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Abstract: Myocardial infarction is one of the most threatening cardiovascular diseases for human
beings. With the rapid development of wearable devices and portable electrocardiogram (ECG)
medical devices, it is possible and conceivable to detect and monitor myocardial infarction ECG
signals in time. This paper proposed a multi-channel automatic classification algorithm combining
a 16-layer convolutional neural network (CNN) and long-short term memory network (LSTM)
for I-lead myocardial infarction ECG. The algorithm preprocessed the raw data to first extract the
heartbeat segments; then it was trained in the multi-channel CNN and LSTM to automatically learn
the acquired features and complete the myocardial infarction ECG classification. We utilized the
Physikalisch-Technische Bundesanstalt (PTB) database for algorithm verification, and obtained an
accuracy rate of 95.4%, a sensitivity of 98.2%, a specificity of 86.5%, and an F1 score of 96.8%, indicating
that the model can achieve good classification performance without complex handcrafted features.

Keywords: myocardial infarction; ECG; convolutional neural network; recurrent neural
network; LSTM

1. Introduction

Myocardial infarction is a cardiovascular disease caused by myocardial insufficient blood supply
or even myocardial necrosis due to coronary artery occlusion. According to statistics from the American
Health Association, nearly 720,000 Americans suffer from myocardial infarction each year [1]. In the
early stage of this disease, patients with myocardial infarction usually show symptoms such as chest
pain and chest tightness, but some patients still have no obvious symptoms, which makes it difficult to
treat in time, thus threatening life [2]. Therefore, how to achieve the early diagnosis of myocardial
infarction has a significant clinical value, and has become a research topic of many scholars.

Electrocardiogram (ECG) is one of the routine examination methods for myocardial infarction [2].
In the field of ECG signal processing, many traditional studies have focused on the feature extraction
of myocardial infarction ECG signals including time domain, frequency domain, wavelet transform,
and other characteristics. Sun et al. extracted ST segments and combined support vector machine
(SVM) and multi-instance learning to complete myocardial infarction ECG classification [3]. Arif et al.
started with the three time-domain features of T wave amplitude, Q wave amplitude, and ST segment
offset level, and used the K-nearest neighbor (KNN) algorithm to achieve the detection and location of
myocardial infarction [4]. Sharma et al. obtained the frequency domain features of ECG such as sample
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entropy, and applied SVM and the KNN algorithm to classify different types of myocardial infarction
ECG [5]. Similar to Arif, Safdarian et al. extracted T wave characteristics from ECG signals, and
employed pattern recognition methods for myocardial infarction classification [6]. Although the above
algorithms can achieve good results, as ECG signals are very weak and susceptible to noise interference,
feature point recognition cannot be guaranteed, which has become a limitation of such methods.

In recent years, with the development of deep learning, convolutional neural network (CNN), and
recurrent neural network (RNN) have achieved great success in image classification, object detection,
and speech recognition. Deep learning methods such as CNN automatically learn and extract features
through deep neural networks, independent of the acquisition of handcrafted features and expert
knowledge [7–9]. In the area of ECG signal processing, compared with the traditional methods, the
deep learning method avoids ECG handcrafted feature extraction to simplify the implementation
process to a certain extent, and has been applied by scholars. Xiong et al. completed the classification
of atrial fibrillation ECG through a 16-layer CNN [10]. Due to the temporal characteristics of ECG
signals, the long-short term memory (LSTM) in RNN also performs well. Saadatnejad et al. used LSTM
to complete the classification of arrhythmia ECG [11]; in the classification of myocardial infarction
ECG, Reasat T et al. extracted ECG signals from II, III, and AVF leads, and performed preprocessing
and classification through shallow CNN [12]; moreover, Acharya et al. established a deep CNN to
classify the noisy and denoised myocardial infarction ECG [13]. With the popularization of handheld
electrocardiographs, smart bands, and smart watches, access to a single-lead ECG is possible in
personal and home detection. Thus, it is important to detect and prevent myocardial infarction through
single-lead ECG. Since there have only been a few studies on single-lead myocardial infarction ECG,
there is still a very large space for exploration.

Therefore, this paper proposed a deep learning method combining CNN and RNN, established
a multi-channel CNN-LSTM network structure, segmented the pre-processed ECG signal, extracted
spatial features in the multi-channel convolution network, and acquired the temporal characteristics
through LSTM. This method unified the feature extraction and classification procedures, realized the
automatic classification of single-lead myocardial infarction ECG, and made in-depth research and
analysis on the model convolution kernel, optimizer, and other parameters.

2. Methods

2.1. One-Dimensional CNN

CNN is a feedforward neural network with the characteristics of sparse connectivity and weight
sharing. A typical CNN model consists of a series of convolutional layers, pooling layers, and
fully-connected layers. As an important part of CNN, the convolutional layers convolute the output
feature map of the previous layer and construct the output feature map after the activation function.
The mathematical model can be expressed as Equation (1):

xi
j = f (

∑
i∈M j

xl−1
i ∗ kl

i j + bl
j) (1)

where M j represents the input feature map; l denotes the number of layer; k is the convolution kernel;
and b is the network bias vectors.

The pooling layers decrease the dimension of the upper layer feature map and achieve the purpose
of information filtering. During practical application, max-pooling is often used, and its mathematical
model is shown as Equation (2):

Pl+1
i ( j) = max

( j−1)W+1≤t≤ jW
{ql

i(t)} (2)
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where ql
i(t) represents the value of t neuron of i feature map in layer l; W is the size of the pooling area;

and Pl+1
i ( j) is the responding position of the neuron in layer l + 1.

In the fully-connected layer, each neuron node is connected to all nodes of the previous layer of
neurons, and the feature classification is performed using a specific activation function.

2.2. RNN

Compared with CNNs, RNNs are suitable for processing sequence signals. The output of the
neuron of a RNN is determined by the current input of the neuron and the output of the neuron at the
previous moment. Assume the input x = (x1, x2, . . . .., xt), the hidden layer h = (h1, h2, . . . .., ht), the
output y = (y1, y2, . . . .., yt), then for time t:

ht = H(Wxhxt + Whhht−1 + bh) (3)

yt = Whyht + by (4)

where W is the weight value; b is the bias vector; and H is the activation function in the hidden layer.
However, the traditional RNN has a problem called the vanishing gradient. One way to solve the

problem is by using the LSTM model. The basic unit of LSTM is represented by cells, and the input,
forget, and output gates control the behavior of the cells to achieve the long-term storage of memory
information. Figure 1 shows the workflow of an LSTM model [14].

Figure 1. The workflow of an LSTM model.

According to the above workflow, we can calculate as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (5)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (6)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (7)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (8)

ht = ottanh(ct) (9)

where σ represents sigmoid function; it, ft, and ot are the input gate, the forget gate, and the output
gate, respectively; ct is the cell activation vector with the same length of vector ht in the hidden layer;
and Wci, Wc f , and Wco are the weight matrix of peephole connections.



Appl. Sci. 2019, 9, 1879 4 of 12

2.3. Network Model

After comprehensive analysis and study of the characteristics of the ECG signals, this paper
designed the multi-channel CNN-LSTM model structure as shown in Figure 2. The input layer was
the extracted heartbeat signals after preprocessing, and the adjacent five heartbeats (e.g., 3 s of ECG
data) were selected and input into five identical CNN channels to obtain the feature map, which was
concatenated into the LSTM network to acquire the temporal characteristics between signals. Finally,
the temporal characteristics were output to the fully-connected layer for classification. The network
structure had 16 layers including nine convolutional layers, two max-pooling layers, one global average
pooling layer, one dropout layer, one LSTM layer, one flatten layer, and one fully-connected layer.

Figure 2. The network structure diagram.

(1) Convolutional layers: since the input ECG signals were one-dimensional signals, the selected
numbers of filters of the one-dimensional convolutional layer were 4, 8, and 16, respectively;
the convolution kernel size was 5 and the stride was 1; the specific parameter setting process is
described in Section 4. Meanwhile, batch normalization was utilized to ensure that the input
distribution of each layer of the neural network was the same, and ReLU function was applied
as the activation function. Compared with the sigmoid function and tanh function, the ReLU
function converges faster and alleviates the over-fitting problem. ReLU activation function can
be expressed as Equation (10):

f (x) =
{

0, x < 0
x, x ≥ 0

(10)

(2) Pooling layers: this paper used the max-pooling (kernel size was 5) in the fourth and eighth
layers of the network, decreased the dimensionality of the calculated characteristic parameters,
and retained the significant features to accelerate the calculation. The tenth layer used the global
average pooling to reduce the extraction of potential features and obtain the calculation result of
the convolutional network.

(3) Dropout layer: the dropout layer was applied between the global average pooling layer and
the LSTM layer to achieve stronger generalization capability by randomly invalidating some
network nodes.

(4) LSTM layer: after the convolutional network as described above, due to the strong temporal
correlation of the ECG signals, we connected a layer of the LSTM network to obtain the temporal
characteristics in the output features of the convolutional network.

(5) Flatten layer: we converted the multi-dimensional output of the LSTM network into a
one-dimensional output.
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(6) Fully-connected layer: the features after all processes were input to the fully-connected layer for
classification, and the classifier was Softmax.

3. Experiments

3.1. Data Sources

The myocardial infarction ECG data used in this paper was from the Physikalisch-Technische
Bundesanstalt (PTB) database [15], provided by the German National Metrology Institute. The PTB
database contains 549 records in 290 cases, each of which was acquired synchronously by a total of
15 leads including a traditional 12-lead and 3 Frank-VCG, and a professional medical practitioner
completed the label for each record. The sampling frequency of ECG signals in the PTB database
was 1000 Hz. In the PTB database, there were 148 cases of myocardial infarction (368 records) and
52 healthy volunteers (80 records), and the remaining records were heart diseases such as myocarditis,
rhythm disorder, and unstable angina. Aiming to study the single-lead myocardial infarction ECG
classification, we extracted the myocardial infarction signals and healthy signals of I-lead with lengths
of 30 s from the above 15 leads as the experimental data.

3.2. Data Preprocessing

During the acquisition process, ECG signals are subject to three types of noise such as myoelectric
interference, baseline drift, and power line interference. Wavelet transform has a good effect on
eliminating the above three kinds of ubiquitous noises in ECG signals. This paper used the wavelet
transform method proposed in [16] to filter the original ECG noise, and utilized Daubechies D6
(‘db6’) wavelet basis function to decompose the ECG signals to 10 levels. Table 1 corresponds to the
components of the wavelet transform frequency band of ECG signals. The low and high frequency
component are called approximation and detail, respectively. We removed the D1 (250–500 Hz),
D2 (125–250 Hz), D3 (62.5–125 Hz) detail components, and the A10 (0–0.4875 Hz) approximation
component, and reconstructed the remaining components to obtain signals without noises. Figure 3
shows the heartbeats before and after the noises were removed.

Table 1. The frequency band of wavelet transform components.

Components Frequency Band (Hz) Components Frequency Band (Hz)

D1 250–500 D7 3.9–7.81
D2 125–250 D8 1.95–3.9
D3 62.5–125 D9 0.975–1.95
D4 31.25–62.5 D10 0.4875–0.975
D5 15.63–31.25 A10 0–0.4875
D6 7.81–15.63

Figure 3. Heartbeats before and after noises were removed: (a) The original ECG signal; (b) ECG
filtered signal by wavelet transform.
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After the noises were removed, each ECG record was segmented according to a fixed length in
consideration of the input characteristics of the CNN. First, we used the Pan–Tompkins algorithm to
detect the R-peaks [17], and then the R-peak positions were utilized for heartbeat segmentation. After
segmentation, each heartbeat contained 600 sampling points (199 sampling points were selected on the
left side of the R peak and 400 sampling points on the right side), and the length of a single heartbeat
was 0.6 s, which basically covered the range of a P–QRS–T wave. The amplitude distribution of the
normal and myocardial infarction segmentations differed, which would affect the calculation rate.
In order to accelerate the calculation effect, the segmented ECG signals were normalized to improve
the convergence speed of the model. As shown in Figure 4, there was a clear distinction between the
normal ECG and myocardial infarction ECG [18].

Figure 4. Heartbeats after normalization: (a) Normalized healthy heartbeat; (b) Normalized myocardial
infraction heartbeat.

3.3. Balanced Data

Since the ECG data samples used in the study were not balanced, and the healthy records were
significantly less than the myocardial infarction records, in order to avoid over-fitting during training
and improve the generalization ability of the model, the healthy data were randomly oversampled for
balance. Thus, the number of the increased healthy samples was approximately the same as that of the
myocardial infarction.

3.4. Cross-Validation

In order to improve the robustness of the algorithm model, 10-fold cross-validation was used in
the training process. The pre-processed data were randomly divided into 10 parts. In the calculation of
each fold, 90% of the data was used to train the model, and 10% of the data was used as a test set to test
the performance of the model. This process was repeated 10 times, and the corresponding evaluation
indicator for each calculation was recorded. Meanwhile, in order to observe the parameter variation
of the training process and prevent over-fitting, 20% of the 90% training data was taken out as the
validation set to test the performance of the model at each epoch. The data partitioning is shown in
Figure 5.

Figure 5. Data partitioning diagram.
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3.5. Evaluation Index

In the analysis of the classification effect of the model, this paper comprehensively considered the
following four indicators: accuracy (Acc), sensitivity (Sen), specificity (Spec), and F1 score (F1). The
calculation method and meaning of each indicator are as follows:

Acc =
TP + TN

TP + TN + FN + FP
(11)

Sen =
TP

TP + FN
(12)

Spec =
TN

TN + FP
(13)

F1 =
2TP

2TP + FP + FN
(14)

where true positive (TP) represents the number of correct classification; false positive (FP) is the
number of normal ECG, but marked as myocardial infarction; and false negative (FN) is the number
of myocardial infarction ECG but marked as normal. In addition to the above indicators, this paper
studied the two-category problem, so the receiver operating characteristic (ROC) curve and the area
under curve (AUC) were used to describe the performance of the model.

4. Results

4.1. Development Environment

The experimental environment of this article was as follows: Intel Core i5-4590@3.30GHz CPU,
8G RAM, and a GTX 750 graphics card. The development platform was Python 3.7, using the Keras
framework and Tensorflow as the back-end.

4.2. Impact of Channel Numbers on Performance Indicators

During the experiment to test the influence of input length on the accuracy of the model, this
paper found that when the number of model channels was set to five, i.e., when the data of five
adjacent heartbeats (3 s) were selected as the input, the accuracy was the highest. Table 2 shows the
experimental results of different heartbeats. Compared with the input length of 10 heartbeats (6 s),
the accuracy, sensitivity, specificity, and F1 increased by 1.1%, 1.7%, 4.6%, and 1.4%, respectively; and
compared with the input length of 15 heartbeats (9 s), the accuracy, sensitivity, specificity, and F1
indicators increased by 2.7%, 4.6%, 6.0%, and 3.4%, respectively.

Table 2. Experimental results of different heartbeats.

Input Length Acc Sen Spec F1

3 s 95.4% 98.2% 86.5% 96.8%
6 s 94.3% 96.5% 81.9% 95.4%
9 s 92.7% 93.6% 80.5% 93.4%

Thus, the model channel was set to five, and we used five heartbeats as the input to obtain the
classification effect confusion matrix as shown in Figure 6, which indicates that the model could identify
98% of myocardial infarction ECG. The ROC curve is shown in Figure 7. The AUC value of 0.9868
indicates that the model had excellent classification performance.
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Figure 6. Confusion matrix of classification effect.

Figure 7. ROC curve of classification effect.

4.3. Impact of Convolution Kernel Sizes on Classification Results

After determining the number of channels and layers of the network structure, since the size of
the convolution kernel has great influence on the classification performance and operation speed, we
tested five different convolution kernel sizes for the convolutional network, and the results are shown
in Table 3. It was found that when the convolution kernel size was set between [5,9], the AUC value
of the classification effect was improved. Therefore, by taking into account not wasting computing
resources, when the size of the convolution kernel was set between [5,9], a better classification effect
could be obtained.

Table 3. Experimental results of different convolution kernel sizes.

Layers 1–3 4 5–7 8 9–11
AUC

Conv Pooling Conv Pooling Conv

5 Channels
Model

1 × 3 1 × 5 1 × 3 1 × 5 1 × 3 0.9841
1 × 5 1 × 5 1 × 5 1 × 5 1 × 5 0.9868
1 × 7 1 × 5 1 × 7 1 × 5 1 × 7 0.9903
1 × 9 1 × 5 1 × 9 1 × 5 1 × 9 0.9908

1 × 11 1 × 5 1 × 11 1 × 5 1 × 11 0.9868

4.4. Impact of Different Optimizers and Learning Rates on Performance Index

Model training speed and classification accuracy can be improved by selecting an appropriate
optimizer and optimal learning rate. In this paper, three commonly used optimizers—RMSprop,
SGD, and Adam—were selected, the model was trained with different learning rates, and the average
accuracy of the test set was the evaluation index. As the experimental results show in Table 4, the
accuracy was the highest when using the Adam optimizer and the learning rate was set to 0.0001.
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Table 4. Experimental results of different optimizers and learning rates.

Learning Rate 0.0001 0.001 0.01 0.1

Optimizer Acc

Adam 95.4% 93.6% 91.0% 90.5%
RMSprop 94.2% 93.2% 90.5% 89.6%

SGD 94.8% 92.0% 89.4% 88.7%

4.5. Determination of Model Parameters

After the above-mentioned experiments, the model parameters were determined (shown in
Table 5). The number of filters in the convolutional layers was 4, 8, and 16, respectively. The
convolution kernel size was 5, the stride was 1, and the activation function was ReLU; the size of
the max-pooling layer was 5; the dropout layer was set to 0.5; the optimizer selected Adam, and the
learning rate was 0.0001; each batch size was 32, and each training completed 100 epochs.

Table 5. Parameter setting of the model.

Layers Type Filter Number Kernel Size Output Shape

0 Input 600 × 1
1–3 Convolution

×5

4 5 600 × 4
4 Max-Pooling - 5 120 × 4

5–7 Convolution 8 5 120 × 8
8 Max-Pooling - 5 24 × 8

9–11 Convolution 16 5 24 × 16
12 Global-Avg-Pooling - - 16

Concatenate - 16 × 5
13 Dropout 0.5 16 × 5
14 LSTM - 16 × 1
15 Flatten - 16
16 Fully Connected - 2

5. Discussion

This paper used 10-fold cross-validation to train the model, and the comparison of the results of
the evaluation indicators obtained and the existing methods is shown in Table 6. It can be seen from
Table 6 that the classification and recognition of myocardial infarction ECG have focused on multi-lead
studies. By extracting the time-frequency domain features [3,5] and the wavelet coefficient features [7]
of multi-lead ECG signals, myocardial infarction classification can be achieved with a high recognition
rate through SVM, KNN, and other methods. Unlike traditional 12 leads, 3 Frank leads also can be
used to derive the vectorcardiogram (VCG) to detect myocardial infarction. Dawson et al. found that
the 12 lead ECG could be linearly transformed from a 3 lead VCG [19]. Aiming at classify myocardial
infarction with VCG signals, Huang et al. acquired VCG signals from Frank XYZ leads and extracted
64 features to complete the detection [20]. Ge obtained multivariable autoregressive coefficients via
the VCG signal to classify myocardial infarction [21]. However, the above methods all passed the
complicated handcrafted feature extraction step, the calculation process was relatively cumbersome,
and the data volume recorded by the multi-lead system was often very large and had more constraints
on patients, which is not suitable for portable monitoring, and thus is limited to a certain extent.
In studies of single-lead myocardial infarction, Safdarian [6] and Zewdie [22] used T-wave detection or
morphological information as features to classify with the Naive Bayes and SVM methods, respectively;
Acharya [13] achieved classification through the CNN structure with a 95.2% accuracy rate; unlike
Acharya [13], this paper considered the ECG signal as a time series, and combined CNN and LSTM to
extract deeper features and eliminated steps such as complex feature extraction without decreasing
accuracy. It is worth mentioning that although the deep learning model can automatically learn to
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obtain feature information, compared with the traditional method, the model has higher requirements
on the amount and time of training data. The model spent about 15 s per epoch during training.
However, there was no need to retrain when classifying the results. During the test of 358 datasets,
the total test time was 2.2 s, and the average test time was about 60 ms. Although the processing
speed of conventional portable devices cannot be consistent with that of the computer used in the
experiment, the algorithm can be implemented on the cloud platform for real-time processing to meet
the requirements of clinical applications.

Table 6. Comparison of the classification effects between the method proposed in this paper and
the others.

Author Leads Methods Performance

Sun et al. [3] 12 leads ST segments features using multiple
instance learning and SVM

Sen = 92.6%
Spe = 82.4%

Sharma et al. [5] II, III, aVF SVM + KNN on frequency
domain features

Sen = 98.7%
Spec = 98.7%

Remya et al. [7] II, III, avF,
V2,V3,V5 ANN based on wavelet features

Acc = 86%
Sen = 83%

Spec = 88%

Reasat et al. [12] II, III, avF shallow convolutional
neural networks

Acc = 85%
Sen = 85%

Spec = 84%

Strodthoff et al. [23] 12 leads fully convolutional neural networks
Acc = 94.1%;
Sen = 93.7%;
Spec = 96.1%

Huang et al. [20] Frank leads time and statistics features with
KNN+SVM

Sen = 99.8%
Spec = 92.5%

Ge [21] Frank leads multivariable autoregressive
coefficients of VCG features Acc = 99.1%

Safdarian et al. [6] II lead Naïve Bayes with T wave detection Acc = 94.7%

Acharya et al. [13] II lead 11 layers convolutional
neural network

Acc = 95.2%
Sen = 95.5%

Spec = 94.2%
Zewdie et al. [22] I lead morphological features with SVM Acc = 97%

The proposed I lead CNN-LSTM

Acc = 95.4%
Sen = 98.2%
Spec = 86.5%
F1 = 96.8%

6. Conclusions

Early diagnosis of myocardial infarction is crucial to reduce patient mortality. To diagnose different
types of myocardial infarction, many researchers have focused on 12 lead ECG and Frank lead VCG and
have achieved great performances. However, multi-lead ECG devices are cumbersome instruments
that are only available in hospitals and clinics. Due to advancements in technology, single-lead ECG
devices are available for individual and home use for basic cardiac monitoring. Particularly in recent
years, with the prevalence of portable ECG testing equipment, utilizing single-lead ECG to prevent
and monitor myocardial infarction has played an important role. This paper proposed a classification
model of myocardial infarction ECG based on multi-channel CNN and RNN. The network structure
had deep structural features, which could acquire the spatial and temporal characteristics of ECG
signals. Without any handcrafted feature extraction, the model could obtain an accuracy of 95.4%,
a sensitivity of 98.2%, a specificity of 86.5%, and an F1 of 96.8%. It is an effective solution for the
automatic classification of myocardial infarction ECG, which can help clinicians, non-specialists, or
individuals achieve the prevention and diagnosis of myocardial infarction. However, the occurrence of
myocardial infarction is often accompanied by other types of abnormal ECG, so in the future, we will
focus on how to further optimize the model structure. Meanwhile, we will cooperate with clinicians
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to obtain more types of ECG data, and apply the model to other abnormal ECG for recognition
and classification.

Author Contributions: Conceptualization, K.F. and X.P.; Data curation, K.F. and X.P.; Formal analysis, H.L. and
K.S.; Writing—Original draft, K.F.; Writing—Review & editing, X.P. and H.L.

Funding: This research was funded by the National Natural Science Foundation of China (81671850), and the
Chongqing technological Innovation and Application demonstration Project (cstc2018jscx-mszdX0027).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; De Ferranti, S.D.; Floyd, J.;
Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American
Heart Association. Circulation 2017, 135, e146–e603. [CrossRef]

2. Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Katus, H.A.; Lindahl, B.;
Morrow, D.A.; Clemmensen, P.M.; et al. Third Universal Definition of Myocardial Infarction. Circulation
2012, 126, 2020–2035. [CrossRef]

3. Sun, L.; Lu, Y.; Yang, K.; Li, S. ECG analysis using multiple instance learning for myocardial infarction
detection. IEEE Trans. Biomed. Eng. 2012, 59, 3348–3356. [CrossRef] [PubMed]

4. Arif, M.; Malagore, I.A.; Afsar, F.A. Detection and localization of myocardial infarction using K-nearest
neighbor classifier. J. Med. Syst. 2012, 279–289. [CrossRef] [PubMed]

5. Dev Sharma, L.; Kumar Sunkaria, R. Inferior myocardial infarction detection using stationary wavelet
transform and machine learning approach. Signal Image Video Process. 2018, 12, 199–206. [CrossRef]

6. Safdarian, N.; Dabanloo, N.J.; Attarodi, G. A New Pattern Recognition Method for Detection and Localization
of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of
ECG Signal. J. Biomed. Sci. Eng. 2014, 07, 818–824. [CrossRef]

7. Farooq, A.; Anwar, S.; Awais, M.; Rehman, S. A deep CNN based multi-class classification of Alzheimer’s
disease using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and
Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [CrossRef]

8. He, T.; Droppo, J. Exploiting LSTM structure in deep neural networks for speech recognition. In Proceedings
of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, 20–25 March 2016; pp. 5445–5449. [CrossRef]

9. Yoo, Y.; Baek, J.-G. A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based
on Continuous Wavelet Transform and Convolutional Neural Network. Appl. Sci. 2018, 8, 1102. [CrossRef]

10. Xiong, Z.; Stiles, M.; Zhao, J. Robust ECG Signal Classification for the Detection of Atrial Fibrillation Using
Novel Neural Networks. In Proceedings of the 2017 Computing in Cardiology Conference, Rennes, France,
24–27 September 2017; pp. 1–4. [CrossRef]

11. Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-Based ECG Classification for Continuous Monitoring on
Personal Wearable Devices. arXiv 2018, arXiv:1812.04818.

12. Reasat, T.; Shahnaz, C. Detection of inferior myocardial infarction using shallow convolutional neural
networks. In Proceedings of the 2017 IEEE Region 10 Humanitarian Technology Conference, Dhaka,
Bangladesh, 21–23 December 2017; pp. 718–721. [CrossRef]

13. Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional
neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415–416,
190–198. [CrossRef]

14. Li, X.; Wu, X. Long short-term memory based convolutional recurrent neural networks for large vocabulary
speech recognition. In Proceedings of the Annual Conference of the International Speech Communication
Association NTERSPEECH 2015, Dresden, Germany, September 2015; pp. 3219–3223.

15. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.;
Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2012, 101, E215–E220.
[CrossRef]

16. Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and Discrete Wavelet
Transform. Biomed. Signal Process. Control 2013, 8, 437–448. [CrossRef]

http://dx.doi.org/10.1161/CIR.0000000000000485
http://dx.doi.org/10.1161/CIR.0b013e31826e1058
http://dx.doi.org/10.1109/TBME.2012.2213597
http://www.ncbi.nlm.nih.gov/pubmed/22929363
http://dx.doi.org/10.1007/s10916-010-9474-3
http://www.ncbi.nlm.nih.gov/pubmed/20703720
http://dx.doi.org/10.1007/s11760-017-1146-z
http://dx.doi.org/10.4236/jbise.2014.710081
http://dx.doi.org/10.1109/IST.2017.8261460
http://dx.doi.org/10.1109/ICASSP.2016.7472718
http://dx.doi.org/10.3390/app8071102
http://dx.doi.org/10.22489/cinc.2017.066-138
http://dx.doi.org/10.1109/R10-HTC.2017.8289058
http://dx.doi.org/10.1016/j.ins.2017.06.027
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1016/j.bspc.2013.01.005


Appl. Sci. 2019, 9, 1879 12 of 12

17. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 2007, 32, 230–236.
[CrossRef] [PubMed]

18. De Luna, A.B.; Zareba, W.; Fiol, M.; Nikus, K.; Birnbaum, Y.; Baranowski, R.; Goldwasser, D.; Kligfield, P.;
Piotrowicz, R.; Breithardt, G.; et al. Negative T wave in ischemic heart disease: A consensus article.
Ann. Noninvasive Electrocardiol. 2014, 19, 426–441. [CrossRef] [PubMed]

19. Dawson, D.; Yang, H.; Malshe, M.; Bukkapatnam, S.T.S.; Benjamin, B.; Komanduri, R. Linear affine
transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals.
J. Electrocardiol. 2009, 42, 622–630. [CrossRef] [PubMed]

20. Huang, C.S.; Ko, L.W.; Lu, S.W.; Chen, S.A.; Lin, C.T. A vectorcardiogram-based classification system for the
detection of Myocardial infarction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 973–976. [CrossRef]
[PubMed]

21. Ge, D. Detecting myocardial infraction using VCG leads. In Proceedings of the 2008 2nd International
Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; pp. 2217–2220.
[CrossRef]

22. Zewdie, G.; Xiong, M. Fully Automated Myocardial Infarction Classification using Ordinary Differential
Equations. arXiv 2019, arXiv:1812.04818.

23. Strodthoff, N.; Strodthoff, C. Detecting and interpreting myocardial infarction using fully convolutional
neural networks. Physiol. Meas. 2019, 40. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178
http://dx.doi.org/10.1111/anec.12193
http://www.ncbi.nlm.nih.gov/pubmed/25262662
http://dx.doi.org/10.1016/j.jelectrocard.2009.05.007
http://www.ncbi.nlm.nih.gov/pubmed/19608193
http://dx.doi.org/10.1109/IEMBS.2011.6090220
http://www.ncbi.nlm.nih.gov/pubmed/22254474
http://dx.doi.org/10.1109/ICBBE.2008.885
http://dx.doi.org/10.1088/1361-6579/aaf34d
http://www.ncbi.nlm.nih.gov/pubmed/30523982
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	One-Dimensional CNN 
	RNN 
	Network Model 

	Experiments 
	Data Sources 
	Data Preprocessing 
	Balanced Data 
	Cross-Validation 
	Evaluation Index 

	Results 
	Development Environment 
	Impact of Channel Numbers on Performance Indicators 
	Impact of Convolution Kernel Sizes on Classification Results 
	Impact of Different Optimizers and Learning Rates on Performance Index 
	Determination of Model Parameters 

	Discussion 
	Conclusions 
	References

