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Abstract: Data mining is a set of methods used to mine hidden information from data. It mainly
includes frequent pattern mining, sequential pattern mining, classification, and clustering. Frequent
pattern mining is used to discover the correlation among various sets of items within large databases.
The rapid upward trend in data size slows the mining of frequent patterns. Numerous studies have
attempted to develop algorithms that operate in distributed computing environments to accelerate the
mining process. FLR-mining (Fast, Load balancing and Resource efficient mining algorithm) is one of
the fastest methods of mining with efficient consideration of load balancing and resources. FLR-mining
can automatically determine the appropriate number of computing nodes. However, FLR-mining
and existing methods assume that the network bandwidth is constant. In practical distributed and
many-task computing systems, this assumption fails because there are packet collisions caused by
many mining tasks that run in a simultaneous manner. Therefore, a method that can consider the
varying network bandwidth is necessary. In this study, we propose a method that can rapidly mine
frequent patterns under the varying network bandwidth. The proposed method can also determine
the appropriate number of computing nodes to efficiently utilize computing resources and achieve
load balancing. Through empirical evaluation, the proposed method is shown to deliver excellent
performance in terms of execution efficiency and load balancing.

Keywords: data mining; frequent pattern mining; distributed mining; parallel mining

1. Introduction

Today, electronic communication users generate various kinds of information at increasing rates.
Data mining is a data analysis approach for identifying information of interest that is contained in data.
Data mining is successfully applied in various fields, including statistics, artificial intelligence, expert
systems, visualization, and machine learning. Data mining mainly includes frequent pattern mining [1],
sequential mining [2], classification, and clustering. This method can discover hidden information from
a dataset and can also be applied to various fields like market basket analysis, discovery of high-utility
patterns [3] and so forth. A typical frequent pattern mining problem is discovering the itemsets with
support greater than or equal to a specific threshold in a database. An itemset is a combination of
different items, and the support is a value reflecting how frequently the itemset appears in the database.
The support of X with respect to database D is defined as the proportion of a number of transactions in
the database containing the itemset X. Frequent pattern mining is the core method of data mining,
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which can determine that an itemset satisfies the minimum support threshold. The support threshold
also influences the outcome of frequent patterns.

The algorithm for discovering frequent patterns is separated into two parts: an Apriori-like
approach and a frequent-pattern (FP) tree. Apriori is the first algorithm proposed by Agrawel et al. [1]
for mining association rules. First, the user-defined minimum support threshold is used to find
itemsets, and then frequent patterns from these itemsets are discovered. This algorithm generates
many candidate itemsets when constructing association rules; thus, it needs to scan the database
several times. The execution efficiency is very low. To improve the execution time, an algorithm called
FP-growth has been previously proposed, which is an extended prefix-tree approach. This algorithm
first scans the database and then records a list of items in descending order of frequency. Further,
it scans the database again, obtains the conditional pattern bases from the FP tree, and constructs a
conditional FP tree from the conditional pattern bases. Using the FP-tree structure just only scans the
database twice, which reduces the input/output time and improves the execution efficiency.

With the increasing amount of data being produced, the size of databases must also increase.
Big data is a term describing datasets that are too large to handle in conventional ways. As Nate
Silver, the world-famous statistician, said, “when data gets big, big problems can arise.” This means
that a number of problems are associated with big data, and one of the most pressing problems
is executive performance. Several research approaches use distributed or parallel systems such as
grid computing [4,5] or other computing techniques to handle big data, which we review in this
study. To accelerate the mining process and improve execution performance, numerous studies have
attempted to develop algorithms that operate in distributed computing environments. Fast mining is
the core for big data applications [6,7].

Lin et al. [8] proposed five dispatch methods based on the cloud-based association rule mining
(CARM) [9] algorithm: (a) equal working set (EWS), (b) request on demand (ROD), (c) small size
working set (SSWS), (d) progressive size working set (PSWS), and (e) FLR-mining [8] algorithms.
EWS uses an equal allocation of computing nodes; however, the completed time of each computing
node is unknown, which results in unbalanced loading. The ROD algorithm is proposed to deal
with the unbalanced loading of EWS. This method involves a kernel node to assign new tasks after
a computing node completes a task. Therefore, the ROD algorithm can address the problem of
unbalanced loading; however, the algorithm spends much time in communication. SSWS and PSWS
are proposed to solve the drawbacks of the abovementioned methods. The difference between SSWS
and PSWS is the former uses the fixed parameter to assign work items, but the parameter is dynamic
in the latter. The above-described methods are all based on the CARM architecture, whose algorithms
require users to determine the number of computing nodes, which can lead to inefficient execution.
To solve this problem, the author in [10] proposed the FLR-mining algorithm, which efficiently allocates
the computing nodes. FLR-mining is the fastest algorithm among the five methods. It efficiently
considers load balancing and resources, as well as determines the appropriate number of computing
nodes automatically.

However, FLR-mining and the existing methods assume that the network bandwidth is constant.
In practical distributed and many-task running systems, the assumption fails because there are packet
collisions caused by many mining tasks running simultaneously. As a result, a method that can consider
the varying network bandwidth is necessary. Therefore, we propose the fast distributed mining in
changing network bandwidth (FDCNB-MINING) algorithm to rapidly mine frequent patterns under
the varying network bandwidth. This algorithm can also determine the appropriate number of
computing nodes to efficiently utilize the computing resources and achieve load balancing. Through
empirical evaluation, the proposed method is shown to deliver varying network and bandwidth
environmental issues.

The rest of this paper is structured as follows. We briefly review related work in Section 2.
In Section 3, we introduce the FDCNB-MINING algorithm. In Section 4, we compare our proposed
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algorithm with FLR-mining under a constant network bandwidth in various simulation conditions, as
well as discuss the experimental results. In Section 5, we present the conclusions of this study.

2. Related Work

Apriori is the first algorithm proposed by Agrawal et al. [1] for mining association rules, and
it is widely used in various fields. This algorithm is based on the concept of candidate itemsets.
When the support value of a candidate itemset satisfies the minimum support threshold, then this
candidate itemset is called a large itemset. Although the Apriori algorithm can discover frequent
patterns effectively, its disadvantage is the long execution time for scanning databases multiple times
to generate the candidate itemset.

Chen et al. [11] proposed the direct hashing and pruning (DHP) algorithm, which is based on the
Apriori algorithm that can use a hash table and prunes the size of the candidate K+1 itemsets generated
at each step. This method can generate large itemsets more efficiently than the Apriori algorithm.
The experimental results also proved that when the size of the database grows, the efficiency of the
DHP algorithm is better than that of the Apriori algorithm. However, the performance of the DHP
algorithm depends strongly on the hash table size. To mitigate the drawbacks of the DHP Algorithm,
Ozel et al. [12] proposed the perfect hashing and pruning (PHP) algorithm, which reduces the size of the
database and leverages perfect hashing for the hash table generated at each stage. Although the PHP
algorithm can solve the collision problem of the DHP algorithm, it also demands more memory space
to store the hash table. Therefore, Agarwal et al. [13] proposed the transaction hashing and pruning
(THP) algorithm, which created a new scheme for the hash table. As a result, the THP algorithm can
either overcome the disadvantage of the DHP algorithm or the problem of the PHP algorithm.

Brin et al. [14] proposed the dynamic itemset counting (DIC) algorithm, in which the database
is partitioned into blocks. The DIC algorithm can reduce the number of passes and it searches the
database as unit blocks to overcome the high execution time in the Apriori algorithm. However,
this method should consider how to suit the block size. With increasing data, previous studies
focused on the parallel-distributed structure. Yang et al. [15] proposed an Apriori algorithm based on
MapReduce mode, which uses Hadoop distributed file system to handle massive datasets. In [16],
the authors proposed the distributed parallel Apriori (DPA) algorithm, which is based on the Apriori
algorithm. The main concept is to avoid the problems associated with multiple scans by implementing
the message passing interface (MPI) method, which is a message passing system for programming
parallel computers. MPI can be used to create parallel programs in C, C++, Fortran, or Python.
The DPA algorithm reduces the database scanning time and also achieves a better load balance by
storing transaction identifications (TIDs) in a table structure. However, this method has the same
drawbacks as the Apriori algorithm; they both generate candidate itemsets during the process of
mining association rules.

To overcome the problem of the Apriori algorithm, Han et al. [17] proposed the FP-growth
algorithm. The FP-growth algorithm operates in two steps: (a) scan the database and then record a list
of frequent items in descending order; (b) scan the database for the second time, obtain conditional
pattern bases from the FP tree, and construct a conditional FP tree from the conditional pattern bases.
The conditional FP tree is recursively mined until the tree contains a single item. This algorithm only
scans the database twice and does not generate a candidate itemset. However, the main disadvantage
of FP-growth is that the FP tree may not fit in memory. Zaiane et al. [18] proposed the multiple
local frequent pattern tree algorithm based on the FP-growth algorithm, in which the FP tree is
divided in chunks and the shared counters are used to cumulate the frequencies. This algorithm can
efficiently improve the problem of the dependent, but it may have issues if the shared memory is
locked. Another algorithm based on the FP-growth algorithm is proposed in [17]. This approach
is a divide-and-conquer methodology which consists of two stages, namely, a mapper part and a
reduce phase. In the mapper part, the database is converted into new databases of group-dependent
transactions. In the reduce phase, the FP tree is constructed and mined recursively. During this process,
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patterns are also discovered. Shang et al. [19] proposed a novel idea: The utilization of SQL-based
frequent pattern mining while using the FP-growth algorithm. The algorithm uses an FP table to
store the related data that comprise items, counts, and paths. In the FP-tree construction process, it
decides each field path after comparing the already existing paths. If the path already exists, then
the algorithm will update the FP table and increase the item’s count by 1, but if not, then it will only
update the FP table. To improve efficiency, the algorithm uses a temporary table to store the FP tree,
and it also uses SQL queries to generate the FP tree. This method can get efficient performance and also
speed up the construction of the FP tree. In order to reduce the memory consumption of FP-growth,
Schlegel et al. [20] proposed the CFP-growth algorithm. It uses order of magnitude to overcome the
problem of tree size.

Javed et al. [21] proposed the parallel FP-tree (PFP) algorithm, which is based on the FP-tree
data structure. This method uses the special tree exchange technique to reduce the execution time
problem of the FP-tree algorithm. However, the PFP algorithm continues to experience the execution
time issue when the number of the processors increases. In addition to scanning the entire database,
Zhou et al. [22] used a tidset to exchange information in cluster computing environments. Subsequently,
the extension method, known as the balanced tidset parallel algorithm (BTP-tree) [23], was derived
from the TPFP [22] algorithm. The results show the BTP-tree to have better performance than the TPFP
and PFP algorithms. Several research approaches now use distributed and parallel systems to solve
big data problems. One such system that has recently become popular is Hadoop, an open-source
software framework that some authors [24,25] have used to improve performance.

In [9], Lin et al. proposed the CARM algorithm, which consists of high-workability distributed
FP-mine (HD-mine) and fast distributed FP-mine (FD-mine). HD-mine splits data for easy mining
and then merges the results of computing nodes to discover frequent patterns. The main drawback
of HD-mine is its inefficiency. Therefore, FD-mine is proposed to solve this problem. Given that
FD-mine occupies more memory than HD-mine, HD-mine is first used to discover frequent patterns.
If HD-mine fails, we will use FD-mine in the entire mining process. The CARM algorithm also has
privacy-preserved abilities.

Lin et al. proposed the following five methods: equal working set (EWS), request on demand
(ROD), small-size working set (SSWS), progressive size working set (PSWS), and FLR-mining algorithms.
These five algorithms are all based on the CARM algorithm (as we mentioned above). The EWS
algorithm first establishes the header table and the FP tree through the database. Then the EWS
algorithm assigns each computing node to deal with a 1/Nth part of the working set, where N is the
number of computing nodes. The drawback of the EWS algorithm is that the required mining time is
uncertain, it can have unbalanced workloads. As a result, the ROD algorithm was created to solve the
unbalanced workload shortcoming of the EWS algorithm. The ROD method can reduce the idle time
because the kernel node assigns a new task to each computing node when it finishes its previous task.
However, the kernel node needs to examine idle computing nodes and also dispatch work; therefore,
this process normally uses longer transmission times. To overcome the problems of the EWS and ROD
algorithms, a method called SSWS was proposed. The SSWS algorithm uses a fixed parameter L to
assign the number of work items in individual tasks given to each mining computing node. On account
of the fact that the parameter L is fixed, it will also have some problematic issues from this assumption.
For example, if the parameter L is set to one, then the time complexity of the SSWS algorithm is the
same as the ROD algorithm. On the other hand, if the parameter L is too large, then it may increase the
time spent in network communication. Therefore, to find an improved balance, the PSWS algorithm
was proposed, which can determine a good size for the parameter L automatically. Test results show
that the PSWS algorithm is one of the most efficient algorithms for finding frequent patterns.

Although the PSWS algorithm was presented as the fastest algorithm among the four algorithms
by Lin et al. discussed so far, the PSWS algorithm does not define the appropriate number of computing
nodes; rather, for this algorithm, this number is determined by an expert’s experience. If this node
number setting is not fair, then it might lead to some computing nodes being idle and the waste
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of resources. Owing to the fact that each computing node starts a mining task after it receives the
compressed FP tree, the PSWS algorithm might waste too much time allocating tasks to too many nodes.
To overcome this problem, the DAN-mining method, proposed by [26], automatically determines
the appropriate number of nodes to complete a mining task with respect to frequent patterns. This
algorithm, which is also based on the CARM architecture, evaluates the required mining time by
sampling y% of header items from the header table. Although the DAN-mining algorithm can
determine how many nodes are needed to mine the data, it has no criteria for determining the value of
y. Therefore, the FLR-mining algorithm [10] was also proposed to determine the appropriate number
of computing nodes automatically. In the FLR-mining algorithm environmental structure, it needs the
kernel node, which stores the FP tree and the compressed FP tree. In the beginning of an assignment
strategy, the FP tree and all tasks are sent to the first computing node. And, at the same time that the
first computing node starts executing the first mining task, the second computing node also receives
the FP tree. After receiving a process/task complete message from the first node, the kernel node sends
a message to the first computing node to request the information about how the first node performed
and how long it took, during the same time that the second computing node was receiving the FP
tree. The kernel node utilizes this information to calculate the average time used to complete each task.
From then on, the kernel node can calculate how many tasks can be assigned during the time the FP
tree was sent to the computing node. After the kernel node finishes the calculation, it then reallocates
tasks to the first and second computing nodes. If not all the tasks are finished, then the kernel node
will transmit the compressed FP tree to a third computing node. After that, the kernel node will again
collect the information on the finished tasks and reallocate tasks to the same number or a larger number
of computing nodes as appropriate. The process is repeated until all the tasks are done.

In the following algorithm proposed by Lin et al., FLR-mining is one of the fastest algorithms
for mining frequent patterns in distributed computing environments based on CARM architecture.
FLR-mining also considers the factors of load balancing and resources efficiently, and it can determine
the appropriate number of computing nodes automatically. But there is still a big problem. Previous
studies assumed that the network bandwidth is constant, but this assumption fails in a real network
environment. There are packet collisions caused by many mining tasks running simultaneously.
To avoid these drawbacks and make the distributed cluster computations more suitable for a real
network environment, we will make our environmental structure more robust in this paper; therefore,
the FDCNB-MINING algorithm based on the CARM algorithm is proposed.

3. Proposed Method

This section details the proposed method. In Section 3.1, we introduce an improved environmental
structure. In Section 3.2, our proposed algorithm is described in detail.

3.1. System Structure

FLR-mining [10] is an efficient algorithm with good load balancing; its architecture is based on
CARM [9] for improvement. To solve varying network bandwidth environmental problems, we must
strengthen the environmental structure of CARM. In addition to the original structure of the database,
kernel node, connection node, and computing node, a new node (monitor node) is added for strength.
The structure is shown in Figure 1.
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The kernel node is responsible for reading the database, building an FP tree, compressing the FP
tree into a zip file, and assigning tasks to the computing node. The computing node is responsible for
mining FP-growth from assigned tasks of the kernel node. The connection node is the intermediate
communication link between the kernel node and computing node. The newly added monitor node
observes the varying network bandwidth in cloud or distributed computing, as well as helps the kernel
node select an optimal computing node. The monitor node sends a test package to each computing
node in regular time intervals, so that the network bandwidth in cloud or distributed computing is
known. The monitor node also assists the kernel node in selecting the currently preferred computing
node. The monitor node informs the kernel node whether to discontinue transmission and change into
a better computing node or continue transmission to avoid poor bandwidths, which can affect the
overall efficiency.

3.2. FDCNB-MINING Algorithm

To solve the problem of varying network bandwidths, we propose the FDCNB-MINING algorithm,
namely, fast distributed mining in changing network bandwidth. The algorithm is as shown in
Section 3.3 and is conducted as follows:

Step 1 Before the kernel node is activated, the monitor node must begin operation to constantly
monitor the network bandwidth environment. (Line 1)

Step 2 When the kernel node needs to select one of the computing nodes to transmit compressed files,
the monitor node provides the best computing node to the kernel node. (Line 5)

Step 3 If the monitor node finds the kernel node of using low bandwidth during transfer, it informs the
kernel node to discontinue transmission and change into a better computing node to transfer
information; otherwise, transmission is continued. FDCNB-MINING sorts computing nodes in
descending order according to the performance index of bandwidth that reflects their real-time
network bandwidth. A packet with size is sent to each computing node periodically from
the kernel node, and the computing node acknowledges the kernel node after receiving the
packet. In this way, the response time between kernel node and every computing node can
be obtained. The performance index of bandwidth Bp is defined as s/t, where s is the size
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of transferred packet and t is the elapsed time the packet sent from the kernel node to the
computing node. Paused transmitted data are saved in the computing node until the monitor
node finds a recovery bandwidth. The kernel node then waits to be informed by the monitor
node to mine and continue to transfer the unfinished part. (Line 7–10)

Step 4 This process is repeated until the kernel node does not need the computing node to help in the
mining operation.

3.3. Example

In this section we describe an example of the FDCNB-MINING algorithm. Suppose the
environment has one kernel node, one connection node, one monitor node, and four computing nodes
(A, B, C, and D) for distributed computing. After transferring the test packet, the monitor node
determines that the network bandwidth of the computing nodes is as follows: A has 6 Mbps, B has 45
Mbps, C has 93 Mbps, and D has 30 Mbps. Therefore, when the kernel node needs to select one of the
computing nodes to assist the mining, the monitor node provides the best computing node, i.e., node
C, to the kernel node. If the kernel node still needs to select one of the computing nodes to assist the
mining again and the bandwidth has not changed, then the monitor node provides the next best node,
i.e., node B, to the kernel node and so forth.

Algorithm FDCNB-MINING
Input A transaction database D, minimum support S.
Output Frequent Patterns FP

1 Monitor.work ();
2 HT = getHT(D, S);
3 tree = buildFPtree(D, S);
4 WHILE (isNotEmty(HT))
5 n = Monitor.getBestNode();
6 transmitTree(tree, n);
7 IF(Monitor.findLowBandwidth(n))
8 n.stopTransmitting();
9 CONTINUE;
10 END IF
11 hi = getMiningTask(HT);
12 HT = HT − hi;
13 FLR-Mining.BeginMining(n, hi);
14 END WHILE
15 RETURN FP

4. Experimental Results

4.1. Experiment Setup

To estimate the performance of our proposed method, we use IBM’s Quest synthetic data
generator [27] to generate the workload. The data were based on general transaction record databases,
including the number of transactions (D), average frequent itemset length (I), number of items (N),
and average transaction length (T).

This experimental environment comprised 13 computers to execute an experimental analysis,
one kernel node, one connection node, one monitor node, and other computing nodes for distributed
computing. Each node was equipped with an Intel(R) Core(TM) i7-2600K CPU @3.40 GHz, 8 GB
of memory (Intel Corporation, Santa Clara, CA, USA), 500 GB of storage executing on Windows
7 Enterprise Edition operating system (Microsoft Corporation, Redmond, WA, USA). The programs
were written in Java, and the communication between nodes useed Java Remote Method Invocation
and socket.
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To evaluate the performance of FDCNB-MINING, we compared it with FLR-mining [10] by
conducting a series of experiments. FLR-mining is a known efficient method for mining frequent
patterns in such environments. We used the same dataset settings as [10] for a fair evaluation, so our
basic dataset for experiments is D100K I5 N100K T20 under varying support. In addition, we used
two real data sets for experiments under varying levels of support. The data sets are respectively
retail-market [28] and accidents [29] data, which were downloaded from frequent itemset mining
implementations (FIMI) [30].

We simulated variation in network bandwidth as shown in Table 1. We simulated six different
network bandwidth cases in computing nodes. In real applications, FDCNB-MINING can use the
performance index of bandwidth Bp to measure the bandwidth value at each time point; for simplicity
in the performance discussion, the bandwidth value from the kernel node to each computing node was
as shown in Table 1, and the value was kept the same all the time in each case. Case 1 assumed that
all computing nodes are in the 100 Mbps network bandwidth. Case 2–6 were randomly generated
computing nodes in the 100–1 Mbps network bandwidth, and a bandwidth utilization rate of 80%
was assumed.

Table 1. Simulation of different network bandwidths used in the experiments.

Network Bandwidth (Mbps)

Node 1 2 3 4 5 6 7 8 9 10

Case 1 Bandwidths are all 100

Case 2 3 80 6 77 35 69 87 63 14 22

Case 3 38 60 88 95 100 36 80 69 68 20

Case 4 87 19 36 100 38 92 25 61 76 68

Case 5 34 15 42 41 50 82 90 57 56 93

Case 6 42 3 4 10 95 14 78 44 59 7

4.2. Experiment Analysis

4.2.1. Synthetic Data

In the experiments, we varied the support from 0.07% to 0.03% for FDCNB-MINING and
FLR-mining in six different simulation cases of network bandwidth to study its effect on proportions of
execution time. The number of transactions, average frequent itemset length, number of items, and
average transaction length were 100 K, 5, 100 K, and 20, respectively. Network bandwidth had six
simulation cases, which are shown in Table 1.

The experimental results shown in Figure 2 reveal that the proportion of the execution time of
FDCNB-MINING/FLR-mining was close to 1 in Case 1. This finding represents the addition of a
monitor node in the stable network; our proposed method exerted a minimal effect on the overall
execution efficiency. In the unstable bandwidth in Case 2, FDCNB-MINING required 59.60% of the
execution time of FLR-mining when the support was 0.07%. FDCNB-MINING required 51.79% of the
execution time of FLR-mining when the support was 0.03%. Thus, FLR-mining had poor execution
efficiency when an unequal or unstable network bandwidth was encountered. FLR-mining asks the
connection node to obtain the available computing node by node order, and it does not consider the
unequal or unstable bandwidth in a real network.
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Figure 2. Effect of varying support from 0.03% to 0.07% on proportions of execution time in FDCNB-
MINING and FLR-mining.

Therefore, we propose the FDCNB-MINING method to improve the problem of varying network
bandwidth environments through the monitor node helping the kernel node to select the best node.
For other simulation cases, the results show that the proposed method FDCNB-MINING delivered
excellent performance in terms of execution efficiency and scalability compared with the FLR-mining
algorithm. The detailed execution time ratio is shown in Table 2. In the experiments, we also observed
that the average proportion of execution time of FDCNB-MINING to that of FLR-mining was about
85%, meaning that the proposed method can save 15% of the execution time of FLR-mining for the
synthetic datasets.

Table 2. Proportions of execution time for FDCNB-MINING/FLR-mining while varying support from
0.03% to 0.07% and for Case 1 to Case 6.

Support (%) 0.07 0.06 0.05 0.04 0.03

Case1 0.9947 0.9970 1.0028 1.0002 1.0066
Case2 0.5960 0.6056 0.5921 0.5764 0.5179
Case3 0.9707 0.9573 0.9396 0.9656 0.9575
Case4 0.9188 0.9154 0.9107 0.9395 0.9105
Case5 0.8583 0.8781 0.8542 0.8742 0.8739
Case6 0.8350 0.8265 0.7878 0.7485 0.7140

4.2.2. Real Data—Retail

We varied the support level from 0.05% to 0.01% for the FDCNB-MINING and FLR-mining algorithms
in six different simulation cases of the network bandwidth environment to study the environment effects
on the ratios of execution times. The data [18] was retail-market data from an anonymous Belgian retail
store. The number of transactions, number of items, and the average transaction length were 88,162,
16,470, and 10, respectively. Table 1 describes the six network bandwidth environment cases.

Figure 3 shows that the ratio of the execution times of the two algorithms (here denoted
FDCNB-MINING/FLR-mining) was close to 1 in Case 1. In Case 2, where there were severe changes
in the network bandwidth environment, the FDCNB-MINING algorithm only required 34.14% of
the execution time of the FLR-mining algorithm when the support level was 0.01%. In Cases 3 to 6,
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our proposed FDCNB-MINING method required about 82% of the execution time of the FLR-mining
algorithm. Table 3 shows the detailed execution time ratios against support levels. In frequent pattern
mining, a lower support threshold resulted in a much higher number of frequent patterns and is
therefore one of the performance bottlenecks. We observed that the proportion of execution time of
FDCNB-MINING to that of FLR-mining decreased with the decrease in support threshold from 0.05%
to 0.01% for most of the cases, meaning that the proposed FDCNB-MINING was more scalable than
FLR-mining. The average proportion of execution time of FDCNB-MINING to that of FLR-mining was
about 78%.

Figure 3. Effect of varying support from 0.01% to 0.05% on proportions of execution time in
FDCNB-MINING and FLR-mining.

Table 3. Proportions of execution time for FDCNB-MINING/FLR-mining while varying support from
0.01% to 0.05% and Case1 to Case 6.

Support (%) 0.05 0.04 0.03 0.02 0.01

Case 1 1.0013 1.0138 0.9960 0.9927 0.9904
Case 2 0.3978 0.3713 0.3738 0.3957 0.3414
Case 3 0.8857 0.8801 0.9093 0.9048 0.8976
Case 4 0.8934 0.8720 0.8885 0.8001 0.8284
Case 5 0.8163 0.7814 0.7776 0.8078 0.7255
Case 6 0.8678 0.8108 0.7655 0.7668 0.6603

4.2.3. Real Data—Accidents

In order to study the effect of the support level on execution time ratios, we varied the support
levels from 45% to 25% for the FDCNB-MINING and FLR-mining algorithms in six different simulation
cases of the network bandwidth environment. The data [19] covered traffic accidents in the Flanders
region of Belgium for the period from 1991 to 2000. The number of traffic accidents, number of different
attribute values, and average length of each accident were 340,183, 572, and 45, respectively. Table 1
shows the network bandwidth environment of the six simulation cases. The results are shown in
Figure 4. We found that the FDCNB-MINING algorithm had a good performance in the unstable
network bandwidth environment and was superior to the FLR-mining algorithm. The detailed
execution time ratios are listed in Table 4. In the experiment, the proportion of execution time of
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FDCNB-MINING to that of FLR-mining also decreased with the decrease in support threshold from
45% to 25% for most of the cases, demonstrating that the proposed FDCNB-MINING was more scalable
than FLR-mining. The average proportion of execution time of FDCNB-MINING to that of FLR-mining
was about 74%.

Figure 4. Effect of varying support from 25% to 45% on proportions of execution time in FDCNB-
MINING and FLR-mining.

Table 4. Proportions of execution time for FDCNB-MINING/FLR-mining while varying support from
25% to 45% and Case 1 to Case 6.

Support (%) 45 40 35 30 25

Case1 0.9922 1.0057 1.0074 1.0117 0.9970
Case2 0.3996 0.3643 0.2496 0.1854 0.1943
Case3 0.9090 0.8926 0.9020 0.7831 0.8185
Case4 0.9054 0.8746 0.9073 0.7900 0.6940
Case5 0.8455 0.7885 0.7552 0.6538 0.5861
Case6 0.8875 0.8110 0.7500 0.6597 0.6211

5. Conclusions

In this paper, we have proposed the FDCNB-MINING algorithm able to determine the appropriate
number of computing nodes to mine frequent patterns when the network bandwidth is varying.
The FDCNB-MINING algorithm is based on the structure we proposed in [10] for distributed
computing environments. Previous studies have assumed a constant network bandwidth, but this
assumption fails when there are packet collisions due to many mining tasks being run simultaneously.
Therefore, to more closely represent actual situations and to strengthen the environmental structure of
CARM, we added a monitor node to observe variable network bandwidths in cloud or distributed
computing environments as well as to help the kernel node to select the optimal computing node.
Although our results showed that the addition of a monitor node leads to a more stable network,
our proposed method exerts only a minimal effect on overall execution efficiency. Through empirical
evaluation of six different network bandwidth simulation cases, we found that the FDCNB-MINING
algorithm has a good performance in unstable network bandwidth environments and its performance
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is also superior to that of the FLR-mining algorithm. The proposed method has been shown to deliver
excellent performance in terms of execution efficiency and load balancing.
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