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Featured Application: This research can be applied to the abnormal behavior detection system
for the elderly by analyzing daily activities.

Abstract: Nowadays, with the emergence of sophisticated electronic devices, human daily activities
are becoming more and more complex. On the other hand, research has begun on the use of reliable,
cost-effective sensors, patient monitoring systems, and other systems that make daily life more
comfortable for the elderly. Moreover, in the field of computer vision, human action recognition
(HAR) has drawn much attention as a subject of research because of its potential for numerous
cost-effective applications. Although much research has investigated the use of HAR, most has
dealt with simple basic actions in a simplified environment; not much work has been done in
more complex, real-world environments. Therefore, a need exists for a system that can recognize
complex daily activities in a variety of realistic environments. In this paper, we propose a system for
recognizing such activities, in which humans interact with various objects, taking into consideration
object-oriented activity information, the use of deep convolutional neural networks, and a multi-class
support vector machine (multi-class SVM). The experiments are performed on a publicly available
cornell activity dataset: CAD-120 which is a dataset of human–object interactions featuring ten
high-level daily activities. The outcome results show that the proposed system achieves an accuracy
of 93.33%, which is higher than other state-of-the-art methods, and has great potential for applications
recognizing complex daily activities.

Keywords: complex human activities recognition; depth sensor; deep learning; multi-class SVM;
object usage probability

1. Introduction

The recognition of complex daily activities and human–object interaction plays as an important
role in many applications, such as monitoring systems for the elderly, for patients, for human–robot
interaction, and other video surveillance systems. For monitoring the elderly living independently,
monitoring systems must automatically analyze daily activities and detect abnormal behavior in
order to provide assistance health-care services. Although some techniques have been developed for
monitoring the elderly using wearable sensors, these devices can be a source of mental and physical
discomfort. Therefore, research has concentrated on computer vision-based human action recognition
(HAR). In this area, depth sensors have gained much attention because of their reasonable cost and
adaptability to variable illumination. Depth sensors, such as Microsoft Kinect [1] and ASUS Xtion
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Pro [2], can capture various kinds of data, such as depth images, RGB (red, green, blue) images, infrared
images, and skeletal joint information for the human body.

Moreover, humans interact daily with various kinds of objects in different ways, depending
on their intentions. Human–object interaction is complex, and recognizing the actions involved is
a challenging task. Research into object recognition shows that a deep-learning approach achieves
superior performance over other state-of-the-art techniques. Deep learning is also achieving more and
more success in HAR research. This paper discusses the application of the deep-learning technology in
recognizing human–object interaction. In addition, for improving results, we have built a multi-class
support vector machine (multi-class SVM) using the object usage probability (OUP), which is the
probability of how many times the objects have been used. Our technique involves a fusion of the results
of deep learning and multi-class SVM in the final heuristics involved in interaction recognition (decision
fusion). In this study, experiments were performed on the CAD-120 dataset [3] of human–object
interaction, which used a depth sensor as an input device for collecting the data. This paper comprises
five sections. The first describes a brief overview of the understanding of human–object interaction.
In the second section, a case study is analyzed. A new approach for the recognition of human–object
interactions is described in the third section. The experimental results of the proposed system
are presented in the fourth section. Some discussion and conclusions are drawn in the fifth and
sixth sections.

2. Related Works

In the field of computer vision research, various approaches have been proposed to solve the issue
of recognizing complex human daily activities. This section describes some related research into the
recognition of human–object interaction.

The authors of paper [4] proposed the anticipation of human intentional actions using the
affordance of objects and the context of scenes for visualizing possible future actions. The experiments
were performed using a Sez3D sensor. This system can predict future action when the frame observation
range is between 30% and 60% of the whole action. Moreover, the authors of paper [5], proposed
a system of robotic assistants that can anticipate what humans will do next using observations of
pose and the surrounding environment, with the purpose of helping people with reactive response.
Future actions are represented using the anticipatory temporal conditional random field (ATCRF),
which is a model that can maintain a rich context of spatio-temporal relations via object affordances.
Alternatively, the authors of paper [6] presented a method for predicting future actions from partially
observed RGB-D (red, green, blue, depth) videos. Because of the rich context between humans and
the environment while performing actions, the authors used a stochastic grammar model in order to
capture the compositional structure of events and to integrate human actions with the corresponding
objects and their affordances. In addition, the human–object–object (HOO) interaction affordance
learning approach for improving the reliability of object recognition has also been proposed [7].
The relationship between a pair of objects is represented by a Bayesian network, which is then trained
for the purpose of improving the reliability of object recognition. Moreover, a system using deep
learning based on the affordance model has been proposed in [8] for recognizing human intentions
and recommending objects for use. The action–object affordances were modeled using deep structure
and gaze information obtained from a Tobii 1750 eye-tracker. This system is used to recognize human
intentions and suggest the objects considered useful for the recognized intention.

Moreover, Koppula et al. proposed research on learning human activities and object affordances
from RGB-D videos using a structural support vector machine (SSVM) approach [9]. However,
the proposed method only achieved an accuracy of 75.0% for high-level activity recognition.
In subsequent research by Koppula et al., the spatio-temporal relationship between human poses and
objects was modeled using a conditional random field for anticipating activities [10]. In the latter
study, the accuracy of detecting high-level activities portrayed in the CAD-120 dataset increased to
83.1%, which is still lower than with our proposed system. In addition, the authors in [11] proposed
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a two-layer SVM hidden conditional random field (HCRF) recognition model for recognizing daily
activities, specifically for those involving human–object interaction. However, this method relies
on learning sub-activities based on the temporal sub-structure of the interaction for recognizing the
high-level activities using a hierarchical SVM-HCRF model. Last but not least, a long short-term
memory network was developed for recognizing the behavior of baseball players [12]. This network
features the fusion of data from multiple sensors.

Some researchers have applied deep learning for recognizing single person actions, such as
walking, sitting, standing, etc. Baccouche et al. [13] introduced a method for recognizing human
actions by utilizing deep learning of spatio-temporal features. In this work, the authors extended a
2D convolutional neural network architecture to a 3D convolutional neural network (3D-ConvNet)
architecture by adding the temporal dimension. Moreover, Liu et al. [14] proposed an approach that can
be directly applied to raw depth video sequences for extracting spatio-temporal features using a support
vector machine (SVM) for the classification of actions. A HAR based on deep-learning technology
using skeleton images of human actions as input data was proposed in [15]. In addition, the authors
of [16] developed a system incorporating enhanced images for a skeleton motion history, as well as a
HAR system based on images of the relative positions of joints which can work independently on the
problem domain.

Most of the HAR systems use RGB-D video, the data of eye-tracking and acceleration sensors,
and skeletal tracking data for performing the experiments. To the best of our knowledge, even though
much research has been done on HAR, it still remains a challenge for implementing HAR that can
accurately recognize activities using a simple and robust approach, especially for the activities involving
human–object interaction. Therefore, in this paper, we propose a hybrid approach for recognizing
activities of human–object interactions in daily life.

3. Proposed System

In this paper, we propose a system for recognizing complex human–object interaction based on
usage information for the objects involved. For this purpose, we apply a deep convolutional neural
network (DCNN) over the spatio-temporal features extracted from information on human joints and
the objects. We also apply a multi-class support vector machine (multi-class SVM) over the object
usage probability (OUP) features in order to apply probability information for humans interacting
with each object. The architecture of the proposed system is shown in Figure 1. The proposed system’s
architecture consists of: (i) input data acquisition, (ii) temporal segmentation, (iii) creating the input
data for DCNN, (iv) training and recognizing interactions using DCNN, (v) extracting the object usage
probability (OUP), (vi) training and recognizing interactions based on OUP by using a multi-class
SVM, and finally (vii) a decision based on fusing the results of DCNN and multi-class SVM to produce
the final result for recognizing human–object interactions. The main contributions and significant
differences between this proposed system and our previous works [14,15] are as follows:

• Recognition of human–object interactions in which humans interact with different objects in order
to complete desired tasks, such as making cereal or microwaving food.

• Creation of input data for a DCNN, which can accurately represent interactions between humans
and objects.

• Calculation of object usage probability (OUP) and training OUP using a multi-class SVM to
improve the performance of recognizing the human–object interactions.

• Fusing the result of DCNN and multi-class SVM (decision fusion) for generating better and more
accurate results.

3.1. Input Data Acquisition

In the proposed system for recognizing complex human–object interaction, we use RGB images,
as well as depth and human skeleton tracking data generated by depth cameras. In order to
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confirm validity of the proposed system, the experiments were performed on the publicly available
human–object interaction dataset of CAD-120 [3]. The structures of skeletal joints and their descriptions
used for the experiments are illustrated in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 15 
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3.2. Temporal Segmentation

We performed temporal segmentation over the input data to obtain groups of data representing
human motion and object interaction patterns for each activity. This process groups the nearest
frames into one segment, allowing extraction of changes in both spatial and temporal dimensions.
Temporal segmentation is important because poor temporal segmentation often results in poor results
for interaction recognition. For example, if the time duration threshold used in temporal segmentation
is too short, features will not be well represented, and if the threshold is too long, distinguishing
features within a set of interactions will be difficult to obtain. Here, we use a time duration threshold (a
temporal sliding window size) of 15 frames over the input data with a frame rate of 15 fps. Therefore,
each segment provides a good representation of changing interaction patterns within 1 second. The
input data are uniformly segmented using a fixed temporal sliding window size of W. For action data
with a total number of frames N which cannot be divided by 15, we replicate the first frame into R
times that can be calculated using Equation (1).

R = 15− (N mod 15) (1)

where mod refers to the modulus operation for finding the total number of remaining frames R in
order to perform uniform segmentation. Figure 3 shows an example of temporal segmentation over
the skeletal movement data of the right shoulder, right elbow, and right hand while “taking action
using the right hand”.
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3.3. Creation of Input Data for a Deep Convolutional Neural Network

3.3.1. Extraction of Skeletal Joint Movement Features

In order to extract spatio-temporal features, we first detected the moving joints within 15 frames.
Next, we calculated the Euclidean distance between two consecutive frames for all joints using Equation
(2). Then we found the mean and the standard deviation for joint distance as described in Equations
(3) and (4).

Disti, j =

√
(xi+1, j − xi, j)

2 + (yi+1, j − yi, j)
2 for i = 1, 2, . . . , T and j = 1, 2, . . . , S (2)

m j =
1
T

T∑
i=1

Disti, j for i = 1, 2, . . . , T and j = 1, 2, . . . , S (3)
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sd j =

√√√
1
T

T∑
i=1

(Disti, j −m j) for i = 1, 2, . . . , T and j = 1, 2, . . . , S (4)

where the value of S is 15 for total skeletal joints, and the value of T is 14, which represents W − 1
(the frame interval within the temporal sliding window W). Disti,j refers to the Euclidean distance
between the locations of joint j in two consecutive frames i and i + 1. The symbols of mj and sdj
represent the mean and the standard deviation for joint j. If the value of Disti,j is greater than or equal
to the value of (mj + sdj × 0.5), then joint j at time i is regarded as a moving joint and its movement
frequency (freqj) increases. RGB value markers are predefined as shown in Table 1, and the values of i,
j, and freqj for moving joints are used as indices for selecting RGB color values. Sample data for Disti,j,
mj, sdj, and freqj for the sliding window for the action “taking using the right hand” are described in
Table 2. After obtaining the locations of moving joints, we assigned a circular shape marker for the
location of moving joint j in each frame with time i for creating input images for DCNN. We can see
that values for freqj for the right shoulder, right elbow, and right hand are higher than those for other
joints, indicating the validity of this process of detecting moving joints (highlighted with yellow color).

Table 1. RGB values of markers and their indices (i, j, and freqj).

Time (i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -
R value 18 36 55 73 91 109 128 146 164 182 200 219 237 255 -
Joint (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G value 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255

freqj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -
B value 18 36 55 73 91 109 128 146 164 182 200 219 237 255 -

Table 2. Calculation of joint movement frequency from skeletal joint distance data.

Joint (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dist1,j 0.55 0.69 0.73 0.7 0.89 0.7 2.18 0.74 0.74 0.77 1.1 0.09 4.81 0.72 1.22
Dist2,j 0.59 0.64 0.62 0.62 0.57 0.65 2.02 0.63 0.63 0.66 1.03 1.89 5.41 0.64 1.2
Dist3,j 0.97 0.77 0.69 0.83 0.67 0.72 1.97 0.56 32.6 0.67 1.04 1.25 6.21 52.8 1.22
Dist4,j 1.1 1 0.91 0.86 5.93 1.17 2.2 0.78 10.6 1.11 1.28 7.11 4.81 20.5 1.44
Dist5,j 0.86 0.85 0.79 0.89 4.65 0.85 1.75 0.76 5.74 0.7 0.98 4.73 4.33 6.48 1.21
Dist6,j 0.78 1.11 1.31 1.15 2.24 1.08 2.05 1.05 9.81 2.06 2.33 2.14 2.63 12.7 2.58
Dist7,j 0.81 0.89 1.17 0.95 1.46 0.87 1.69 1.43 2.1 1.47 1.74 1.52 2.9 2.16 1.97
Dist8,j 0.95 0.9 0.98 0.84 1.55 0.93 1.33 1.27 8.22 0.99 1.13 0.61 2.87 8.22 1.31
Dist9,j 1.45 1.37 1.38 1.32 1.34 1.37 1.78 1.48 3.79 1.32 1.39 0.96 2.46 3.85 1.5
Dist10,j 0.94 0.81 0.7 0.81 2 0.9 1.62 0.63 3.33 0.65 0.76 1.96 1.81 3.33 0.93
Dist11,j 1.09 0.88 0.73 0.62 2.02 1.24 1.23 0.41 2.64 1.01 1 2.14 2.19 2.7 1.05
Dist12,j 0.93 0.74 0.58 0.58 2.69 1.16 1.25 0.31 18.1 1.08 1.06 3.19 1.96 18 1.07
Dist13,j 1.26 1 0.67 0.91 2.22 1.26 1.63 0.14 7.84 0.69 0.74 2.66 1.21 7.85 0.81
Dist14,j 1.47 1.23 0.82 1.21 1.06 1.41 1.07 0.32 5.25 0.83 0.84 1.7 0.79 5.22 0.95

mj 0.98 0.92 0.86 0.88 2.09 1.02 1.7 0.75 7.96 1 1.17 2.28 3.17 10.4 1.32
sdj 0.28 0.21 0.26 0.22 1.52 0.25 0.37 0.42 8.5 0.4 0.42 1.8 1.66 13.7 0.46

mj + (sdj*0.5) 1.12 1.02 0.99 0.99 2.85 1.15 1.88 0.96 12.2 1.2 1.38 3.18 4 17.2 1.55
freqj 3 3 3 3 2 6 5 4 2 3 3 3 5 3 2

The joint movement frequency (freqj) greater than or equal to 5 are described in red color.

3.3.2. Creation of an Object Representation Image

In human–object interaction, humans interact with various kinds of objects in different ways.
In real-world applications, the variety of objects with which humans interact is quite large, even though
they might be in the same object category. For example, items used for cooking or taking medicine
can vary. Therefore, for robustly inserting object information into input images, object representation
images (ORI) must be created and combined with input data for a DCNN that provides a good
representation of each object category. In this system, we use color values for object representation.
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We applied ten color values for the ten object categories because the dataset on which we performed
experiments included ten objects with different designs, namely a medicine-box, microwave, remote,
milk, plate, cloth, bowl, book, cup, and box. The color representation of each object category is
described in Table 3. After defining the color representation for each object category, we added the
corresponding color value to each DCNN input image by filling the object regions (within the bounding
boxes) provided in the CAD-120 dataset [3] with that color. The result of inserting ORI is shown in
Figure 4. This process can provide information on the region connection state (RCS), which can express
the graphically connected region for each object. This kind of information is very useful for recognizing
human–object interaction, such as the interaction involved in microwaving food or pouring milk into a
bowl of cereal. These interactions include overlapping regions between objects. Figure 5 provides
illustrations of three kinds of RCS involving a microwave, bowl, milk bottle, cup, and medicine box.

Table 3. Color representation of each object category in the CAD-120 dataset.

Objects R G B Color Objects R G B Color
medicine box 0 255 0 cloth 255 0 255

microwave 0 255 255 bowl 255 0 128
remote control 0 128 255 book 255 0 0

milk 0 0 255 cup 128 0 0
plate 128 0 255 box 0 0 128
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3.4. Interaction Recognition using a Deep Convolutional Neural Network (DCNN)

Deep convolutional neural networks (DCNN), also known as deep learning, are a kind of neural
network that includes grid-type operations of convolution and pooling over grid-type input data such
as images. The main function of convolution operations is to extract key information from raw input
data through multiplication in a predefined kernel matrix. Pooling operations are used for reducing
the dimensions of each DCNN output layer. Pooling can be performed by the mathematical operations
of taking averages or maximum values for the data which exist within the defined matrix. In every
DCNN layer, a decision must be made on whether the results of convolution or pooling should be
produced as output and sent to the next layer. This decision-making process is performed by the
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activation function. Various activation functions have been discussed in the literature on DCNN,
including sigmoid, hyperbolic tangent, and rectified linear units (ReLU). Each function has its own
properties. For example, the output of the sigmoid activation function is within the range of 0 and 1,
and the output of the hyperbolic tangent function is from −1 to 1. In the proposed system, the rectified
linear unit (ReLU) activation function was applied in all DCNN layers. ReLU produces original input
values as outputs if those values are greater than 0 and produces 0 if input values are less than 0.

The most recent DCNN research indicates that DCNN achieves superior performance in visual
object and pattern recognition. Therefore, we applied DCNN in the proposed system for recognizing
patterns of human motion and object interaction. As shown in Figure 6, the DCNN architecture
comprises three convolution (Conv) layers and three pooling (Pool) layers, followed by one fully
connected (F) layer and an output (O) layer. The total number of output neurons for each DCNN layer
was 32, 64, 64, and 10. In addition, each layer was followed by a drop-out (D) layer for minimizing the
data overfitting problem, using drop-out ratios of 1%, 2%, 3%, and 4%. Convolution operations were
performed in three hidden layers using kernel sizes of 7 × 7, 5 × 5, and 3 × 3. For pooling operations,
2 × 2 kernels were used. Then, one fully connected layer was applied before the output layer in order
to combine DCNN features in a one-dimensional vector with a length of 64. The next layer was an
output layer with ten neurons for recognizing ten human–object interactions. For transforming the
results for DCNN output layers into corresponding probability values (P_DCNN), a Soft-Max operation
was applied. Weight initialization for all layers was done using the MSRA method, which was
developed by Microsoft Research Asia (MSRA) [17]. The stochastic gradient descent algorithm [18] was
used for weight updating, and the whole network was constructed using the Matcaffe deep-learning
framework [19,20].
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3.5. Extracting the Object Usage Probability

Complex human daily activities consist of many continuous sub-actions. Therefore, the application
of fixed-size segmentation can cause a mixing of such continuous sub-actions. However, the proposed
system can overcome the problem of mis-recognizing actions due to the mixing features in continuous
sub-actions by applying object usage probability (OUP). In daily life, humans use various kinds
of objects for accomplishing tasks. Therefore, activeness information for each object involved in a
specific set of human–object interactions is very useful in establishing a recognition system for complex
human–object interaction. In our proposed system, we consider an object to be in a using state when a
human hand reaches for the object and then moves it. Let us denote the total number of frames that
include the usage of object o during interaction k as Co,k, and the total number of frames in interaction k
as TFk, then the OUP of object o for interaction k can be calculated using Equation (5). The probability
that no interaction occurs with objects within interaction k is denoted as nullk, which can be calculated
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using Equation (6). The usage counts for the sample object and OUP data for ten actions in the CAD-120
dataset are shown in Tables 4 and 5.

OUPo,k =
Co,k

TFk
for k = 1, 2, ..., 10 and o = 1, 2, . . . , 10 (5)

nullk = 1−
10∑

o=1

OUPo,k for k = 1, 2, ..., 10 and o = 1, 2, . . . , 10 (6)

Table 4. Sample data for object usage counts (C) for ten actions in the CAD-120 dataset.

Medicine
Box

Microwave Remote
Control Milk Plate Cloth Bowl Book Cup Box Null

Total Frames
(TF)

Interaction

k Description

0 0 0 137 0 0 87 0 0 254 42 520 1 making cereal
177 0 0 0 0 0 0 0 131 0 163 471 2 taking medicine

0 0 0 0 0 0 0 0 0 436 113 549 3 stacking objects
0 0 0 0 376 0 0 0 0 0 113 489 4 unstacking objects
0 315 0 0 0 0 0 0 0 248 85 648 5 microwaving food
0 0 0 0 0 0 113 0 0 0 46 159 6 bending
0 235 0 0 0 247 0 0 0 0 111 593 7 cleaning objects
0 179 0 0 0 0 0 0 110 0 115 404 8 taking food
0 0 0 0 0 0 0 0 0 252 110 362 9 arranging objects
0 0 0 0 0 0 0 0 193 0 306 499 10 having breakfast

Table 5. Object usage probability (OUP) sample data for ten actions in the CAD-120 dataset.

Medicine Box Microwave Remote Control Milk Plate Cloth Bowl Book Cup Box Null Interaction

0 0 0 0.26 0 0 0.17 0 0 0.49 0.08 making cereal
0.38 0 0 0 0 0 0 0 0.28 0 0.35 taking medicine

0 0 0 0 0 0 0 0 0 0.79 0.21 stacking objects
0 0 0 0 0.77 0 0 0 0 0 0.23 unstacking objects
0 0.49 0 0 0 0 0 0 0 0.38 0.13 microwaving food
0 0 0 0 0 0 0.71 0 0 0 0.29 bending
0 0.4 0 0 0 0.42 0 0 0 0 0.19 cleaning objects
0 0.44 0 0 0 0 0 0 0.27 0 0.28 taking food
0 0 0 0 0 0 0 0 0 0.7 0.3 arranging objects
0 0 0 0 0 0 0 0 0.39 0 0.61 having breakfast

3.6. Training and Recognizing Interactions Based on OUP Using a Multi-Class Support Vector Machine

Support vector machines (SVM) are supervised learning algorithms which are very popular for
visual pattern recognition. SVMs were originally designed for binary classification and are also called
linear SVMs. The main process involved in a linear SVM is for finding the linear optimal separating
hyperplane, which is the decision boundary separating the various classes of data. Linear SVMs use
support vectors, which are the training data, and margins are defined by these support vectors. During
the training step, a SVM is used to find the maximum margin hyperplane which gives the largest
separation between class. For multi-class SVM classification, the one-against-one classification method
is used in training for each action. Therefore, a one-against-one class design coded into multi-class
SVM yields M binary learners for M classes. The output of each SVM (separating hyperplane) can be
written as

yk(X) =
N∑

v=1

wk
vxv + b (7)

where yk is the output of the SVM for the interaction k, X = {x1, x2, . . . , xn}, which is the feature vector
containing N features. wk

v is the weight vector of the SVM of interaction k and features v, and b is
a scalar value for bias. In the proposed system, we trained the multi-class SVM using OUP data
for implementing the human–object recognition system as shown in Figure 7. In the training phase,
the OUP were calculated based on the object information of training video sequences, and then used as
feature vectors for training multi-class SVM. In the testing phase, multi-class SVM produced classified
interactions together with confidence scores. Later, we fused the confidence scores from the multi-class
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SVM, which were the probability values for M possible actions (P_SVM), together with the results of
DCNN to establish a robust system for recognizing human–object interaction.
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3.7. Decision Fusion and Human–Objects Interaction Recognition

After obtaining probability values for all ten interactions from DCNN and OUP based multi-class
SVM, we performed the decision fusion operation for accurately obtaining decision results in the
recognition of human–object interaction. The decision fusion process was simply performed by
averaging the probability values for all interactions and using the class with the highest probability.
The mathematical expression for the decision fusion process is shown in Equations (8) and (9). In this
way, mis-recognized actions obtained using DCNN can be correctly recognized by the OUP-based
multi-class SVM, and vice versa.

Recognized Interaction = Max(Pk) for k = 1, 2, . . . , 10 (8)

Pk =
(P_DCNNk + P_SVMk )

2
for k = 1, 2, . . . , 10 (9)

where P_DCNNk, P_SVMk, and Pk refer to the probability of interaction k obtained using the DCNN,
multi-class SVM, and decision fusion process.

4. Experimental Results

The experiments were performed on the CAD-120 human daily activities dataset which consisted
of ten high-level activities performed by four different subjects: making cereal, taking medicine,
stacking objects, unstacking objects, microwaving food, picking objects, cleaning objects, taking food,
arranging objects, and having a meal. The data consisted of RGB images, depth images and skeleton
joint coordinates, object locations, and object types for each high-level activity. This data can be
downloaded from the following URL: http://pr.cs.cornell.edu/humanactivities/data.php. The sample RGB
images in the CAD-120 dataset are shown in Figure 8. The performance of the proposed system was
evaluated by the leave-one-subject-out-cross-validation method, which uses three subjects’ data as
training data, and data for the other subject as test data. Therefore, we alternately trained the DCNN
and multi-class SVM using data from three different subjects, and used data from the remaining subject
as test data. We performed these experiments four times by alternately training and testing using
data from four subjects. For accurately recognizing the interactions involved in “stacking objects” and
“unstacking objects”, we added some rules based on spatial features of the objects, because the obvious
difference between those two interactions is the spatial feature of (total width) at the start and end
times of the interactions. In the case of “stacking objects”, the width of all objects at the beginning is
larger than that at the end. However, the opposite is the case for the “unstacking objects”, as shown
in Figure 9. The graphical form of the result of recognizing “making cereal” interaction is shown in

http://pr.cs.cornell.edu/humanactivities/data.php
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Figure 10. A detailed confusion matrix for recognizing the actions in the CAD-120 dataset is shown in
Table 6.
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Actual
Actions

making cereal 100 0 0 0 0 0 0 0 0 0
taking

medicine 0 100 0 0 0 0 0 0 0 0

stacking objects 0 0 91.67 0 0 0 0 0 8.33 0
unstacking

objects 0 0 0 91.67 0 0 0 0 8.33 0

microwaving
food 0 0 0 0 91.67 0 0 8.33 0 0

picking objects 0 0 0 0 0 83.33 0 0 8.33 8.33
cleaning
objects 0 0 0 0 0 0 100 0 0 0

taking food 0 0 0 0 8.33 8.33 0 83.33 0 0
arranging

objects 0 0 0 0 0 0 0 0 91.67 0

having a meal 0 0 0 0 0 0 0 0 0 100

The percentage of correctly recognized actions in the CAD-120 dataset are highlighted in yellow color.
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Figure 10. Graphical form of the result of recognizing the making cereal interaction (each row describes
the interactions performed by a different subject).

We calculated the overall accuracy (Recognition Rate) using the following Equation (10).

Recognition Rate =
No.of correctly recognized actions
No.of total actions in the dataset

× 100 (10)

As shown in Table 6, the proposed system correctly recognized most actions with high recognition
accuracy. The recognition accuracy for taking food from a microwave was low because it closely
resembles microwaving food. The interaction involved in picking objects was mistaken for interactions
such as those involved in taking food, arranging objects, and having a meal, because object-interaction
information was comparatively less for these interactions. As described in Table 7, we also compared
our results with those of other state-of-the-art recognition methods that were performed on the same
dataset. We can see that the proposed system outperformed the method proposed by Koppula et
al. [9] by a significant margin of 12.73%. We also improved accuracy by a margin of 10.23% when
compared with the method proposed by Koppula and Saxena [10]. Moreover, our system achieved
the comparable accuracy that was 3.03% higher than the method proposed in [11]. Due to the highly
insensitive nature of the input data property of deep learning, we believe that our proposed system
achieves higher accuracy, and is more robust and efficient in recognizing complex daily activities in
real-world applications.



Appl. Sci. 2019, 9, 1869 13 of 14

Table 7. Comparison of performance on the CAD-120 dataset.

Method Recognition Rate

Koppula et al. [9] 80.6%
Koppula and Saxena [10] 83.1%

Selmi et al. [11] 90.30%
Proposed System 93.33%

5. Conclusions

In this paper, we propose a recognition system for complex human–object interactions based on the
hybrid approach of combining DCNN and multi-class SVM. We also propose a new feature called object
usage probability (OUP) which is highly effective in recognizing human–object interaction. By applying
this hybrid approach, the performance of the proposed system has been improved. Moreover, for the
purpose of recognizing interactions performed by different people in real-world applications, we use
the leave-one-subject-out-cross-validation method for performance evaluation. Using this validation
method, after applying a rule based on the spatial features of the objects, the proposed system achieved
an overall accuracy of 93.33%, which is higher than that of other state-of-the-art methods.

6. Discussion and Future Work

In the proposed system, we used location information for ground-truth objects in order to create
DCNN input images, and to calculate OUP. In the future, we will automate the process of detecting
and classifying the objects using deep-learning technology, making the whole system more automatic.
In the automatic detection and classification of objects, we will perform experiments with complex
backgrounds which have similar color with the associated objects. We will also work on improving
recognition accuracy for taking food from a microwave by considering more information that can
differentiate this action from the interaction involved in similar activities. The proposed system has
only been tested using offline data. Therefore, we will perform an analysis of motion trajectories for
each interaction using geometrical and statistical models for recognizing and predicting online action
data in combination with DCNN. Finally, we will record a variety of more complex human–object
interaction videos under various environmental conditions and more complex backgrounds and
perform more experiments.
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