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Abstract: Recommender system (RS) can be used to provide personalized recommendations based
on the different tastes of users. Item-based collaborative filtering (IBCF) has been successfully applied
to modern RSs because of its excellent performance, but it is susceptible to the new item cold-start
problem, especially when a new item has no rating records (complete new item cold-start). Motivated
by this, we propose a niche approach which applies interrelationship mining into IBCF in this paper.
The proposed approach utilizes interrelationship mining to extract new binary relations between each
pair of item attributes, and constructs interrelated attributes to rich the available information on a new
item. Further, similarity, computed using interrelated attributes, can reflect characteristics between
new items and others more accurately. Some significant properties, as well as the usage of interrelated
attributes, are provided in detail. Experimental results obtained suggest that the proposed approach
can effectively solve the complete new item cold-start problem of IBCF and can be used to provide
new item recommendations with satisfactory accuracy and diversity in modern RSs.

Keywords: interrelationship mining; interrelated attributes; recommender system; item-based
collaborative filtering; complete new item cold-start

1. Introduction

With the rapid development of the Internet, data and information are being generated at an
unprecedented rate. People cannot acquire useful information quickly and accurately from the huge
amount of data around them. Further, the recommender system (RS) can provide personalized items
for various types of users, and help users get useful information from large amounts of data. Hence,
RSs have great commercial values and research potential and play a significant role in many practical
applications and services [1–6].

Collaborative filtering (CF) is one of the most successful approaches often used in implementing
RSs [7–10]. Item-based CF (IBCF) approach is a type of CF which supposes that an item will be
preferred by a user if the item is similar to the one preferred by the user in the past [11]. IBCF is
efficient and easy to implement and has good scalability, hence, it is widely applied in modern RSs,
e.g., Amazon and Netflix [12]. One of the main problems of IBCF is the new item cold-start (NICS)
problem [12–15]. NICS is very common in practical RSs, i.e., hundreds of new items are introduced in
modern RSs every day. Generally, NICS can be divided into complete new item cold-start (CNICS)
where no rating record is available (e.g., i5 and i6 in Table 1), and incomplete new item cold-start
(INICS) where only a small number of rating records are available (e.g., i3 and i4 in Table 1). In this
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paper, we focus on the problem of producing effective recommendations for new items with no ratings,
i.e., CNICS problem. Traditional IBCF suffers from CNICS problem as it relies on previous ratings of
the users. In addition, to generate effective recommendations, traditional IBCF requires that items are
rated by a sufficient number of users.

Table 1. Illustration of different types of items in RSs.

u1 u2 u3 u4 u5 u6 u7 . . .

i1 3 2 3 5 2 2 3 . . .
i2 4 1 4 2 3 1 5 . . .
i3 2 1 * * * * * . . .
i4 4 5 1 3 * * * . . .
i5 * * * * * * * . . .
i6 * * * * * * * . . .

To solve CNICS problem of IBCF, a simple approach is to randomly present new items to the
users in order to gather rating information about those new items. However, this approach tends to
achieve low accuracy. On the other hand, additional information about items such as item profiles,
tags, and keywords are used in related effective approaches [15–24]. However, some special additional
information is often incomplete or unavailable. In addition, items in practical RSs often have a low
amount of profile information (e.g., item attributes), but specific features of new items are difficult to be
extracted using limited additional information. Therefore, researchers face difficulty in utilizing only
easily obtained and a limited number of additional information in solving the CNICS problem of IBCF.

In this paper, we propose a niche approach which applies interrelationship mining theory to
the IBCF approach in order to address the CNICS problem of IBCF. Figure 1 indicates the flow chart
of the proposed approach. The proposed approach utilizes interrelationship mining technique to
extract new binary relations between item attributes and subsequently construct interrelated attributes
according to the original item-attribute matrix. Afterward, the similarity of items is computed with
respect to the interrelated attribute information. Next, items with the highest similarity will be selected
to comprise the neighborhood of a new item, and rating information of the neighborhood will be
used to predict rating score for the new item. Finally, items with the highest predicted rating scores
will be recommended to a target user. Experimental results obtained show that our new approach
can ameliorate the CNICS problem, and present new item recommendation with better accuracy and
diversity at the same time. The academic contributions of this paper can be summarized as follows:

• Different from related approaches that need special information which is often difficult to
obtain [15–24], the proposed approach can only utilize easily accessible and a limited number of
additional information (e.g., item attributes) in solving the CNICS problem of IBCF.

• Different from current related approaches that only utilize attribute values [15–24], the proposed
approach extends the binary relations between each pair of attributes using interrelationship
mining and extracts new binary relations to construct interrelated attributes that can reflect the
interrelationship between each pair of attributes. Furthermore, some significant properties of
interrelated attributes are presented, and theorems for the number of interrelated attributes as
well as a detailed process of proof are given in this paper.

• Unlike most related works that can enhance either accuracy or diversity of recommendations,
but not in both [15–24], the proposed approach can provide new item recommendations with
satisfactory accuracy and diversity simultaneously, and the experimental results in Section 4
confirm this.
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Figure 1. The flow chart of proposed approach. Our approach comprises the following main phases:
1O extract item attribute matrix; 2O construct interrelated attributes by extending the given binary

relations between each pair of attributes; 3O form item interrelated attribute matrix; 4O compute
item-item similarity; 5O predict rating scores and recommend top N items to the target user.

The remaining part of this paper is organized as follows. In Section 2, we introduce the basic
idea of IBCF and the associated CNICS problem; interrelationship mining theory is also discussed
in this section. In Section 3, we present the proposed approach and discuss its construction and the
number of interrelated attributes. In Section 4, we present the experimental setup and an analysis of
the experimental results. Finally, we present the conclusion of the paper and suggestion for the future
work in Section 5.

2. Background and Related Work

In this section, we introduce the traditional IBCF approach, CNICS problem suffered by IBCF,
and the interrelationship mining theory.

2.1. Traditional IBCF Approach and the Associated CNICS Problem

First, we discuss some RS-related notations used in this paper. Given an RS, let U and I be
finite sets of users and items, respectively. R ∪ {∗} denotes the set of possible item rating scores,
the absence of a rating is indicated by an asterisk (∗). The rating score of a user u ∈ U for item i ∈ I
is denoted by ru,i ∈ R ∪ {∗}. θ is set as the threshold for rating scores, and items with ru,i ≥ θ are
regarded as items that are relevant to a user u. Item attribute set is defined as AT = {at1, at2, . . . , atl},
and AV = {av1, av2, . . . , avl} refers to a set of attribute values, where l is the number of attributes,
and atl(x) = avl(x) means that the value of attribute atl on item ix is avl.

The IBCF approach was first proposed by Sarwar [7]. It is one of the most successful approaches
and has been employed in famous online marts such as Amazon Inc. To predict the rating score for the
target item iti in which the target user utu has not rated, first, the IBCF computes similarity between
target item iti and all other items to identify the neighborhood that has most similar items. Afterward,
a rating score is computed for target item iti using the ratings of the neighborhood made by the target
user utu (Equation (1)).

Ptu,ti =

∑
q∈Nti(L)∩Itu Sim(ti, q) ∗ rtu,q∑

q∈Nti(L)∩Itu

∣∣∣Sim(ti, q)
∣∣∣ . (1)
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Here, Ptu,ti denotes the predicted rating made by the target user utu for the target item iti, Itu ={
ix ∈ I

∣∣∣rtu,x , ∗
}

represents the set of items rated by target user utu, Nti(L) denotes the neighborhood
of the target item iti comprising most L similar items. Sim(ti,q) denotes the similarity value between
target item iti and item iq. After predicting the rating score for each un-rated item of the target user utu.
IBCF sorts all un-rated items in descending order with respect to the predicted rating scores, and the
top N items are selected as recommendation for target user utu.

To obtain recommendations with satisfactory accuracy and diversity, the classical IBCF approach
requires sufficient number of ratings from users on items [7]; however, if a new item just enters into the
RSs, because it has not yet been evaluated by any user, it is crucial for the classical IBCF approach to
produce high-quality recommendations for the new item, i.e., the traditional IBCF is susceptible to the
CNICS problem. Presently, many approaches have been presented for solving the CNICS problem
of IBCF. Gantner et al. [21] presented a framework for mapping item attributes to latent features
of a matrix factorization model. The framework is applicable to both user and item attributes and
can handle both binary and real-valued attributes. Kula [22] proposed a hybrid matrix factorization
model which represents users and items as linear combinations of their content features’ latent factors.
Mantrach et al. [23] proposed a matrix factorization model that exploits items’ properties and past user
preferences while enforcing the manifold structure exhibited by the collective embedding. Sahoo et
al. [24] showed that after forming a good/bad impression on one attribute of items, users will apply
this impression to other items, so, item attribute information is often used to compute similarity among
items. Herein, we give Jaccard (JAC), a simple and effective similarity measure which uses attribute
information to ameliorate the CNICS problem of IBCF [18]:

Sim(x, y) =

→

AV(x) ∗
→

AV(y)

‖

→

AV(x)‖
2
+ ‖

→

AV(y)‖
2
−

→

AV(x) ∗
→

AV(y)
, (2)

where
→

AV(x) =
{
av1(x), av2(x), . . . , avl(x)

}
is a vector which denotes attributes that item ix owns.

However, these approaches only utilize attribute value of items without considering the hidden
information between the given attributes. Furthermore, it is hard to dig out reliable features of new
items with a limited number of attributes.

2.2. Interrelationship Mining Theory

Interrelationship mining, an extension of rough set-based data mining, was first proposed by
Kudo et al [25]. It extends the domain of comparison of attributes from a value set, AVa of attribute a
of the Cartesian product AVa ×AVb with another attribute b, and makes it possible to extract features
with respect to a comparison of values of two different attributes. Herein, we provide some brief
definitions and refer interested reader to [26–28] for more information about interrelationship mining.

Let a, b ∈ AT be any attributes of a given information table, and R ⊆ AVa ×AVb be any binary
relations. We recall that attributes a and b are interrelated by R if and only if there exists an item ix ∈ I
such that (ρ(x, a),ρ(x, b)) ∈ R holds, where ρ(x, a) denotes the value of item ix at the attribute a. We
denote the set of objects that those values of attributes a and b that satisfy the relation R as follows:

R(a, b) ,
{
ix ∈ I | ρ(x, a),ρ(x, b)) ∈ R

}
, (3)

and we call the set R(a, b) the support set of the interrelation between a and b by R.
To evaluate interrelationships between different attributes, Kudo et al. [23] proposed an approach

for constructing new binary relation by using given binary relations between values of different
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attributes. In an information table, the new binary relation set Rint for performing interrelationship
mining with respect to a given binary relation set RAT can be defined as follows:

Rint = RAT ∪
{{

Rai×bi

}∣∣∣∣∃ai, bi ∈ AT
}
∪ {{=} |For each aRb}, (4)

where each family
{
Rai×bi

}
=

{
R1

ai×bi
, . . . , Rni

ai×bi

}
consists of ni(ni ≥ 0) binary relation(s) defined on

AVai ×AVbi . The symbol aRb denotes the interrelated attribute of attributes a and b by the binary
relation R ⊆ AVa ×AVb.

It is worthy of note that the new binary relation set can not only include equality relation but also
other binary relations such that “the value of attribute a is higher/lower than the value of attribute b”.

3. Proposed Approach: IBCF Approach based on Interrelationship Mining

In this section, we would first present the motivation of our proposed approach. Afterward,
we introduce a method of constructing interrelated attributes and some significant properties of
interrelated attributes. Next, we discuss the use of interrelated attributes based on JAC measure.
Finally, we present an instance of how the proposed approach can be used.

3.1. Motivation of the Proposed Approach

To ameliorate the CNICS problem of IBCF, the proposed approach aims to extract more information
from limited item attributes of a new item and utilizes the extracted information in selecting a more
appropriate neighborhood for a new item in IBCF. This helps to ensure that new item recommendations
can be more accurate and diverse.

For a new item, which often has no ratings, existing approaches can be used to restrictedly
compare attribute values of the same attribute; however, they do not consider the interrelationship
between different attributes. Therefore, it is difficult to extract the following characteristics that are
based on a comparison of attribute values between different attributes using the existing approaches:

• A user prefers attribute a of movies more than attribute b,
• The significance of attribute a is identical to the attribute b.

Therefore, the domain of comparison of attribute values needs to be extended so that the values of
different attributes can be compared. Hence, we can describe the interrelationships between attributes
by a comparison between attribute values of different attributes, and the interrelated attributes can be
constructed to incorporate available information of a new item.

3.2. Construction of Interrelated Attributes

First, based on Yao et al. [29], we define the item attribute information table AM in RSs as

AM = (I, AT, {AVa|a ∈ AT},RAT,ρ). (5)

Where I denotes the set of items, AT denotes the set of items’ attributes, AVa denotes the set of attribute
values for a ∈ AT, and RAT = {{Ra}|a ∈ AT} denotes a set of binary relation {Ra} defined on each AVa.
ρ denotes an information function ρ : U ×AT→ AV that yields a value ρ(x, a) ∈ AVa of the attribute
a ∈ AT for each item ix ∈ I. AV = ∪a∈ATAVa denotes a set of all attributes’ values in AT. For each item
ix ∈ I and each attribute a ∈ AT, we assume that the value ρ(x, a) is either 1 or 0, and say that item ix
owns a if ρ(x, a) = 1 holds. The proposed approach is an extension of the existing binary relation set
RAT to a new binary relation set Rint by using interrelationship mining, with the interrelated attributes
constructed to include the available information of a new item. A detailed description of the procedure
is presented as follows:

Generally, in RSs, every set of binary relation {Ra} is supposed to be comprised of only the equality
relation = on AVa, e.g., an item has an attribute a or not. In this case, the characteristic of different
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attributes is not considered. Thus, to extract the characteristic between different attributes using the
given binary relations RAT, the extended binary relations Rint can be defined as:

Rint = RAT ∪
{
{=} |For each aiRa j

}
∪

{{
Rai×a j

}∣∣∣∣∃ai, a j ∈ AT
}
, (6)

where
{
Rai×a j

}
=

{
R1

ai×a j
, . . . , Rni

ai×a j

}
refers to the new binary relation set for attribute values of ai and a j.

Theoretically, the number of new binary relation can be unlimited. Based on extended binary relations,
the interrelated attribute set ATint can be expressed as:

ATint =
{
aiRa j

∣∣∣∣∃R ∈
{
Rai×a j

}
, R

(
ai, a j

)
, ∅

}
, (7)

Further, we explore three types of the binary relation
{
<le,=eq,>mo

}
for each pair of attributes ai, a j ∈ AT,

and the values of three newly defined interrelated attributes ai <le a j, ai =eq a j, and ai >mo a j are defined
as follows:

ρint
(
x, ai <le a j

)
=

 1, ρ(x, ai) < ρ
(
x, a j

)
,

0,ρ(x, ai) ≥ ρ
(
x, a j

)
.

(8)

ρint
(
x, ai =eq a j

)
=

 1, ρ(x, ai) = ρ
(
x, a j

)
= 1,

0, otherwise.
(9)

ρint
(
x, ai >mo a j

)
=

 1, ρ(x, ai) > ρ
(
x, a j

)
,

0,ρ(x, ai) ≤ ρ
(
x, a j

)
.

(10)

In this paper, we consider the interrelated attributes aiRa j of ai and a j if and only if i < j holds. From
Equations (8)–(10), we discover that ρint

(
x, ai <le a j

)
= 1 implies that item ix has attribute a j, but does

not have attribute ai; ρint
(
x, ai =eq a j

)
= 1 implies that item ix owns both attribute ai and attribute a j;

and ρint
(
x, ai >mo a j

)
= 1 implies that item ix owns attribute ai, but does not own attribute a j.

3.3. Number of Interrelated Attributes

In this subsection, we discuss the number of interrelated attributes constructed in the
proposed approach.

The proposed approach has an assumption: the interrelated attributes constructed from AT depend
on the order of attributes. For any two attributes ai, a j ∈ AT and any binary relation R ∈

{
<le,=eq,>mo

}
,

the index i of ai must be smaller than the index j of a j in order to be able to construct the interrelated
attributes aiRa j. Hence, if we exchange the order of attributes ai and a j, interrelated attributes aiRai+1,
. . . , aiRa j and ai+1Ra j, . . . , a j−1Ra j are lost and a jRai+1, . . . , a jRa j−1 and a jRai and ai+1Rai, . . . , a j−1Rai
are newly obtained.

Then, even though the order of the attributes ai and a j is exchanged, the number of interrelated
attributes that have the value 1 does not change. It is based on the following property.

Lemma 1. Let ai, a j ∈ AT be any two attributes in which i < j holds, and ix ∈ I be an arbitrary item. If the order
of the attributes ai and a j is changed, there is no change in the number of interrelated attributes that the item
ix owns.

Proof. Let AT = {a1, . . . , al} be a set of attributes that comprises l attribute. Suppose the order of the
attributes ai and a j is changed, i.e., the order a1, . . . , ai−1, ai, ai+1, . . . , a j−1, a j, a j+1, . . . , al is changed to
a1, . . . , ai−1, a j, ai+1, . . . , a j−1, ai, a j+1, . . . , al. It is obvious that there is no influence of change between
ai and a j in the case of ρ(x, ai) = ρ

(
x, a j

)
= 1 or ρ(x, ai) = ρ

(
x, a j

)
= 0. Further, suppose ρ(x, ai) = 1
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and ρ
(
x, a j

)
= 0 holds. Then, before changing the order of ai and a j, it implies that for any attribute

ak(i < k < j), the following three statements can easily be confirmed:

ρint
(
x, ai =eq ak

)
= 1 i f f ρ(x, ak) = 1,

ρint(x, ai >mo ak) = 1 i f f ρ(x, ak) = 0,
ρint

(
x, ak >mo a j

)
= 1 i f f ρ(x, ak) = 1.

Hence, if ρ(x, ak) = 1 holds, item ix owns two interrelated attributes ai =eq ak and ak >mo a j. Otherwise,
item ix owns one interrelated attributes ai >mo ak. After changing the order of ai and a j, the following
three expressions are obtained:

ρint
(
x, ak =eq ai

)
= 1 i f f ρ(x, ak) = 1,

ρint(x, ak <le ai) = 1 i f f ρ(x, ak) = 0,
ρint

(
x, a j <le ak

)
= 1 i f f ρ(x, ak) = 1.

Therefore, by changing the order of ai and a j, if ρ(x, ak) = 1 holds, the two interrelated attributes
ai =eq ak and ak >mo a j are lost, however, item ix owns two the newly obtained interrelated attributes
ak =eq ai and a j <le ak. Otherwise, if ρ(x, ak) = 0 holds, the interrelated attribute ai >mo ak is lost,
and item ix owns a new interrelated attribute ak <le ai. This implies that changing the order of ai and a j
does not change the number of interrelated attributes that have a value of 1 in the case of ρ(x, ai) = 1
and ρ

(
x, a j

)
= 0. Similarly, another case of ρ(x, ai) = 0 and ρ

(
x, a j

)
= 1 can be proven. �

Based on this lemma, the order of attributes can be freely changed without changing the number of
interrelated attributes from the original situation. So, without loss of generality, the following situation
can be assumed; let ix ∈ I be an item. There are l attributes in AT and there is a number m (1 < m < l)
such that ρ(x, a1)= . . . =ρ(x, am)= 1 and ρ(x, am+1)= . . . =ρ(x, al)= 0 hold, respectively. In other words,
the item ix has all m attributes a1, . . . , am and does not have any l - m attributes am+1, . . . , al.

In this situation, the number of interrelated attributes with a value of 1 can easily be obtained.
Thus, for every two attributes ai,a j (1 ≤ i < j ≤ m), it is clear that the value of ai =eq a j is 1 but the
values of ai >mo a j and ai <le a j are 0. It can also be easily verified that the number of the interrelated
attributes ai =eq a j is C2

m. Similarly, for every two attributes ap, aq (1 ≤ p ≤ m and m + 1 ≤ q ≤ l), it is
also clear that the value ap >mo aq is 1 but ap =eq aq and ap <le aq are 0, hence, the number of interrelated
attributes ap >mo aq is m× (l−m). These results conclude the following theorem about the number of
interrelated attributes with the value 1.

Theorem 1. Let AT be a set of attributes that comprises l attributes and ix ∈ I be an item that owns m attributes
in AT. The number of interrelated attributes that item ix owns, denoted by num(x, l, m), can be obtained using

num(x; l, m) = C2
m + m(l−m). (11)

3.4. JAC based on Interrelated Attributes

In this subsection, we employ JAC measure (Equation (2)) to introduce the application of the
interrelated attributes between two items and the number of interrelated attributes that each item
owns. Note that the interrelated attributes can also be applied to other approaches which utilize item
attributes in generating recommendations.

Let AT be the set of attributes that comprises l attributes and ix, iy ∈ I be any two items. Suppose
item ix owns mx attributes and item iy owns my attributes, respectively. By changing the order of
attributes freely with respect to Lemma 1, without loss of generality, the following condition can
be assumed:
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• Both items ix and iy have n1(n1 ≥ 0) attributes a1, . . . , an1 .
• Item ix also has all n2(n2 ≥ 0) attributes b1, . . . , bn2 but item iy does not have any of these attributes.
• Item iy also has all n3(n3 ≥ 0) attributes c1, . . . , cn3 but item ix does not have any of these attributes.
• Both items ix and iy do not have n4(n4 ≥ 0) attributes d1, . . . , dn4 ,

where, the conditions of the number of attributes that item ix and iy own, n1 + n2 + n3 + n4 = l,
n1 + n2 = mx, and n1 + n3 = my hold, respectively.

Using Theorem 1, the number of interrelated attributes that item ix owns can be obtained as follows:

num(x; l, mx) = C2
mx + mx(l−mx)

= C2
n1+n2

+ (n1 + n2)(n3 + n4)

= C2
n1+n2

+ n1n4 + n1n3 + n2n3 + n2n4

(12)

Similarly, the number of interrelated attributes that item iy owns is

num
(
y; l, my

)
= C2

n1+n3
+ n1n4 + n1n2 + n2n3 + n3n4 (13)

Because both items ix and iy have n1(n1 ≥ 0) attributes a1, . . . , an1 , either there is no interrelated
attribute ai =eq a j(1 ≤ i < j ≤ n1) when n1 = 0 or n1 = 1, or there is C2

n1
attributes ai =eq a j(n1 ≥

2 and 1 ≤ i < j ≤ n1) that both items ix and iy own commonly. Hence, in the case of item ix, the rest
C2

n1+n2
−C2

n1
interrelated attributes based on the relation =eq are owned by only item ix and not item iy.

Similarly, in the case of item iy, C2
n1+n3

−C2
n1

interrelated attributes based on the relation =eq are owned
by only item iy and not item ix.

Moreover, similar to the above discussion, both item ix and item iy do not have n4(n4 ≥ 0) attributes
d1, . . . , dn4 , either because there is no interrelated attribute ai >mo dq(1 ≤ i ≤ n1 and 1 ≤ q ≤ n4) if when
n1 = 0 or n4 = 0 or n1n4 interrelated attributes ai >mo dq that item ix and item iy own commonly.
Based on the structure of attributes that item ix and item iy own, it is obvious that the remaining
interrelated attributes denoted by >mo (or <le) are owned by either item ix or item iy only.

These discussions conclude the following results about the relationship between JAC similarity
between item ix and item iy and the number of interrelated attributes that item ix and item iy

own commonly.

Theorem 2. Let AT be a set of attributes that comprises l attributes, item ix, iy ∈ I be any two items and suppose
that item ix owns mx attributes and item iy owns my attributes, respectively. The JAC similarity Sim(x,y) can be
obtained as follows:

Sim(x, y) =
com(x, y)

num(x; l, mx) + num
(
y; l, my

)
− com(x, y)

, (14)

where com(x, y) is the number of interrelated attributes that item ix and item iy own commonly, which is
defined as:

com(x, y) = C2
n1
+ n1n4. (15)

It is important that the number n4 of attributes that both item ix and item iy do not own is used in
Equation (14). This implies that the JAC similarity based on interrelated attributes implicitly evaluates
the number of attributes that both items do not own. Because JAC similarity based on the original
attributes presented in Equation (2) evaluates only the ratio of commonly owned attributes, attributes
that both items do not own are not considered in this case. This shows that it is possible that JAC
obtained using interrelated attributes can be used to provide recommendations with high diversity
based on the similarity obtained using the commonly owned attributes and attributes that are not
commonly owned. It is necessary to conduct further research on this; hence, it would be one of our
future works.
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3.5. Example of Proposed Approach in CNICS Problem

Herein, we introduce the procedure of the proposed approach in Algorithm 1. Furthermore,
we present an example to describe our proposed approach more clearly. Table 2 shows a user-item
rating information table about rating scores obtained from four users and seven items; iti1 and iti2
denote the target items and have no ratings from users. The rating value is from 1 to 5, and a higher
value indicates that the user likes the given item more. Table 3 shows the item attribute information
table about seven items, and three attributes at1, at2, and at3 are considered, where a value of 1 indicates
that the item has that attribute and a value of 0 means it does not have that attribute. Note that items
can be in several attributes simultaneously. Herein, we suppose user u4 is the target user, therefore,
we need to predict rating scores of iti1 and iti2 for user u4.

Step 1: Construct interrelated attributes. Based on three item attributes {at1, at2, at3} shown in
Table 3, we extract the relation between each pair of attributes using Equations (8)–(10). Table 4 is the
interrelated attribute information table.

Step 2: Similarity computation. Based on the information of new interrelated attributes, we
employ Equation (14) to compute similarity between each pair of items. Herein, we use the similarity
computation of i1 and i3 as an example. From Table 3, according to discussions in Section 3.4, we obtain
that the following.

• Both i1 and i3 have n1 = 1 attribute at1.
• There is no attribute that i1 has but i3 does not have, so n2 = 0.
• i3 has n3 = 1 attribute at3 but i1 does not have that.
• Both i1 and i3 do not have n4 = 1 attribute at2.

Algorithm 1 Proposed approach

Input: User-item matrix RM, item-attribute matrix AM, and a target user utu.
Output: Recommended items for the target user utu.

AT: The set of items’ attributes.
ATint: The set of interrelated attributes.
Nti(L): Neighborhood of the target item iti.
L: Number of items in the neighborhood Nti(L) of the target item iti.
N: Number of items recommended to the target user utu.
Ic
tu: The set of items that the target user utu has not rated.

Ptu,ti: Rating prediction of target item iti for the target user utu.
1: ATint = ∅
2: For each pair of attributes

{
ai, a j

}
⊆ AT(i < j) do

3: Obtain the three interrelated attributers:

ATintATint ∪
{
aiRa j

∣∣∣∣R ∈ {
<le,=eq,>mo

}}
4: End for
5: For each interrelated attribute aiRa j ∈ ATint do
6: For each item ix ∈ I do
7: Set the attribute value ρ

(
x, aiRa j

)
of ix by Equations (8)–(10)

8: End for
9: End for
10: For each pair of items {im, in} ⊆ I do
11: Compute the similarity between im and in according to interrelated attributes
12: End for
13: For each target item iti ∈ Ic

tu do
14: Find the L most similar items of target item iti to comprise neighborhood Nti(L)
15: Predict rating score Ptu,ti of target item iti from the items in Nti(L)
16: End for
17: Recommend the top N target items having the highest predicted rating scores to the target user utu
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According to Equations (12) and (13), we can obtain the number of interrelated attributes of i1 and
i3, respectively.

num
(
i1; l, mi1

)
= C2

n1+n2
+ n1n4 + (n1n3 + n2n3 + n2n4) = 2;

num
(
i3; l, mi3

)
= C2

n1+n3
+ n1n4 + (n1n2 + n2n3 + n3n4) = 3;

Then, according to Equation (15), we can obtain

com(i1, i3) = C2
n1
+ n1n4 = 1.

Finally, we can compute the similarity between i1 and i3 as

Sim(i1, i3) =
com(i1, i3)

num
(
i1; l, mi1

)
+ num

(
i3; l, mi3

)
− com(i1, i3)

= 0.25.

Similarly, we can compute similarity for each other pair of items, and the results of item similarity
evaluation are shown in Table 5. For the target items iti1 and iti2, we sort their similar items according
to a descending order of the value of similarity. If only three nearest items are considered as a
neighborhood, the neighborhood Nti1(3) and Nti2(3) of target items iti1 and iti2 are:

Nti1(3) = {i4, i5, i2}; Nti2(3) = {i1, i5, i2}.

Step 3: Rating prediction. From the rating scores of Nti1(3) and Nti2(3), we can use Equation (1)
to predict user u4’s rating scores for iti1 and iti2. Here

P4,ti1 = 3.286; P4,ti2 = 3.643.

Step 4: Item recommendations. Because P4, ti1 < P4,ti2, hence, if we select the top item as a
recommendation, item iti2 will be recommended to user u4.

Table 2. Example of user-item rating information table.

u1 u2 u3 u4

i1 3 2 4 2
i2 5 4 5 4
i3 4 5 1 3
i4 1 3 1 1
i5 2 4 2 5

iti1 * * * *
iti2 * * * *

Table 3. Example of item attribute information table.

at1 at2 at3

i1 1 0 0
i2 1 1 1
i3 1 0 1
i4 0 0 1
i5 0 1 0

iti1 0 1 1
iti2 1 1 0
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Table 4. Example of item interrelated attribute information table.

at1>leat2 at1>leat2 at1>leat2 at1=eqat2 at1=eqat2 at1=eqat2 at1<moat2 at1<moat2 at1<moat2

i1 1 1 0 0 0 0 0 0 0
i2 0 0 0 1 1 1 0 0 0
i3 1 0 0 0 1 0 0 0 1
i4 0 0 0 0 0 0 0 1 1
i5 0 0 1 0 0 0 1 0 0

iti1 0 0 0 0 0 1 1 1 0
iti2 0 1 1 1 0 0 0 0 0

Table 5. Example of item similarity information table.

i1 i2 i3 i4 i5 iti1 iti2

i1 1 0 0.25 0 0 0 0.25
i2 0 1 0.20 0 0 0.20 0.20
i3 0.25 0.20 1 0.25 0 0 0
i4 0 0 0.25 1 0 0.25 0
i5 0 0 0 0 1 0.25 0.25

iti1 0 0.20 0 0.25 0.25 1 0
iti2 0.25 0.20 0 0 0.25 0 1

4. Experiments and Evaluation

In this section, we describe the evaluation datasets and measures, examine the performance of
the proposed approach, and compare the proposed approach’s effects with the traditional IBCF using
different datasets.

4.1. Experimental Setup and the Evaluation Metrics

Here, we used two popular real-world datasets that are often used in evaluating RSs. One is the
MovieLens 100K dataset [30], which contains 1,682 movies, 943 users, and a total of 100,000 ratings.
The other dataset is the MovieLens 1M dataset that contains a total of 1,000,209 ratings of 3900 movies
from 6040 users. In both of the two datasets, the ratings are on a {1, 2, 3, 4, 5} scale, and each user rated
at least 20 movies, with each movie having the following attributes: Action, Adventure, Animation,
Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery,
Romance, Sci-Fi, Thriller, War, and Western.

In the experiment, for each dataset, we randomly selected 20% items as test items, and the
remaining 80% items were treated as the training items. To ensure that each item in the test items is
a new item which has no rating records, all the ratings in each test item were masked. We utilized
ratings of the training items to predict rating scores for the test items, and the test items were used
to evaluate the performance of the proposed approach. Note that, in order to avoid the impact of
overfitting problem, we repeat the experiments 10 times for each dataset and compute the average
values as our experimental results.

To measure the performance of the proposed approach, we used precision and recall metrics to
represent the accuracy of the recommendations. In addition, we used mean personality (MP) and
mean novelty (MN) to evaluate the diversity of the recommendations. In accordance with Herlocker’s
research [31], to maintain real-time performance, we selected different sized L neighborhoods from
candidate neighbors, L∈ {20, 25, 30, . . . , 60}. Furthermore, to calculate the precision and recall,
we treated items rated not less than three as relevant items, and the number of recommendations was
set to 2, 4, 6, and 8.

Precision means the proportion of relevant recommended items from the total number of
recommended items for the target user. Further, higher precision values indicate better performance.
Suppose that Ns is the number of recommended items for a target user, Nrs denotes the number of
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items the target user likes that appear in the recommended list. The precision metric can be expressed
as follows:

Precision =
Nrs

Ns
. (16)

Recall indicates the proportion of relevant recommended items from all relevant items for the
target user. Similar to precision, higher recall values indicate better performance. Herein, Nr denotes
the number of items preferred by the target user. The recall metric can be computed as follows:

Recall =
Nrs

Nr
. (17)

MP indicates the average degree of overlap between every two users’ recommendations.
For example, for two users ui and u j, we count the number of recommendations of the corresponding
top N items, Reci(N) and Rec j(N), and further normalize this number using the threshold value N to
obtain the degree of overlap between two sets of recommendations. It is clear that using an approach
of higher recommendation diversity result in larger MP. As suggested by Gan and Jiang in [32], we set
N = 20 in calculating this metric.

RMP(N) = 1−
1
N

2
|U|(|U| − 1)

∑
1≤i≤ j≤|U|

∣∣∣Reci(N)∩ Rec j(N)
∣∣∣, (18)

MN indicates the novelty of recommendations provided to the users. First, it calculates the
fraction of users who have ever rated each recommendation, and then computes the sum over all
recommendations in Recm(N) to obtain the novelty for user um. Finally, we calculate the average
novelty over all users as

MN(N) = −
1
|U|

∑
1≤m≤|U|

∑
n∈Recm(N)

log2 fn, (19)

where fn indicates the fraction of users who rated the n-th item. We also set N = 20 in calculating this
metric as suggested in [32], and an approach will have a larger MN if it can be used to make newer
recommendations.

4.2. Experimental Results and Analysis

We conducted experiments to evaluate the performance of our proposed approach which applies
interrelationship mining to IBCF as IM-IBCF. In addition, we compared the results obtained with that
of IBCF. In all the experiments conducted, we employed JAC measure to compute similarity, and
weighted sum approach was used to predict the rating scores. Finally, we selected the top N candidate
items with highest predicted rating scores as the recommendations.

Tables 6 and 7 show a comparison of the precision and recall results of the mentioned
recommendation approaches on MovieLens 100K dataset. Moreover, the tables also show comparative
results for a different number of neighborhoods and recommended items. It should be noted that we
grouped experimental data according to the number of recommended items and neighborhoods (e.g.,
experimental results in N = 2 and L =20 will be a group), the best result of each group is boldfaced,
and the best performance among all approaches in each table is underlined. From the results, it is
clear that the highest precision and recall results are obtained for different numbers of recommended
items and neighborhood. For example, if the number of recommended items is set to 2, the best result
of precision measure is 0.500 when the number of neighborhoods is 60, and the best recall value is
0.242 when the number of neighborhood is set to 35. Moreover, when the number of neighborhoods
is fixed, values of precision for each mentioned approach decrease as the number of recommended
items increases; on the contrary, recall result increases as the number of recommended items increases.
In addition, it can be concluded from each table results that precision and recall gain their best results
for a different number of recommended items and neighborhood. For example, for the precision metric,
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the best value was obtained when N = 2 and L = 60; however, the best recall result was obtained
when N = 8 and L = 45. According to the results in Tables 6 and 7, we can conclude that although
values of precision and recall of the proposed IM-IBCF approach are worse than the one obtained
using IBCF when the number of neighborhoods is less than 45, IM-IBCF approach outperforms IBCF
as the number of neighborhood increases. Furthermore, compared with IBCF, IM-IBCF can be used
to obtain the best precision and recall results when L = 60, N = 2 and L = 45, N = 8, respectively.
Therefore, the proposed IM-IBCF can provide more accurate recommendation than IBCF when used
on MovieLens 100K dataset.

Table 6. Results of precision measure on the MovieLens 100K dataset.

#Recommended
Items

Recommendation
Approach

#Neighborhood

L = 20 L = 25 L = 30 L = 35 L = 40 L = 45 L = 50 L = 55 L = 60

N = 2
IM-IBCF 0.478 0.479 0.480 0.476 0.473 0.468 0.462 0.473 0.500

IBCF 0.474 0.524 0.526 0.475 0.417 0.434 0.450 0.447 0.444

N = 4
IM-IBCF 0.261 0.266 0.270 0.274 0.278 0.273 0.270 0.273 0.276

IBCF 0.273 0.286 0.289 0.255 0.236 0.233 0.237 0.229 0.222

N = 6
IM-IBCF 0.196 0.199 0.209 0.211 0.214 0.207 0.204 0.198 0.191

IBCF 0.234 0.221 0.222 0.219 0.216 0.201 0.193 0.189 0.186

N = 8
IM-IBCF 0.164 0.197 0.187 0.164 0.203 0.195 0.188 0.186 0.185

IBCF 0.207 0.166 0.169 0.201 0.161 0.157 0.153 0.147 0.141

Table 7. Results of recall measure on the MovieLens 100K dataset.

#Recommended
Items

Recommendation
Approach

#Neighborhood

L = 20 L = 25 L = 30 L = 35 L = 40 L = 45 L = 50 L = 55 L = 60

N = 2
IM-IBCF 0.235 0.238 0.237 0.242 0.239 0.235 0.233 0.236 0.241

IBCF 0.231 0.239 0.238 0.239 0.240 0.232 0.230 0.232 0.239

N = 4
IM-IBCF 0.251 0.249 0.251 0.258 0.263 0.265 0.261 0.269 0.273

IBCF 0.246 0.257 0.259 0.262 0.257 0.256 0.254 0.259 0.265

N = 6
IM-IBCF 0.273 0.264 0.271 0.281 0.278 0.279 0.284 0.285 0.289

IBCF 0.268 0.269 0.279 0.277 0.273 0.280 0.281 0.283 0.287

N = 8
IM-IBCF 0.286 0.283 0.290 0.286 0.297 0.311 0.308 0.307 0.303

IBCF 0.281 0.287 0.285 0.288 0.290 0.293 0.297 0.304 0.301

Tables 8 and 9 indicate the precision and recall results with a different number of recommended
items and neighborhoods on the MovieLens 1M dataset. According to the results, we can conclude
that the proposed IM-IBCF can be used to obtain the best precision results when N = 2 and L = 35.
And best performance of the recall metric can also be obtained using the proposed IM-IBCF approach
when N = 8 and L = 40. Moreover, it can be concluded that higher precision and recall values among
the above mentioned two approaches are obtained for different numbers of recommended items and
neighborhood. For example, when the number of recommended items is set to 2 (i.e., N = 2), the highest
precision value reported is 0.379 for the IM-IBCF approach when the number of neighborhoods is
35; however, if the number of recommended items is set to 8, the best precision result obtained is
0.191 when the number of neighborhoods is 30 (i.e., L = 30). Similarly, for the recall measure, if the
number of neighborhood is set to 20 (i.e., L = 20), the best value 0.178 can be obtained using the IBCF
approach when the number of recommended items is 8; however, if the number of neighborhood is 30
(i.e., L = 30), the highest recall result obtained using the proposed IM-IBCF approach is 0.194 when
the number of recommended items is set to 8. From Tables 6–9, we can conclude that, for precision
and recall metrics, the proposed IM-IBCF gives higher values than IBCF in both MovieLens 100K and
MovieLens 1M datasets. Because higher values indicate better accuracy performance, it implies that
the proposed approach can predict rating scores for new items more accurately.
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Table 8. Results of precision measure on the MovieLens 1M dataset.

#Recommended
Items

Recommendation
Approach

#Neighborhood

L = 20 L = 25 L = 30 L = 35 L = 40 L = 45 L = 50 L = 55 L = 60

N = 2
IM-IBCF 0.374 0.373 0.375 0.379 0.371 0.369 0.367 0.364 0.361

IBCF 0.372 0.375 0.376 0.374 0.368 0.366 0.364 0.362 0.360

N = 4
IM-IBCF 0.288 0.290 0.293 0.297 0.295 0.291 0.292 0.294 0.296

IBCF 0.289 0.291 0.287 0.286 0.284 0.282 0.280 0.284 0.288

N = 6
IM-IBCF 0.217 0.216 0.213 0.210 0.218 0.216 0.214 0.211 0.210

IBCF 0.215 0.218 0.219 0.213 0.213 0.212 0.210 0.207 0.202

N = 8
IM-IBCF 0.186 0.187 0.191 0.187 0.185 0.182 0.181 0.180 0.177

IBCF 0.182 0.189 0.188 0.185 0.184 0.183 0.180 0.179 0.176

Table 9. Results of recall measure on the MovieLens 1M dataset.

#Recommended
Items

Recommendation
Approach

#Neighborhood

L = 20 L = 25 L = 30 L = 35 L = 40 L = 45 L = 50 L = 55 L = 60

N = 2
IM-IBCF 0.128 0.131 0.133 0.130 0.129 0.122 0.118 0.119 0.115

IBCF 0.089 0.126 0.129 0.132 0.112 0.123 0.115 0.112 0.109

N = 4
IM-IBCF 0.159 0.164 0.165 0.166 0.169 0.158 0.155 0.148 0.142

IBCF 0.149 0.121 0.122 0.125 0.128 0.131 0.133 0.135 0.136

N = 6
IM-IBCF 0.166 0.169 0.171 0.177 0.181 0.172 0.165 0.157 0.153

IBCF 0.162 0.166 0.174 0.179 0.171 0.168 0.164 0.156 0.151

N = 8
IM-IBCF 0.176 0.186 0.194 0.203 0.205 0.196 0.191 0.184 0.188

IBCF 0.178 0.179 0.181 0.183 0.186 0.187 0.189 0.186 0.184

Figure 2 shows the performance of MP and MN for different sizes of neighborhoods on the
MovieLens 100K dataset. From the figures, we can observe that increasing the size of the neighborhood
would result in higher MP values for both approaches. However, the proposed IM-IBCF produces a
better performance than IBCF. For MN metric, the proposed IM-IBCF surpasses IBCF in the whole
range of size of neighborhoods. Figure 3 presents comparison of MP and MN results obtained using the
MovieLens 1M dataset. As shown in the figures, MP values of IM-IBCF has no remarkable change in
the whole size of the neighborhood range; however, IBCF increases clearly as the size of neighborhood
increases. However, the proposed IM-IBCF can surpass IBCF over all ranges of neighborhoods. For MN
metric, increasing the size of neighborhood results in an increase in MN values of the two approaches.
Further, the proposed IM-IBCF approach surpasses IBCF for the whole range of neighborhoods. From
Figures 2 and 3, we can conclude that the proposed IM-IBCF approach produces better MP and
MN results than the IBCF approach. This implies that a new item’s neighborhood selected using
the proposed approach IM-IBCF includes a wider variety of items. Hence, IM-IBCF can provide
recommendations with better diversity.
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Experimental results above show that the proposed approach has better accuracy and diversity
than IBCF on the CNICS problem. Because a new item often has no rating records, the IBCF uses
JAC measure to compute similarity by comparing attribute values between items, however it cannot
explore the hidden information from the given attributes. By extending binary relations between
different attributes, the proposed approach constructs interrelated attributes for each item so that
more information can be utilized in evaluating the similarity computation. Further, items in a
new item’s neighborhood will be more similar to this new item, which shows that the accuracy
of the recommendation has improved. Moreover, items with more common attributes will have
higher similarity in IBCF, thereby making items in a neighborhood to concentrate on a few types.
The proposed approach can be used to extract characteristic from different attributes, which can
enhance distinction among different items. Thus, in IM-IBCF, items types in the neighborhood are more
than in IBCF, and more types of items can be recommended to the target user. Therefore, the diversity
of recommendations has also been enhanced.

5. Conclusions and Future Work

In this paper, we have proposed a new approach for solving the CNICS problem of the IBCF
approach, which employs interrelationship mining to increase available information on a new item.
First, it extends binary relations between different attributes using the given binary relations. Afterward,
it constructs interrelated attributes that can express characteristics between a pair of different attributes
by using the new binary relations. Next, interrelated attributes are used to compute similarity,
and items with a higher similarity will be selected to be part of the neighborhood of a new item. Finally,
the proposed approach uses rating information of the neighborhood to predict rating score, and items
with the highest predicted rating scores will be recommended. We evaluated the performance of the
proposed approach using not only the accuracy but also the diversity metric. Because more available
information can be extracted by performing interrelationship mining (e.g., interrelated attributes)
for a new item, the approach achieved significant improvements in both the accuracy and diversity
performance. Therefore, the proposed approach can be used in RSs to ameliorate the CNICS problem
of IBCF.

The interrelationship mining used in the proposed approach can extend the domain of comparison
of different attribute values and make values of different attributes become comparable. But for RSs
which have different types of binary relations and attributes, determining the type of binary relation
that should be extracted and how many interrelated attributes should be constructed is a challenging
issue; hence, we plan to look into this in our future work.
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