deviation error.

Measurement

Standard Deviation Error

Translation/mm Rotation/rad

etx ety etz eθx
eθy eθz

Before 2.2461 2.3726 1.7413 0.0019 0.0036 0.0010

After 0.6998 0.8826 0.4484 0.0010 0.0018 0.00055

Reduced % 68.84% 62.80% 74.25% 47.37% 50% 45%

Comparing the compensation performance the other works, Liu et al. [27] proposed an improved
method for the pose accuracy of the robot manipulator by using a multiple-sensor combination
measuring system (MCMS). In their experiments, the pose accuracy of the manipulator is improved by
67.3%, to 3.379 mm on average with the Kamal filter (KF) and by 38.2%, to 1.286 mm on average with
multi-sensor optimal information fusion algorithm (MOIFA). Yauheni et al. [2] proposed a method
of robot end-effector pose accuracy improving using joint error mutual compensation, the improved
value of positioning accuracy for the robot end-effector from 2% to two times, to ∆L = 2.39 mm on
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average. Hence, it can be concluded that our proposed method gives a better performance on the
whole, both in terms of the error reduction ratio and the absolute position error, which is a quite
acceptable error in robot application in the real field.

5.2. The Qualitative Experiments Results

To verify the validity of the error compensation method proposed in this paper, an object-picking
task was performed using the robot used in the experiment. The procedure for the object picking
task is described in Figure 2. Using C#, control software was developed and Raspberry board was
used for communication with the robot. Communication was carried out using the RS-232 standard.
First, the robot was moved to the fine search position in the field-of-view area of the camera. Then,
the camera was used to calculate the 3D pose of an object and then combined with the information
of the hand-eye calibration. Then, the position and the normal vector of the object was calculated.
Next, the position/orientation value of the end effector was estimated using a neural network. Finally,
the robot’s trajectory was modified, and the robot’s gripper reached the target object. The photo of the
robot’s picking task is shown in Figures 12 and 13.
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The results of the experiment confirmed that the proposed method reduced the absolute position
error in the workspace with 200 random positions by 50.3% on average, which is sufficiently applicable
to the object-picking task. We are confident that applying the method proposed in this paper to robots
will also allow for tasks requiring higher accuracy.
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6. Conclusion

In this paper, the proposed indirect calibration approach is proved to compensate for the absolute
position/orientation error of a six-axis industrial robot throughout the simulations and experiments.
In particular, experiments with an object picking task using a robot and camera were also conducted
to substantively demonstrate the validity of the proposed algorithm. The position/orientation of the
robot’s end-effector is compensated without modifying the robot’s parameters. The proposed method
is based on a machine vision algorithm combined with a neural network. Using the robot’s end-effector
as an input for a neural network, and the camera attached on the end-effector to observe the object,
we successfully improved the absolute position error of the robot in the workspace. According to
the simulation results, location errors decreased by 98%. The average value of the absolute position
error was 0.029 mm. Actual results showed that the absolute position error was reduced to 50.3%
and the average value of the absolute position error was 1.79 mm, which is a quite acceptable error
in robot application in the real field [5–7]. In conclusion, the proposed method is well suited for
simply deploying the robot visual system in different manufacturing environments because no external
measuring equipment or complicated setup is required in the error compensation and makes the
calibration procedure more convenient to implement. We believe that the method proposed in this
paper can also be applied to robot tasks requiring a high degree of accuracy and replace the existing
error-compensating methods.
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