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Abstract: This paper proposes a theoretical framework for the characterization of the strain-dependent
dynamic properties of soils. The analysis begins with an analytical constitutive model for soils under
steady-state cyclic loading. The model describes the dominant soil characteristics, i.e., the hysteresis
and nonlinearity with an intrinsic material property α, which physically represents the degree of
the hysteresis nonlinearity in a medium. Explicit formulas for the backbone curve, tangent shear
modulus, secant shear modulus, and damping ratio as a function of shear strain are derived directly
from the constitutive model. A procedure is then developed to determine the parameter α in which
the derived damping ratio equation is fitted to damping ratio data measured from the resonant
column test (RCT). Clay and sand under three different levels of confinement stress are considered
in the numerical evaluation. The capability of the proposed theoretical framework in predicting
strain-dependent soil properties and responses is demonstrated.

Keywords: strain-dependent soil properties; hysteretic nonlinear constitutive model; resonant column
test; hysteresis nonlinearity parameter; theoretical procedure

1. Introduction

When the ground motion is severely affected by shear waves propagating vertically from the
underlying rock, the soil deposits may undergo cyclic shear deformations. The dynamic properties of
soils, including the strain-dependent shear modulus and damping ratio, are the basic input parameters
in the analysis of the seismic ground response and site amplification [1]. The soil properties exhibit
strong nonlinear responses; the shear modulus decreases, and the damping capacity increases with the
amplitude of shear strain. The increasing damping capacity is directly associated with the hysteresis.
These macroscopic, hysteretic, nonlinear behaviors of soils are the consequences of complex physics at
microscales including inter-grain contact, friction and adhesion, and rearrangement of grain structures
under loading–unloading.

Numerous stress-strain models have been proposed for the analysis of dynamic soil responses [2,3].
Classical models in terms of empirical fitting parameters are often used for their simplicity [4–8].
More sophisticated models for cyclic loading require more fitting parameters to better describe the
soil hysteresis loops. The hysteresis models have been proposed to capture a closed hysteresis loop
characterized by imposed shear strain amplitude, and state of stress [9–17]. While these models
have been successful in expressing the complex strain-dependency for certain soil types under the
steady-state cyclic loading, they still have lack of robustness and universality due to physical uncertainty
of the input parameters and their uses are quite limited to other soils. Therefore, a simple but robust
model is needed to describe inherently hysteretic nonlinear nature of soils.

The present study is to develop a new theoretical framework for the purpose of characterizing
the strain-dependent dynamic shear modulus and damping ratio of soils. This paper extends the
previous study by the author of [18] to (1) derive the explicit formula with the second model order;
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(2) to test damping ratio data obtained from resonant column test (RCT); and (3) to explore the effect of
confinement stress on the hysteretic parameters. In particular, the modified procedure of conventional
data interpretation is proposed to accurately characterize the hysteretic soil properties and responses
from resonant column.

2. Explicit Formulas to Describe Nonlinear-Hysteretic Response

2.1. Constitutive Model: Stress-Strain Relation

Considerable progress in modeling such hysteretic nonlinear behaviors of granular materials has
been made in the geophysics community. The constitutive models are derived within the mathematical
framework of the Preisach-Mayergoyz space representation from a unit physical mechanism [19–22].
This study uses the relevant stress-strain relationship of soils for one-dimensional cyclic shear
motion [23–26]. In particular, the classical nonlinearity terms (higher order power series in strain)
are neglected

τH = Gmax

{
γ−

α
2

[
2∆γ · γ− sgn

( .
γ
)(
(∆γ)2

− γ2
)]}

(1)

where Gmax is the shear modulus in the limit of infinitesimal strain, γ is the shear strain, α is a
non-dimensional parameter that measures the degree of hysteretic nonlinearity,

.
γ(= ∂γ/∂t) is strain

rate, ∆γ is shear strain amplitude, and sgn(x) is signum function.

2.2. Backbone Curve

The nonlinear-hysteretic soil models follow the basic and extended Masing’s rules, which are
adopted in conjunction with the backbone curve to express unloading, reloading, and cyclic degradation
behavior. It represents trajectory of the extrema of the hysteresis curves. By replacing the strain
amplitude (∆γ) with the shear strain γ in Equation (1), the backbone curve can be readily obtained for
the entire strain range:

τb = Gmaxγ
[
1− sgn(

.
γ)αγ

]
(2)

The backbone curves are superimposed on the stress-strain curves for three different strain
amplitudes (Figure 1). The results show increasing hysteresis (nonlinear damping) and decreasing
slope (the strain-softening effect) with increasing strain amplitude. In addition, the backbone curve is
constructed by two quadratic functions joined at the coordinate origin. In fact, similar hysteresis loops
are observed in many soils and other granular materials. While the stress–strain model in Equation (1)
may not describe all of complex constitutive behaviors of granular materials, it has been shown to
capture some essential features in the stress–strain relationship under steady-state cyclic loading.
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where WS is the maximum strain energy stored during the cycle (= Gsec·Δγ2/2), and WD is the area 
closed by the hysteresis loop in the stress-strain curve, which represents the dissipated energy per 
cycle. The energy dissipation per cycle can be obtained by integrating Equation (1): 
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Figure 1. Nonlinear stress-strain behavior of sand under 200 kPa for three different shear strain
amplitudes ∆γ = 3 × 10−4, 5 × 10−4, 8 × 10−4. Hysteretic loops and backbone curve are obtained using
Equations (1) and (2) with G0 = 146 GPa and α = 470.
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2.3. Modulus Degradation

The instantaneous shear modulus (Gtan = dτH/dγ), defined as the slope on the stress-strain
hysteresis loop along the loading path, can be obtained by taking the derivative with respect to shear
strain in Equation (1):

GH
tan = dτH/dγ = Gmax

[
1− α

(
sgn(

.
γ) · γ+ ∆γ

)]
(3)

Given the
.
γ > 0 and ∆γ = γ, the tangent shear modulus can be expressed:

Gtan

Gmax
= 1− 2αγ (4)

This explicit form of the tangent modulus can be useful in the numerical simulations to reflect
strain-softening response of granular materials under cyclic loading. The tangent stiffness Gtan

instantaneously captures the soil fabric change during a large strain test. It is not related with small
strain stiffness Gmax measured under constant fabric [27,28].

The secant shear modulus (Gsec = τb/γ), where the secant slope drawn from the origin to any
specified point on the stress-strain curve can be derived using Equation (2):

Gsec

Gmax
= 1− αγ (5)

The ratio between the secant and backbone tangent moduli is given:

Gtan

Gsec
=

1− 2αγ
1− αγ

< 1 (6)

The small positive quantity in αγ indicates that the secant modulus is always larger than the
backbone tangential modulus.

2.4. Damping Ratio

The damping ratio of a granular material is the summation of the linear damping ratio in the limit
of small strain (ζL) that represents the inherent viscoelastic absorption and a nonlinear damping ratio
due to the hysteresis that increases with the strain (ζNL(γ)), i.e.,

ζ(γ) = ζL + ζNL(γ) (7)

The nonlinear damping ratio is defined [1,26]:

ζNL(γ) =
WD

4πWS
(8)

where WS is the maximum strain energy stored during the cycle (= Gsec·∆γ2/2), and WD is the area
closed by the hysteresis loop in the stress-strain curve, which represents the dissipated energy per
cycle. The energy dissipation per cycle can be obtained by integrating Equation (1):

W = τdγ = G
{
γ− α

2 [2∆γ · γ− ((∆γ) − γ)]
}
dγ

+G
{
γ− α

2 [2∆γ · γ+ ((∆γ) − γ)]
}
dγ = 4

3 Gα(∆γ)
(9)

The dissipated energy depends on the strain amplitude, hysteretic nonlinearity parameter,
and shear modulus in the limit of infinitesimal strain. Thus, the nonlinear damping ratio can be
obtained from Equation (8):

ζNL(γ) =
2

3π
Gmax

Gsec
αγ =

2
3π

αγ

1− αγ

αγ�1
�

2
3π
αγ (10)
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The strain-dependent damping ratio response cannot be described with the Kelvin-Voigt model
that consists of a linear spring element and a linear dashpot element in parallel system:

τ = Gγ+ η
.
γ = Gγ± ηω

√
(∆γ)2

− γ2 (11)

where η is the viscosity and γ is the harmonically varying strain as ∆γsin(ωt). The damping ratio can
be expressed:

ζL
KV =

ηω

2G
(12)

There is no strain-dependence in the shear modulus and the damping ratio. These correspond to
the constant damping ratio and resonant frequency monitored at low shear strains.

3. Results and Analysis

3.1. Examples

Resonant column test (RCT) characterizes the resonance frequency and damping ratio as a function
of shear strain. The shear modulus is obtained from the resonance frequency using the characteristic
equation derived from the linear vibration of the column-mass system. In fact, the hysteretic nonlinear
nature of the vibration problem is ignored on the calculation of the shear modulus. Thus, this study uses
damping ratio data to avoid data interpretation errors. The linear damping ratio ζL is experimentally
constrained below elastic threshold regime. Meanwhile, the nonlinear damping ratio is defined by
using the least-squares method:

E(α) = min
∑

i

[ζ
Exp
i − ζModel

i (α)]
2

(13)

Figure 2 presents fitted damping ratio and slices of the error surface presenting the inevitability of
the hysteretic nonlinear parameter.
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Figure 2. Determination of the hysteretic nonlinearity parameter α using the damping ratio measured
from resonant column test (RCT) and the proposed model (sand data from 16 ~ 18 in Table 1):
(a) Least-squares fitting of the model to measured damping ratio; (b) error function (L2 norm).

Figure 3 shows the data points and fitted models for damping ratios and the estimated values
are tabulated in Table 1. Since, the α values are on the order of 102 and the maximum shear strain is
less than 10−3, αγ is at most 10−1, which proves the inequality in Equation (6). Higher confinement
stress extends the elastic threshold region with lower values. In addition, clay is expected to be lower
nonlinear than sand. These results show trend of the α values, implying that the α parameter involves
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physical information about the soil fabric changes. With the fitted parameters, the secant shear modulus
data was compared with the proposed model (Figure 4). As the shear strain levels are increased beyond
the elastic threshold strain, the conventional method predicted larger reductions in the shear modulus.
These deviations show that the use of the linear characteristic equation produces data interpretation
errors on the shear modulus. However, larger reductions in the shear modulus would be more
conservative data for design purpose. Figure 5 shows the hysteresis curves, corresponding backbone
curves, and the instantaneous tangent shear moduli for sand under confinement stresses, 100 and
400 kPa. The instantaneous tangent shear moduli have a bow-tie shape with end-point discontinuities,
thereby, showing that the shear modulus is dependent on the loading path and exhibits a significant
drop with the strain amplitude again due to the strain softening effect. The secant modulus at the
maximum strains is superimposed at its tangent counterpart. Note that the tangent modulus at γ = 0
is equal to the average of two secant modulus at each shear strain amplitude.

Table 1. Hysteretic nonlinearity parameter determined with the damping ratio data, measured from
the resonant column test for sand and clay under the three different confinement stress levels.

Sand Clay
# σ’c [kPa] α [ ] References # σ’c [kPa] α [ ] References
1 42 613

[9]

1 100 276

[29]

2 83 565 2 200 246
3 214 469 3 400 192
4 300 371 4 124 238
5 84 594 5 140 263
6 84 640 6 131 277
7 331 370 7 70 282

[9]

8 359 296 8 276 206
9 214 529 9 250 210

10 470 342 10 100 260
11 275 462 11 100 259
12 250 417 12 100 270
13 320 419 13 200 230
14 480 223 14 400 200
15 550 209
16 100 590

[29]

17 200 469
18 400 370
19 70 610
20 138 518
21 207 390
22 83 437
23 83 500
24 100 482
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Figure 3. Damping ratios of sand and clay under three different confinement stress levels (sand data
from 16~18 and Clay data from 1 ~ 3 in Table 1): (a) Sand; (b) clay. The symbols are experimental data
and the lines are defined by Equations (7) and (10).
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Figure 4. Damping ratios of sand and clay under three different confinement stress levels (sand data
from 16~18 and clay data from 1~3 in Table 1): (a) Sand; (b) clay. The symbols are experimental data
and the lines are defined by Equations (7) and (10).
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Figure 5. Strain-dependent dynamic response of sand under two different confinement stress levels.
(a) Hysteresis shear stress–strain relation; (b) instantaneous tangent shear modulus.

3.2. Correlation: Hysteretic Parameter and Confinement Stress

The 38 data sets of resonant column test (RCT) compiled from the literature are compared with
the proposed model for different confinement stress levels and soils. Figure 6 presents that (1) there
is an inverse relation between hysteretic nonlinear parameter α and confinement stress σ’c; (2) sand
leads to higher α value than clay at the same confinement stress.

3.3. Comments: Shear Strain Range

The constitutive model in Equation (1) has been validated for many different granular material
systems [25,30,31], while this research for the first time applies the constitutive model to characterize
the soil properties of geotechnical interest. The functional form determines the shape of hysteresis,
while the hysteretic nonlinearity parameter α quantifies the amount of the macroscopic hysteretic
nonlinear effect caused by microscopic sources of nonlinearity. In addition, this parameter is not
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a meaningless fitting parameter but it has its own full physical meaning related to the sources of
nonlinearity [24,32]. Thus, the ad-hoc fitting procedure is not required to characterize strain-dependent
soil properties. It was revealed that the constitutive model in Equation (1) is valid in the strain range
up to 10−2 [25]. For example, the α parameters for the sand and clay considered in this research are
on the order of 102. This means αγ < 1 for γ < 10−2, and thus Gsec > 0 and Gtan > 0 in this model.
The upper validity limit shear strain of 10−2 is high enough in most of geotechnical applications.
Figure 7 summarizes the entire procedure based on the RCT data. While the data from RCT are
used as an example in this research, data from the torsional shear test can additionally be used in a
similar procedure.
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4. Conclusions

This paper addresses a theoretical framework for characterizing the dynamic behavior of soils.
In particular, the simple but robust constitutive model involved with a single physical parameter α
was used to capture the strain-dependent response of granular materials under steady-state cyclic
loading condition. The main conclusions can be drawn as follows:

• The constitutive model derives explicit formulas to describe the hysteretic nonlinear response.
Note that all other models derived from this study model depend on the hysteretic nonlinear
parameter α.

• The 36 damping ratio data sets measured from resonant column test were compared with the
proposed model for different confinement stress levels and soils. It shows the inverse relation
between the α parameter and confinement stress and higher α values for sand.

• The data analysis reveals that the model is valid for αγ < 1, and thus the explicit formula can be
used to simulate the ground motion within intermediate strain range.
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