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Abstract: The fault frequencies are as they are and cannot be improved. One can only improve
its estimation quality. This paper proposes a fault diagnosis method by combining local mean
decomposition (LMD) and the ratio correction method to process the short-time signals. Firstly,
the vibration signal of rolling bearing is decomposed into a series of product functions (PFs) by
LMD. The PF, which contains the richest fault information, is selected to perform envelope spectrum
analysis by the Hilbert transform (HT). Secondly, the Hilbert envelope spectrum of the selected PF is
corrected with the ratio correction method. Finally, higher precision fault frequencies are extracted
from the corrected Hilbert envelope spectrum, and then the fault location is accurately determined.
The proposed method of this paper can be used in online real-time monitoring technology of rolling
bearing failure.

Keywords: local mean decomposition; spectrum correction; ratio correction method; frequency
accuracy

1. Introduction

Rolling bearing is one kind of core parts in rotating machines, which plays an important role
in industrial production. Condition monitoring and fault diagnosis of rolling bearing has become
an attractive research topic. The purpose of fault diagnosis for rolling bearing is to determine the type
of faults, the degree of damage, and the cause of faults. When a fault occurs, rotating machines should
stop to repair or replace the faulty rolling bearing in time to avoid serious results. The process of fault
diagnosis can be divided into three steps, which are signal acquisition, feature extraction, and diagnosis
decision. Among the three steps, feature extraction is the most critical one. The vibration signal of
rolling bearing in the fault state usually consists of three parts. The first part is the fault information
of rolling bearing with the characteristics of non-stationary, nonlinear, and modulation. The second
part is the vibration information of the rotating machines except the faulty rolling bearing. The third
part is the noise and interference. Many signal processing methods are used to process the vibration
signal, such as demodulated resonance technique (DRT), short time Fourier transform (STFT), wavelet
transform (WT), and Hilbert-Huang transform (HHT). While these methods are effective and useful in
the fault diagnosis of rolling bearing, there are still some limits. For example, the DRT is difficult to find
out the best main resonance frequency band accurately, and the time-frequency window size of STFT is
fixed [1]. While WT has a variable time-frequency window, the results are fixed-band signals when the
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wavelet basis and decomposition scale are selected [2]. HHT includes empirical mode decomposition
(EMD) and HT, and it is a self-adaptive time-frequency analysis method. However, there are some
defects in EMD, such as over-envelope, under-envelope, mode mixing, end effect, IMF criterion [3–6],
and may produce unexplained negative frequencies after calculating the instantaneous frequency [7].
The application of these methods in the fault diagnosis of rolling bearing suffers from their defects and
requirements for data.

In addition to the traditional methods, new techniques and methods are also applied to the fault
diagnosis of rolling bearing. With the rapid development of computer technology and machine learning,
deep learning algorithms are increasingly applied to the fault diagnosis of rolling bearing. For instance,
based on a convolutional neural network (CNN, Address) and a long-short-term memory (LSTM)
recurrent neural network, an improved bearing fault diagnosis method is proposed [8]. This method
has the advantages of much higher prediction accuracy, faster iteration and more efficient to prevent
over-fitting. Besides, the input of this method is the raw sampling signal without any pre-processing or
traditional feature extraction. The results showed that the average accuracy rate in the testing dataset
reached more than 99%. However, one of its obvious shortcomings is that it requires large amount
of computation. A CNN model can learn features from frequency data directly and detect faults of
gearboxes [9]. The results indicate that this method is able to learn features adaptive from frequency
data and achieve higher diagnosis accuracy. This method may be applied to the fault diagnosis of
rolling bearing. A hybrid unsupervised feature selection (HFS) approach demonstrated its effectiveness
in the fault diagnosis of rolling bearing [10]. The deep learning models reduce the incompleteness
caused by artificial design through self-learning and building feature models. However, in the case of
a limited amount of data, the deep learning algorithms cannot make unbiased estimates of the laws of
the data. A large amount of data will lead to a long running time of algorithms. In order to ensure the
real-time performance, the deep learning models require more optimized algorithms, better hardware
and enough data.

In 2005, the British scholar Jonathan S. Smith proposed the LMD on the basis of EMD to deal
with non-stationary signals in a self-adaptive way [7]. LMD uses an iterative approach to decompose
a signal into a set of product functions (PFs). Each of the PF is the product of an envelope signal and
a pure frequency-modulation signal. LMD has a capacity of time-frequency analysis and demodulation
analysis for non-stationary signals. Compared with EMD, LMD solved the problem of over-envelope
and under-envelope and suppresses the end effect to a certain extent. Scholars have already proved
the superiority in LMD [11] and improved the algorithm. LMD has been applied widely to the fault
diagnosis of rolling bearing.

Through spectrum analysis, various frequency components contained in the vibration signal can be
clearly viewed. However, when performing Fourier transform of signals on computers, which can only
process discrete data, it is unavoidable to suffer spectrum leakage and barrier effect [12,13] because of
time domain truncation and limited samples. This will lead to errors in frequency, amplitude, and phase,
and eventually, affect the extraction accuracy [14]. The frequency resolution ∆w of a signal has relations
to the sampling number N and the sampling frequency Fs, based on the formula ∆w = Fs/N. Therefore,
the longer the signal length is, the better the frequency resolution can be reached. However, this leads
to an increase in the cost and time of computer calculation. It is always needed to analyze signals as
fast as possible and reduce the calculating time under the premise of ensuring calculation accuracy,
especially in online real-time monitoring application. Therefore, it is considered to correct the spectrum
based on less sampling number of raw data. This method can make the spectrum close to the true
value to the maximum extent in the case of ensuring the extraction accuracy of fault frequency.

Accurate frequency estimation is one of the most basic problems in the field of signal processing.
The amplitude of frequency reflects the strength of signal energy and its accurate estimation is of
great value. Since the 1970s, some scholars have devoted themselves to the research of discrete
spectrum correction theory and proposed a number of methods to correct the error of spectrum analysis.
The task of spectrum correction is to calculate the frequency, amplitude and phase accurately using the
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information provided by discrete spectrum analysis. In order to get the exact position of the frequency,
the most direct method is to interpolate values between the amplitude of the main line and several
neighboring lines and then calculate the precise frequency position according to an interpolation
formula. Such kind of method is called the interpolation spectrum correction methods, such as the ratio
method [15,16], the energy center method [17–19], the Candan method [20] and its improved version [21],
the Macloed method [22], and the Jacobsen method [23]. These methods are based on the traditional
spectrum analysis of fast Fourier transformation (FFT). Therefore, the inherent spectrum leakage will
affect the accuracy of spectrum correction. In addition, the accuracy of spectrum correction also suffers
from errors of the inter-spectral interference and noise. Spectrum leakage and barrier effect cause the
interaction of the various frequencies and then produces errors. Windowing can reduce the spectral
interference from each frequency and improve the correction accuracy. Another important impact
factor of interpolation spectrum correction methods is the interference from the noise. When there is no
noise in the signal, the interpolation spectrum correction methods are accurate, which can correct the
frequency, amplitude and phase accurately. However, the correction accuracy decreases when there is
a noise, especially when the signal-to-noise ratio (SNR) is small. The spectrum of the noise is always
broadband, and the spectrum of the signal is usually narrowband. In actual signals, the spectrum of
the noise and signals will overlap and then result in errors. The noise can modify the numerical value
of spectral lines and interfere with the location of spectral lines. Carlo offelli and Dario petri studied
the effect of the noise on the correction accuracy of the interpolation method [24]. Schoukens analyzed
the influence of the noise on the interpolation method qualitatively [25]. Xie Ming, Ding Kang and
other scholars also proposed the ratio correction method and developed the interpolation method of
the general spectrum correction method, which solved the problem of the accurate solution to the
amplitude, phase, and frequency of the discrete spectrum with large frequency interval [15,26–29].

The length of the signal affects the accuracy of the frequency resolution and frequency estimation.
The longer the signal is, the higher the frequency resolution will achieve. However, it is not appropriate
for real-time processing. The short-time signals make the frequency resolution be limited, which also
affects its frequency accuracy. Based on the above analysis, this paper proposes the fault diagnosis
method, which combines LMD and the ratio correction method, to improve the accuracy of fault
frequencies of rolling bearing, especially for the short-time signals. The feasibility and effectiveness of
the proposed method are verified by the analysis of measured signals. This method is also suitable for
online real-time monitoring.

2. Materials and Methods

2.1. LMD and Its Improved Algorithm

Based on LMD, the vibration signal of rolling bearing is decomposed into a series of PFs by cyclic
iteration. The algorithm includes a large outer loop and a small inner loop. The inner small loop is
assigned to extract the envelope signal and a purely frequency modulated signal which can combine
into PFs. The large outer loop is designed to extract PFs from the vibration signal. The specific steps of
LMD are described in detail in [5]. After decomposed by LMD, the raw signal x(t) can be reconstructed
according to

x(t) =
m∑

i=1

PFi(t) + um(t) (1)

where PFi(t) is PFs, um(t) is the residual signal, and m denotes the number of PFs.
LMD also has its own defects, such as sliding step selection, mode mixing, sifting stopping

criterion, and end effect. It is essential to improve the algorithm of LMD to make the decomposition
convergence, achieve a good decomposition effect, and extract fault feature information more accurate.
Some scholars have put forward different methods to solve the problem of sliding step size, such as one
third of the longest local mean [5] and cubic spline interpolation method [30]. Other scholars proposed
the method of extending the signal on both sides to solve the problem of end effect [31]. Ensemble local
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mean decomposition successfully overcomes the mode mixing and can efficiently eliminate various
interference contents while preserving fault characteristic information [32]. Related parameters of
these methods need to set manually and maybe they are not the best one. Therefore, these methods
are not self-adaptive. Self-adaptive sifting stopping criterion builds an objective function, which can
determine whether the screening result converges or not, and stop the sifting to ensure the best effect of
PFs in the case of the closest theoretical stopping criterion [33]. The algorithm of LMD and self-adaptive
sifting stopping criterion are detailed in References [5,33]. The improved algorithm of LMD [33] is
used to decompose the vibration signal in this paper.

2.2. Ratio Correction Method

In digital signal processing, the sampling signal is a series of finite-length discrete data. Amplitude
spectrum of a signal can be gained by the discrete Fourier transform (DFT) or FFT. In other words,
the amplitude spectrum of a signal is the result of sampling in the equal frequency domain according
to ∆ω = 2π/N after the convolution of the signal spectrum and a window function. If the frequency
of the periodic signal is on a certain spectral line exactly, the frequency, amplitude and phase are
accurate. If the frequency is between the two adjacent spectral lines, instead of the main lobe center
of the window spectrum, the frequency, amplitude, and phase reflected by the peak spectral line are
inaccurate [15].

Spectrum correction is to find the abscissa of the center of the main lobe, as shown in Figure 1a.
Assume the spectrum of the window spectrum function is f (x) and its function expression is known.
Besides, it is symmetrical about Y-axis. x and x + 1 are adjacent spectral lines and they are closest
to the peak of frequency. Their corresponding window spectrum function are f (x) and f (x + 1).
Their corresponding discrete spectrum are yx and yx+1. ∆x = −x is the spectral line correction and it
can be calculated by the following Equation.{

yx = f (x)
yx+1 = f (x + 1)

(2)
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So, constructing a function

V = F(x) =
f (x)

f (x + 1)
=

yx

yx+1
(3)

where V is the ratio of the two spectral lines and it is a function of x. The interval between these two
spectral lines is 1. The inverse function V is

x = g(V) = g(
yx

yx+1
) (4)
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where the condition for the existence of the inverse function V is that x is in one-to-one correspondence
with V in Equation (3). Then, the frequency correction value can be calculated according to ∆x = −x.
Therefore, it is called ratio correction method.

In the actual calculation, the main lobe center x0 is at the true frequency of signal, as shown in
Figure 1b. yk and yk+1 are two adjacent spectral lines in the main lobe. k and k + 1 are the serial number
of spectral lines. ∆x = −x is the spectral line correction and it can be calculated by equation V =

yk
yk+1

x = g(V)
(5)

Then, the correction frequency formula is as following

fk =
(k + ∆x)FS

N
(6)

where Fs is the sampling frequency and N is the sampling number.

2.3. Diagnostic Method Flow and Simulation Analysis

For the short-time signals of rolling bearing, the proposed method of this paper, which combines
LMD and the ratio correction method, is suitable for the online fast diagnosis. Firstly, the improved
LMD decomposes the raw signal into a set of PFs and the residual signal. The PF, which contains most
of the fault information, is selected by the correlation coefficients ρ between the raw signal and PFs.
The correlation coefficient ρ is a statistical index that describes the degree of correlation between two
variables. Its values range from −1 to 1. The closer the absolute value of ρ is to 1, the stronger the
correlation between two variables is; the closer the absolute value of ρ is to 0, the weaker the correlation
between two variables is. The formula for the correlation coefficient ρ of the discrete signals mi and ni
is as following

ρ =

N∑
i=1

(mi −m)(ni − n)√
N∑

i=1
(mi −m)2 N∑

i=1
(ni − n)2

(7)

where N is the number of mi or ni. Secondly, the Hilbert envelope spectrum of the selected PF is
calculated by HT and spectrum analysis. Additionally, the ratio correction method is then used to
correct the Hilbert envelope spectrum of the selected PF. Finally, higher precision fault frequencies
are extracted and the fault location is accurately determined. In order to highlight the advantages of
the proposed method in processing the short-time signals, this paper makes a comparative analysis
between the long-time signals and the short-time signals. The specific process of the proposed method
is shown in Figure 2.

3. Application and Results

To verify the effectiveness of the proposed method, the rolling bearing data disclosed by the Case
Western Reserve University Bearing Data Center are used [34]. As shown in Figure 3, the test stand
consists of a 2 hp motor (left), a torque transducer/encoder (center), a dynamometer (right), and control
electronics. The motor speeds are from 1797 r/min to 1720 r/min. The test bearings support the motor
shaft. Single point faults were introduced to the test bearings separately at the inner raceway, rolling
element and outer raceway using electro-discharge machining with fault diameters of 7 mils, 14 mils,
21 mils, 28 mils, and 40 mils (1 mil = 0.001 inches). The test bearing is a deep groove ball bearing of
SKF6205 and its related parameters are as follows: the inner diameter is 25 mm, the outer diameter is
52 mm, the number of balls is 9, the rolling body diameter is 7.94 mm, the pitch diameter is 39.04 mm,
and the contact angle is 0◦. The vibration data were collected by accelerometers mounted on the
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housing with magnetic bases. Accelerometers were placed at the 12 o’clock position at both the drive
end and fan end of the motor housing. The vibration signals were collected using a 16 channel DAT
recorder, and were post processed in a MATLAB environment. The sampling frequency is 12 kHz.
The fault data at the drive end with the smallest diameter (7 mils) at the inner raceway and the outer
raceway are selected in this paper. The outer raceway faults were located at 3 o’clock. The rotation
speed (RS), the rotation frequency (RF), the inner raceway fault frequency (IRF), and the outer raceway
fault frequency (ORF) are shown in Table 1.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 
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Table 1. The fault frequency of inner raceway and outer raceway, where xin is the inner raceway fault
data, and xout is the outer raceway fault data.

Data Code RS RF IRF ORF

xin 1721 r/min 28.68 Hz 155.3 Hz
xout 1725 r/min 28.75 Hz 103.1 Hz

3.1. Fault Diagnosis of Bearing with Fault at the Inner Raceway

The time-domain waveform of the fault signal xin from the inner raceway is shown in Figure 4a,
where the sampling number of xin is 12000. Divide the signal xin into four segments of xin1, xin2, xin3,
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and xin4. The number of each segment is 2048. Figure 4b displays the time-domain waveform of
xin1. LMD is used to decompose xin and xin1 separately into a series of PFs and um(t) is the residual
component, as shown in Figure 5. The correlation coefficients ρ between the raw signal and its PFs were
calculated, as shown in Table 2. It is obvious that both of PF1(t) contain the richest fault information.
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To raise the effect of contrast, the comparison chart of the Hilbert envelope spectrum of PF1(t)
which is from Figure 5a is shown in Figure 6. The fault frequency 154.6 Hz, which is not corrected,
is basically equal to the theoretical fault frequency 155.3 Hz, as shown in Figure 6a. The double
frequency 309.9 Hz and the triple frequency 464.4 Hz exist obviously. Similarly, the fault frequency
154.9 Hz, which is corrected, is basically equal to the theoretical fault frequency 155.3 Hz, as shown
in Figure 6b. The double frequency 309.8 Hz and the triple frequency 465.1 Hz exist also obviously.
In this case, whether it is corrected or not, the fault frequency is almost equal to the theoretical fault
frequency. In other words, for the long-time signals, it does not affect the accurate extraction of fault
frequency whether the fault frequency is corrected or not.

However, for the short-time signals, there is a difference between the fault frequency and the
theoretical fault frequency. As shown in Figure 7a, there is a clear error of 2.8 Hz between the fault
frequency 152.5 Hz and the theoretical fault frequency 155.3 Hz. The fault frequency 155 Hz, which is
the value of spectrum correction, is almost equal to the theoretical fault frequency 155.3 Hz, as shown
in Figure 7b. After calculating the remaining three segments of data xin2, xin3, and xin4, the comparison
chart of the Hilbert envelope spectrum of PF1(t) is shown in Figure 8. Without spectrum correction,
the fault frequency 152.5 Hz has an error according to the theoretical fault frequency 155.3 Hz, as shown
in Figure 8a. With spectrum correction, the fault frequency 155 Hz and 154.9 Hz are almost equal to the
theoretical fault frequency 155.3 Hz, as shown in Figure 8b. The noise and spectral intensity of each
segment are different from each other, which affects the value of the spectrum correction, as shown
in Figure 8b. However, it does not affect the accurate extraction of the fault frequency. Through
spectrum correction, the sampling number of signals can be shortened, while keeping an accurate
frequency value.
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3.2. Fault Diagnosis of Bearing with Fault at the Outer Raceway

The time-domain waveform of the fault signal xout from the outer raceway is shown in Figure 9a,
where the sampling number is 12000. Divide the signal xout into four segments of xout1, xout2, xout3,
and xout4. The number of each segment is 2048. Figure 9b displays the time-domain waveform of
xout1. LMD is used to decompose xout and xout1 separately into a series of PFs and um(t) is the residual
component, as shown in Figure 10. The correlation coefficients ρ between the raw signal and its
PFs were calculated, as shown in Table 3. Similarly, it is obvious that both of PF1(t) contain most
fault information.
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Table 3. The correlation coefficients ρ: ρout is the correlation coefficients between xout and its PFs;
ρout1 is the correlation coefficients between xout1 and its PFs.

ρ PF1(t) PF2(t) PF3(t) PF4(t) PF5(t) PF6(t)

ρout 0.9986 0.0602 0.0106 0.0007 0.0001 3.605E−5
ρout1 0.9992 0.0380 0.0090 0.0005
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The comparison chart of the Hilbert envelope spectrum of PF1(t) which is from Figure 10a is
shown in Figure 11. The fault frequency 103.3 Hz, which is not corrected, is basically equal to the
theoretical fault frequency 103.1 Hz, as shown in Figure 11a, and the double frequency 207.3 Hz
exists obviously. Similarly, the fault frequency 103.5 Hz, which is corrected, is almost equal to the
theoretical fault frequency 103.1 Hz, as shown in Figure 11b, and the double frequency 207 Hz exists
also obviously. Whether the fault frequency is corrected or not, it is almost equal to the theoretical fault
frequency, but the corrected fault frequency is farther from the theoretical fault frequency than the
uncorrected fault frequency. The reason is that the theoretical solution to the ratio correction method
is affected by the noise. When the SNR is low to a certain extent, the spectral line of the spectrum
will be overwhelmed by the noise, which may cause an initial positioning error on the signal [35].
Without the noise between the frequencies, the algorithm of the ratio correction method is simple
and its calculation accuracy is high. However, the key to the correction accuracy is to find the most
maximum lines of yk and yk+1 accurately in the main lobe, as shown in Figure 1b, and then get the
correction frequency according to the Equation (6). If the SNR is relatively high, the two maximum
lines in the main lobe can always be found correctly. When SNR is low to some extent, the amplitude of
the maximum spectral line becomes small. It is easy to find a sub-largest line in the opposite direction
and then result in a wrong line correction, which will reduce the accuracy of the correction [36]. Due to
the interference of the noise or frequency leakage, even in the case of high SNR, there are some cases
that the true spectral line may be wrongly selected [24,37]. In this regard, a more in-depth research is
needed. However, when analyzing the long-time signals, it does not affect the accuracy of the fault
frequency whether the fault frequency is corrected or not.
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For the short-time signals, there is an error between the uncorrected fault frequency and the
theoretical fault frequency. As shown in Figure 12a, the fault frequency 105.6 Hz has a difference of
2.5 Hz according to the theoretical fault frequency 103.1 Hz. However, the fault frequency 103.3 Hz,
which is corrected, is almost equal to the theoretical fault frequency 103.1 Hz, as shown in Figure 12b.
The comparison chart of the Hilbert envelope spectrum of PF1(t) is shown in Figure 13, where the
remaining three segments of data xout2, xout3, and xout4 are calculated.

Without spectrum correction, the fault frequency 105.6 Hz has a clear error according to the
theoretical fault frequency 103.1 Hz, as shown in Figure 13a. That is because the frequency resolution
∆w is related to the sampling frequency Fs and the sampling number N. The relationship between them
is expressed by the formula of ∆w = Fs/N. When the sampling frequency is constant, the frequency
resolution ∆w is inversely proportional to the sampling number N. When the number of the four
segments is 2048, the frequency resolution decreases and the spectrum is distorted. However,
with spectrum correction, the fault frequency 103.4 Hz is almost equal to the theoretical fault frequency
103.1 Hz, as shown in Figure 13b. The spectrum correction method can correct the spectral distortion
of the short-time signals and restore the authenticity of the spectrum to some extent.
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Take 20 inner raceway fault samples to form the sample sets Sin. The number of each sample of 10
samples is 12,000, and the number of each sample of the other 10 samples is 2048. Similarly, take 20
outer raceway fault samples to form the sample sets Sout. The number of each sample of 10 samples is
12,000, and the number of each sample of the other 10 samples is 2048. Their IRF and ORF are shown
in Table 1. The fault frequencies were extracted from Sin and Sout, as shown in Figures 14 and 15.
In the Figures 14 and 15, WOSC denotes the fault frequency without spectrum correction and WSC
denotes the fault frequency with spectrum correction. As can be seen from Figures 14a and 15a, for the
long-time signals, there is very small error between the corrected fault frequency or the uncorrected
fault frequency and the theoretical fault frequency. The very small error does not affect the accurate
extraction of fault frequency. As can be seen from Figures 14b and 15b, for the short-time signals,
there is a large error between the uncorrected fault frequency and the theoretical fault frequency, or the
corrected fault frequency. The large error may affect the accurate extraction of fault frequency.
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4. Discussion

The fault signal of rolling bearing typically has non-stationary, nonlinear, and modulated
characteristics. Compared with traditional signal processing technology, LMD can decompose signals
self-adaptively on the basis of signals themselves. For the online real-time monitoring, it is an effective
way to increase the diagnostic efficiency by reducing the sampling data while keeping the accuracy of
fault frequency. For the long-time signals of rolling bearing, the fault frequency is almost equal to the
theoretical fault frequency whether it is corrected or not. Therefore, it does not affect the extraction
accuracy of fault frequency. However, for the short-time signals, the uncorrected fault frequency
has a certain error compared to the theoretical fault frequency. However, with spectrum correction,
the fault frequency is basically equal to the theoretical fault frequency. It is shown that the proposed
method of this paper is valid.

However, the proposed method of this paper has some shortcomings. How to properly determine
the sampling number of the short-time signals in the case of ensuring frequency accuracy and
computational efficiency is a problem. It can be manually set according to the short-time signals itself.
However, the signal is changing with the environment. If the sampling number does not change with
the change of the signal, it may lead to the mistakes of diagnosis, especially in the online real-time
monitoring. Another problem is how to completely eliminate the influence of the noise to the ratio
correction method. The noise not only affects the direction of interpolation, but also affects the spectral
accuracy. How to avoid the interpolation in the opposite direction and get the determined correction
frequency is another problem to be solved. Future research will focus on the further improvement of
the algorithm and the coalescent of the proposed method of this paper and deep learning.

5. Conclusions

The fault diagnosis method which uses LMD and the ratio correction method is proposed for
the short-time signals of rolling bearing. The fault signal of rolling bearing at the inner raceway and
the outer raceway were analyzed by the proposed method. The results show that this method can
gain a high frequency resolution, and extract the fault frequency accurately under the condition of the
short-time signals. Therefore, this method has a certain value of engineering applications. The proposed
method of this paper can reduce the size of data samples while ensuring accuracy. The deep learning
models can directly work on the raw data without any data preprocessing. Thus, it is worthwhile to
make further study of combining spectrum correction with the deep learning models for processing the
short-time signals. In earthquake engineering, many methods are utilized to solve problems related to
earthquakes. For example, probabilistic risk-based performance evaluation of seismically was used to
analyze base-isolated steel structures under the influence of far-field earthquakes [38]. Besides, signal
processing is one of the most typical applications in earthquake engineering. Seismic signals have
the characteristics of non-stationary and “short-time” random impulses. Thus, it is worthwhile to
make further study for handling the short-time signals of earthquake data by the proposed method of
this paper.



Appl. Sci. 2019, 9, 1888 14 of 15

Author Contributions: Conceptualization, Y.D. and C.W.; methodology, Y.D.; software, Y.D. and C.W.; validation,
Y.D. and C.W.; formal analysis, Y.D., C.W. and P.L.; investigation, Y.C.; resources, Y.C.; data curation, Y.D., C.W. and
P.L.; writing—original draft preparation, Y.D.; writing—review and editing, Y.D., Y.C. and C.W.; visualization,
C.W.; supervision, C.W.; project administration, C.W.; funding acquisition, C.W.

Funding: This research was funded by the National Key R & D Plan Program of China (2018YFB0106100),
the Sichuan Science and Technology support Program (2019YFG0352, 2019YFG0098, 2017GZ0395 and 2017GZ0394).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cohen, L. Time-frequency distributions-a review. Proc. IEEE 1989, 77, 941–981. [CrossRef]
2. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans.

Patt. Anal. Mach. Intell. 1989, 11, 674–693. [CrossRef]
3. Qin, S.R.; Zhong, Y.M. A new envelope algorithm of Hilbert–Huang Transform. Mech. Syst. Signal Pr. 2006,

20, 1941–1952. [CrossRef]
4. Huang, N.E.; Wu, M.L.C.; Long, S.R.; Shen, S.S.P.; Qu, W.; Gloersen, P.; Fun, K.L. A confidence limit for the

empirical mode decomposition and Hilbert spectral analysis. Proc. A 2003, 459, 2317–2345. [CrossRef]
5. Deng, Y.J.; Wang, W.; Qian, C.C.; Wang, Z.; Dai, D.J. Boundary-processing-technique in EMD method and

Hilbert transform. Chin. Sci. Bull. 2001, 46, 954. [CrossRef]
6. Cheng, J.S.; Yu, D.J.; Yang, Y. Research on the intrinsic mode function (IMF) criterion in EMD method. Mech.

Syst. Signal Pr. 2006, 20, 817–824.
7. Smith, J.S. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005,

2, 443–454.
8. Pan, H.; He, X.; Tang, S.; Meng, F. An improved bearing fault diagnosis method using one-dimensional CNN

and LSTM. J. Mech. Eng. 2018, 64, 443–452.
9. Jing, L.; Zhao, P.; Li, P.; Xu, X. A convolutional neural network based feature learning and fault diagnosis

method for the condition monitoring of gearbox. Measurement 2017, 111, 1–10. [CrossRef]
10. Yang, Y.; Liao, Y.; Meng, G.; Lee, J. A hybrid feature selection scheme for unsupervised learning and its

application in bearing fault diagnosis. Expert Syst. Appl. 2011, 38, 11311–11320. [CrossRef]
11. Cheng, J.S.; Zhang, H.; Yang, Y. A comparative study of local mean decomposition and empirical mode

decomposition. J. Vibr. Shock 2009, 28, 13–16.
12. Zhang, F.S.; Geng, Z.X.; Yuan, W. The algorithm of interpolating windowed FFT for harmonic analysis of

electric power system. IEEE Trans. Power Deliv. 2001, 16, 160–164. [CrossRef]
13. Luo, J.F.; Xie, M. Phase difference methods based on asymmetric windows. Mech. Syst. Signal Process. 2015,

54, 52–67. [CrossRef]
14. Duan, H.M.; Qin, S.R.; Li, N. Review of correction methods for discrete spectrum. J. Vibr. Shock 2007, 26,

138–145.
15. Xie, M.; Ding, K. A new correction method for discrete spectrum analysis. J. Chongqing Univ. Nat. Sci. Ed.

1995, 18, 48–54.
16. Grandke, T. Interpolation algorithms for discrete Fourier transforms of weighted signals. IEEE Trans. Instrum.

Meas. 1983, 32, 350–355. [CrossRef]
17. Ding, K.; Jiang, L.Q. Energy centrobaric correction method for discrete spectrum. J. Vibr. Eng. 2001, 14,

354–358.
18. Lin, H.B.; Ding, K. Energy based signal parameter estimation method and a comparative study of different

frequency estimators. Mech. Syst. Signal Process. 2011, 25, 452–464.
19. Belega, D.; Dallet, D.; Petri, D. Accuracy of the normalized frequency estimation of a discrete-time sine-wave

by the energy-based method. IEEE Trans. Instrum. Meas. 2012, 61, 111–121. [CrossRef]
20. Candan, C. A method for fine resolution frequency estimation from three DFT samples. Signal Process. Lett.

IEEE 2011, 18, 351–354. [CrossRef]
21. Abatzoglou, T.; Candan, C. Analysis and further improvement of fine resolution frequency estimation

method from three DFT samples. Signal Process. Lett. IEEE 2013, 20, 913–916.
22. Macleod, M.D. Fast nearly ML estimation of the parameters of real or complex single tones or resolved

multiple tones. IEEE Trans. Signal Process. 1998, 46, 141–148. [CrossRef]

http://dx.doi.org/10.1109/5.30749
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1016/j.ymssp.2005.07.002
http://dx.doi.org/10.1098/rspa.2003.1123
http://dx.doi.org/10.1007/BF02900475
http://dx.doi.org/10.1016/j.measurement.2017.07.017
http://dx.doi.org/10.1016/j.eswa.2011.02.181
http://dx.doi.org/10.1109/61.915476
http://dx.doi.org/10.1016/j.ymssp.2014.08.023
http://dx.doi.org/10.1109/TIM.1983.4315077
http://dx.doi.org/10.1109/TIM.2011.2159318
http://dx.doi.org/10.1109/LSP.2011.2136378
http://dx.doi.org/10.1109/78.651200


Appl. Sci. 2019, 9, 1888 15 of 15

23. Jacobsen, E.; Kootsookos, P. Fast, accurate frequency estimators. Signal Process. Magaz. IEEE 2007, 24,
123–125. [CrossRef]

24. Calro, O.; Diaro, P. The influence of windowing on the accuracy of multifrequency signal parameter estimation.
IEEE Trans. Instrum. Meas. 1992, 41, 256–261.

25. Schoukens, J.; Pintelon, R.; Van, H.H. The interpolated fast Fourier transform: A comparative study. IEEE
Trans. Instrum. Meas. 1991, 41, 226–232. [CrossRef]

26. Xie, M.; Ding, K. Corrections for frequency, amplitude and phase in a fast Fourier transform of a harmonic
signal. Mech. Syst. Signal Process. 1996, 10, 211–221.

27. Dishan, H. Phase error in fast Fourier transform analysis. Mech. Syst. Signal Process. 1995, 9, 113–118.
[CrossRef]

28. Xie, M.; Ding, K. Correction method of spectrum analysis. J. Vibr. Eng. 1994, 7, 172–179.
29. Ding, K.; Xie, M. Method of improving the speed and accuracy of FFT and spectral analysis. J. Chongqing

Univ. Nat. Sci. Ed. 1992, 15, 51–57.
30. Zhang, Y.; Qin, Y.; Xing, Z.Y.; Jia, L.M.; Cheng, X.Q. Roller bearing safety region estimation and state

identification based on LMD–PCA–LSSVM. Measurement 2013, 46, 1315–1324. [CrossRef]
31. Ren, D.Q.; Yang, S.X.; Wu, Z.T.; Yan, G.B. Research on end effect of LMD based time-frequency analysis in

rotating machinery fault diagnosis. China Mech. Eng. 2012, 23, 951–956.
32. Wang, L.; Liu, Z.; Miao, Q. Time-Frequency analysis based on ensemble local mean decomposition and fast

kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75. [CrossRef]
33. Liu, Z.L.; Zuo, M.J.; Jin, Y.Q.; Pan, D.; Qin, Y. Improved local mean decomposition for modulation information

mining and its application to machinery fault diagnosis. J. Sound Vibr. 2017, 397, 266–281. [CrossRef]
34. Case Western Reserve University Bearing Data Center. Available online: http://csegroups.case.edu/

bearingdatacenter/home (accessed on 18 October 2018).
35. Rife, D.; Boorstyn, R. Single tone parameter estimation from discrete-time observations. IEEE Trans. Inf.

Theory 1974, 20, 591–598. [CrossRef]
36. Xu, C.Y.; Ding, K.; Lin, H.B. Noise influence on amplitude and phase estimation accuracy by interpolation

method for discrete spectrum. J. Vibr. Eng. 2011, 24, 633–638.
37. Chen, K.F.; Jiang, J.T.; Crowsen, S. Against the long-range spectral leakage of the cosine window family.

Comput. Phys. Commun. 2009, 180, 904–911. [CrossRef]
38. Aryan, R.R.; Mehdi, B. Probabilistic Risk-Based Performance Evaluation of Seismically Base-Isolated Steel

Structures Subjected to Far-Field Earthquakes. Buildings 2018, 8, 128.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MSP.2007.361611
http://dx.doi.org/10.1109/19.137352
http://dx.doi.org/10.1006/mssp.1995.0009
http://dx.doi.org/10.1016/j.measurement.2012.11.048
http://dx.doi.org/10.1016/j.ymssp.2017.09.042
http://dx.doi.org/10.1016/j.jsv.2017.02.055
http://csegroups.case.edu/bearingdatacenter/home
http://csegroups.case.edu/bearingdatacenter/home
http://dx.doi.org/10.1109/TIT.1974.1055282
http://dx.doi.org/10.1016/j.cpc.2008.12.019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	LMD and Its Improved Algorithm 
	Ratio Correction Method 
	Diagnostic Method Flow and Simulation Analysis 

	Application and Results 
	Fault Diagnosis of Bearing with Fault at the Inner Raceway 
	Fault Diagnosis of Bearing with Fault at the Outer Raceway 

	Discussion 
	Conclusions 
	References

