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Abstract: Surrogate models are often used as alternatives to considerably reduce the computational
burden of the expensive computer simulations that are required for engineering designs. The
development of surrogate models for complex relationships between the parameters often requires
the modeling of high-dimensional functions with limited information, and it is challenging to
choose an effective surrogate model over the unknown design space. To this end, the ensemble
models—combined with different surrogate models—offer effective solutions. This paper presents a
new ensemble model based on the least squares method, which is a regularization strategy and an
augmentation strategy; we call the model the regularized least squares ensemble model (RLS-EM).
Three individual surrogate models—Kriging, radial basis function, and support vector regression—are
used to compose the RLS-EM. Further, the weight factors are estimated by the least squares method
without using the global or local error metrics, which are used in most existing methods. To solve the
collinearity in the least squares calculation process, a regularization strategy and an augmentation
strategy are developed. The two strategies help explore the unknown regions and improve the
accuracy on one hand; on the other hand, the collinearity can be reduced, and the overfitting
phenomenon that may occur can be avoided. Six numerical functions, from two-dimensional to
12-dimensional, and a computer numerical control (CNC) milling machine bed design problem are
used to verify the proposed method. The results of the numerical examples show that RLS-EM saves
a considerable amount of computation time while ensuring the same level of robustness and accuracy
compared with other ensemble models. The RLS-EM used for the CNC milling machine bed design
problem also shows good accuracy characteristics compared with other ensemble methods.
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1. Introduction

Computational simulations, such as finite element analysis (FEA) or computational fluid dynamics,
have been displaying steady progress in describing engineering systems, and these simulations play a
key role in optimizing the design of complex engineering equipment. However, computer simulations
may consume a considerable amount of time for complicated simulations in engineering design.
Therefore, a surrogate modeling method has been developed rapidly over the last three decades as an
alternative for computationally expensive simulations that consumes less time [1]. A wide variety
of surrogate models have been used in engineering design, such as polynomial response surface
(PRS) [2,3], Kriging (KRG) [3–6], radial basis function (RBF) [7,8], and support vector regression
(SVR) [8–13]. The PRS and SVR models can identify global trends for a given input data set; whereas,
owing to the interpolation characteristics, KRG and RBF have higher local accuracy around the training
points. Reviews about the surrogate models can be found in [14–17].
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The rapid development of various surrogate models provides researchers with a lot more flexibility
while they are selecting models for engineering design problems. However, it is challenging to choose
the optimal model for a specific application before all the different surrogate models are constructed [18].
Since practical engineering applications often exhibit different linear and nonlinear properties, no single
surrogate model can exhibit high performance in all scenarios; each surrogate model has advantages
and disadvantages [19–22]. The PRS model fits the linear relationship between the inputs and the
outputs well, while the KRG and RBF model are more suited for complex nonlinear relationships
between the input and output datasets. The SVR model is suitable for both linear and nonlinear
relationships between the inputs and the outputs, as it can choose different kernel functions and
hyper-parameters [23–30]. To make better use of the advantages of each model, as well as avoid
wasting existing individual models, researchers have combined different surrogate models into an
ensemble model to develop weighted average surrogate (WAS) models [31,32].

Several ensemble models have been developed in the literature, and studies have shown that
the ensemble model combines the predictive power of each individual surrogate model to improve
accuracy and robustness. Existing ensemble models are most commonly based on error correlation
or prediction variance, and they can be classified according to global and local error metrics [31–34].
Zerpa et al. [33] constructed a WAS using several individual surrogate models for the optimization of
alkaline–surfactant–polymer flooding processes, and found that the WAS exhibited better performance
than individual surrogates. Goel et al. [31] proposed different approaches in which the weights of
the ensemble were determined based on the generalized mean square cross-validation error (GMSE).
Acar et al. [32] proposed an optimization method to calculate the weight factors by minimizing the
GMSE. Zhou et al. [34] used a recursive process to obtain the weight factors, updating them in each
iteration until the convergence goal was reached. The study described above shows that the weight
factors are evaluated as a global metric. Unlike the global error metric, the local error metric method
assesses weight factors in relatively small spaces, even point-by-point [35–39]. Acar [35] used various
local error measures to construct an ensemble model and presented a local error measure of pointwise
cross-validation error. Lee et al. [36] presented a v-nearest points cross-validation method to calculate
the weight factors in a local region. Hierarchical design space reduction [37,40], hybrid, and adaptive
meta-modeling [38] are also effective methods based on local error metrics.

The essence of an ensemble model is to assign weight factors to the known individual surrogate
models and then sum the results of each model. The accuracy of each model affects the accuracy
of the ensemble model; thus far, individual surrogate models are expected to have relatively high
accuracy to meet the robustness and the predictive performance requirements. When high-precision
individual models are obtained, the weight factors can be calculated by regression methods to improve
computational efficiency and save computational cost, instead of other optimization algorithms or
error metrics.

Motivated by the regression idea, this paper proposes a novel ensemble modeling technique named
the regularized least squares ensemble model (RLS-EM). Three individual surrogate models, KRG, RBF,
and SVR, are used to develop the RLS-EM; the least squares algorithm with a regularization strategy
and an augmentation strategy is used to calculate the weight factors. The regularization strategy and
augmentation strategy help to solve the collinearity problem caused by the inherent interpolation
properties of the KRG and RBF models, and the similar prediction values at some sample points. The
augmentation strategy is carried out on the unexplored regions, which can help improve the accuracy
of the surrogate models, while the regularization strategy helps to avoid the potential overfitting
phenomenon. The RLS-EM aims to take advantage of the well-performing ensemble surrogate model
to guarantee the robustness and accuracy for different problems from low to relatively high dimensions.
The RLS-EM aims to take advantage of the well-performing ensemble surrogate model to guarantee
the robustness and accuracy for different problems from low to relatively high dimensions.

The remainder of this paper is organized as follows. In the next section, a brief introduction to
the ensemble methods is presented. Then, the development of the proposed RLS-EM is described.
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Several numerical functions and an engineering application are tested in the following section. Finally,
the conclusions are presented.

2. Background of Ensemble Methods

Usually, the surrogate model technique is utilized to construct several different surrogates and
select the best one. However, this scenario has two major shortcomings [41]. It is wasteful to discard
the so-called inaccurate models, and the accuracy of the surrogate model is affected by the sample
points. This is because the surrogate model may exhibit different precisions for different data sets.
To overcome these drawbacks, ensemble methods are proposed.

An ensemble surrogate model is a weighted combination of several individual surrogate
models [42], which is defined as:

f̂e(x) =
M∑

i=1

wi(x) f̂i(x),
M∑

i=1

wi(x) = 1 (1)

where f̂e(x) is the prediction of the ensemble, M is the number of surrogate models used, and wi is the
weight factor for the ith surrogate f̂i(x). Evidently, the larger weights are assigned to the more accurate
surrogate models, and vice versa.

Zerpa et al. [33] proposed the evaluation of the weight factors wi in a linear ensemble as:

wi =
1
Vi

/
M∑

j=1

1
V j

(2)

where Vi is the prediction variance of the ith surrogate model.
Goel et al. [31] considered PRS, KRG, and RBF, and proposed an ensemble scheme to estimate the

weight factors in a WAS, including the BestPRESS (BP), the PRESS weighted surrogate (PWS), and the
non-parametric PRESS weighted surrogate (NPWS).

Taking the prediction sum of squares (PRESS) as the error measure, the NPWS is given as:

wi =
M∑

j=1, j,i

Ei/

(M− 1)
M∑

j=1

E j

 (3)

where Ej is the GMSE of the ith surrogate model calculated from:

E j =
1
N

N∑
i=1

[
y(xi) − ŷ(−i)

j (xi)
]2

(4)

where y(xi) is the true response at the ith data point xi, and ŷ(−i)
j (xi) is the corresponding prediction

from the surrogate model constructed using all except the ith data point xi, and N is the number of
sample points.

The model with the least PRESS error is assigned a weight factor of one, and all the other models
are assigned zero weight factors; this strategy is called the BP model [31].

The PWS uses the GMSE as a global error metric to select the weight factors using a heuristic
formulation, which is formulated as follows:

wi = w∗i /
M∑

j=1
w∗j

w∗i = (Ei + αEavg)
β, β < 0, α < 1

Eavg = 1
M

M∑
i=1

Ei

(5)
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The weighting scheme requires the user to specify parameters α and β, which control the
contribution of the individual surrogates; α and β are assumed to be 0.05 and −1, respectively [31].

Acar and Rais-Rohani [32] used GMSE as the global error metric and proposed an optimization
algorithm to calculate the weight factors; the algorithm is expressed as follows:

Find wi
Min GMSE

s.t.
M∑

i=1
wi = 1

(6)

Viana et al. [43] proposed an ensemble surrogate model called optimal weighted surrogate (OWS);
the OWS is represented as follows:

min
wi

MSE( f̂e(x)) = wTCw

s.t.
M∑

j=1
w j = 1

(7)

The correlation matrix of the error from the individual surrogate models that are used to constitute
the ensemble surrogate model is expressed as follows:

Ci j =
1
N

eT
i e j (8)

where ei and ej are the vectors of cross-validation errors (i.e., PRESS) for the ith and jth surrogate
models, respectively. The application of the ensemble models can be found in [44–47].

3. Proposed Regularized Least Squares Ensemble Model

3.1. Basic Formulation of the Least Squares Method

A general linear regression model can be represented as follows [47]:

y = w0 +
M∑

i=1

wipi(x) + ε (9)

where pi(x) represents any function about the variable x or simply the variable x, M is the number of
regression terms, and ε is the approximation error. For convenience, pi(x) is characterized with Xi, for
N samples with M dimensions, X = [p1(xi), p2(xi), . . . , pM(xi)], and the corresponding responses Y =

[y1, y2, . . . , yN]T. Then, the matrix form of linear regression is represented as:

Y = Xw + ε (10)

where w = [w1, w2, . . . , wM]T, and the error term ε = [ε1, ε2, . . . , εN]T, supposing that the errors are
normally and independently distributed, with zero mean and finite variance, that is εi ∼ N(0, σ2).
Based on the Gauss–Markov theorem [47], the weight factors ŵ = [ŵ1, ŵ2, · · · , ŵM] calculated by the
OLS method form the best linear unbiased estimator, which can be represented as:

ŵ =
(
XTX

)−1
XTY (11)
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and ŵ satisfies the following equations:

E(ŵ) = E(w)

Var(ŵ) = σ2(XTX)
−1

σ2 = Var(ε1) = Var(ε2) = · · ·Var(εN)

(12)

3.2. Samples Adding by the Augmentation Strategy

The RLS-EM proposed in this paper seeks to simultaneously capture the global and local accuracy.
Since the PRS may exhibit lower accuracy in some nonlinear applications, RLS-EM only combines KRG,
RBF, and SVR to meet the local accuracy and global trend requirements. The predicted values of the
KRG and RBF models at the training points are equal to the actual function values, so the collinearity is
unavoidable. To solve the collinearity problem, an augmentation strategy and a regularization strategy
were developed. The augmentation strategy is used to reduce the influence of the collinearity on one
hand; on the other hand, the augmentation strategy helps to improve the accuracy of the model in the
unexplored area.

The N samples obtained by Latin hypercube sampling (LHS) technique are used to construct the
KRG, RBF, and SVR surrogate models, and the corresponding prediction values at the samples are
Ŷ = [ŷ1(xi), ŷ2(xi), ŷ3(xi)], i = 1, 2, . . . , N, ŷ1(xi), ŷ2(xi), ŷ3(xi) represents the KRG, RBF, and SVR
prediction values at xi, respectively, the corresponding actual function values Y = [y1, y2, . . . , yN]T. The
augmentation strategy is implemented to add additional samples in the exploration regions that are far
from the N original samples. The number of Nadd points (the set is Xadd) is obtained from Algorithm 1.

Algorithm 1 Pseudo code of augmentation strategy for adding samples

Input: X = [ x1, x2, . . . , xN].
1: Set Spri

add empty, S = X.
2: Obtain 3 × Nadd samples by LHS, put them in Xlhs.
3: For i = 1: 3Nadd do
4: Calculate the distance of all the members in Xlhs to the samples in S.
5: Move the sample with the largest distance from Xlhs to Spri

add and S.
6: End for
7: Construct KRG, RBF by S, calculate the uncertainties with (13) at the sample set Spri

add, storage the difference
values in Pkr.
8: Sort Pkr from the largest to the least, choose the top Nadd values of the corresponding samples, and put them
into Xadd.
Output: Xadd.

Pkr(xi) =
∣∣∣ŷ1(xi) − ŷ2(xi)

∣∣∣ (13)

where the Pkr(xi) is the absolute value of the difference between the KRG and RBF model at the
ith adding points. The prediction values of the KRG, RBF, and SVR surrogate models on Xadd are
represented as Ŷadd = [ŷ1(xiadd), ŷ2(xiadd), ŷ3(xiadd)], iadd = 1, 2, . . . , Nadd, and the actual functions
values at the Nadd points are Y = [yN+1, yN+2, . . . , yN+Nadd]T. Then, the augmentation matrix system of
Ŷexpand and Y are represented as:
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Ŷexpand =



ŷ1(x1) ŷ2(x1) ŷ3(x1)
...

...
...

ŷ1(xN) ŷ2(xN) ŷ3(xN)

ŷ1(xN+1) ŷ2(xN+1) ŷ3(xN+1)
...

...
...

ŷ1(xN+Nadd) ŷ2(xN+Nadd) ŷ3(xN+Nadd)


, Y =



y1
...
yN

yN+1
...
yN+Nadd


(14)

3.3. The Regularization Strategy in the Least Squares System

A regularization term is added to further reduce the impact of collinearity. Due to the interpolation
properties of the KRG and RBF models, ŷ1(xi) and ŷ2(xi) are equal to the actual function values
at the N samples. The relatively high precision of KRG, RBF, and SVR surrogate models may also
predict approximately equal values at some samples in the set Xadd. By adding a regularization term
multiplying an identity matrix, the matrix coefficients ŵexpand can be estimated from the augmented
matrix inversion system as follows:

ŵexpand = (Ŷ
T
expandŶexpand + λI)

−1
Ŷ

T
expandY (15)

where I3×3 is an identity matrix, and λ is the regularization parameter. Since the linear correlation in

Ŷ
T
expand is expected to be lower than that in Ŷ, and the regularization item further reduces the linear

correlation, the accuracy and robustness on evaluating w by means of ŵexpand is expected to be better.
The weight factors for the ensemble model are calculated as:

w∗i =
ŵi

expand

3∑
i=1

ŵi
expand

, i = 1, 2, 3 (16)

The regularized least squares ensemble method can be expressed as follows:

1. Random sampling N samples, the Nadd samples are obtained by the augmentation strategy, and
the actual function values Y = [y1, y2, . . . , yN+Nadd] are calculated by expensive simulations.

2. Choose N samples to construct the KRG, RBF, and SVR surrogate models, as the prediction values
of the KRG and RBF at the N samples are equal to the corresponding actual function values of yi,
i = 1, 2, . . . , N; calculate ŷ3(xi) of the SVR model at each of the N samples.

3. Evaluate ŷ1(xN+i), ŷ2(xN+i), and ŷ3(xN+i) for the KRG, RBF, and SVR surrogate models, where
i = 1, 2, . . . , Nadd and Nadd is the number of adding samples. Construct the matrix Ŷexpand and Y
as in Equation (14).

4. Calculate the inverse of the augmented matrix system for ŵexpand by Equation (15), and the
standardized weight factors by Equation (16).

However, the regularization parameter λ should be confirmed before using Equation (15); a search
algorithm was developed to obtain the optimal regularization parameter value λ*, and the detailed
pseudo codes are summarized in Algorithm 2.
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Algorithm 2 Search for the optimal regularization parameter λ*

Begin:
1: A constant array

∏
=

{
ξ1, ξ2, · · · , ξq

}
(0 < ξ1 < ξ2 < · · · < ξq < 1) is set for λ, and l = min = 1, r = max = q.

2: While λmin < λmax, mid =
⌊
(l + r)/2

⌋
, go to step 3, else go to step 8.

3: Randomly divide the predicted values of the KRG, RBF, and SVR surrogate models of the N + Nadd samples
into k (we use k = 5 in this paper) equal parts.
4: The Ŷtrain matrix is made up by the predicted values of three individual surrogate models in the k − 1 group,
and by singular value decomposition (SVD), which can be expressed as

Ŷtrain = UDVT (17)

where Ŷtrain = [Ŷ1, Ŷ2, Ŷ3], U = (U1, U2, U3) is a mt × 3 orthogonal matrix, and mt is the number of the k−1
parts of the samples. D = diag(d1, d2, d3) is a 3 × 3 diagonal matrix. V = (V1,V2,V3) is a 3 × 3 orthogonal matrix.
5: After the SVD, ŵe is calculated for λl and λr by:

ŵe = Vdiag(
d j

d j+λ
)UTYtrain

ŵe = [ŵe1, ŵe2, ŵe3], j = 1, 2, 3
(18)

ŵ1 is the initial weight factors for λl, and ŵ2 is the initial weight factors for λr.
6: Calculate the weight factors with Equations (15) and (16) for ŵ1 and ŵ2, separately, and construct the f̂e(λl)

and f̂e(λr) with Equation (1).
7: Calculate the RMSE of f̂e(λl) and f̂e(λr) with Equation (20), and the current optimal λc values are
calculated as:

if RMSE( f̂e(λmin)) < RMSE( f̂e(λmax)),
λc = λmin,λr = λmid

else
λc = λmax,λl = λmid

(19)

Back to 2
8: The optimal λ* is equal to the λc after iteration, and it can be used to construct the RLS-EM.
Output: λ*.

4. Case Studies

In this section, we compare the performance of the RLS-EM with that of the individual models
KRG, RBF, and SVR (the detailed construction can be seen in Appendix A) and the ensemble models
BP, PWS, NPWS, and OWS described in Section 2. Three types of error metrics were used to evaluate
the performances of different surrogate models: root mean squared error (RMSE), which provides
a global error measure over the design space; average absolute error (AAE), which ensures that the
positive and negative errors will not counteract; and the coefficient of determination (R2), which is a
statistical measure of how close the data are to the fitted regression line.

RMSE =

√
1

Nt

Nt∑
i=1

(yi − ŷi)
2

AAE =

Nt∑
i=1
|yi−ŷi|

Nt

R2 = 1−

Nt∑
i=1

(yi−ŷi)
2

Nt∑
i=1

(yi−y)2

(20)

where y is the mean of the observed responses, yi denotes the observed response for xi, ŷi denotes the
corresponding prediction, and Nt is the number of evaluation points.

We implement the RLS-EM with MATLAB routines, the KRG model was based on a design
and analysis of computer experiment toolbox named DACE [48], the RBF model was developed by
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Sarra [49], and the SVR model was based on the LIBSVM, a library for support vector machines, which
was developed by Chang and Lin [50]. Four ensemble models including BP, PWS, NPWS, and OWS
were implemented in the MATLAB toolbox developed by Viana [51]. The cases have been executed
with MATLAB R2018a on a computer Intel (R) Core (TM) i7-8700K, CPU @3.7 GHz, 32.0 Gb RAM,
64 bits, and Windows 10.

4.1. Numerical Examples

Six numerical examples varying from two-dimensional (2-D) to 12-dimensional (12-D) [42,44]
were chosen to test the performance of RLS-EM: (1) Branin-Hoo function; (2) Camelback function;
(3) Hartmann-3 function; (4) Hartmann-6 function; (5) extended Rosenbrock function (9-D); and
(6) Dixon–Price function (12-D). A description of each test is given in Appendix B.

LHS was used to generate the training and testing sets, the MATLAB routine “lhsdesign” with
“maximin” criterion and 100 iterations were used to generate the (N + Nadd) samples and Nt tests. The
summary of the sampling in the numerical cases is provided in Table 1.

Table 1. Summary specifications for numerical cases.

Function ndv 1 N Nadd Nt

Branin-Hoo 2 20 6 400
Camelback 2 20 6 400
Hartman-3 3 30 9 1000
Hartman-6 6 100 30 1000
Extended

Rosenbrock 9 150 45 1000

Dixon–Price 10 200 60 1000
1 ndv: Variable dimension, Nadd: 30% of N [41].

Table 2 lists the setup details of the individual models, which were used to develop the ensemble
model based on different variable dimensions and nonlinearities. Each individual model has significant
differences between variables with different dimensions and different degrees of nonlinearity, e.g., for the
low-dimensional variables such as variable with numbers two and four, constant regression can satisfy
the accuracy requirements of a KRG model, while the high-dimensional variables require quadratic
regression to obtain a more accurate model. Similarly, the kernel parameters and regularization
parameters of different dimensional variables with different degrees of nonlinearity are different for
the SVR model. Thus, the KRG, RBF, and SVR model setting information for different dimensional
variables are listed in detail, as shown in Table 2.

To validate the performance of the different surrogate models, 100 runs were executed for each
of the numerical examples. The MATLAB routine “boxplot” was used for easy visualization and
comparison. The three-dimensional surface plots of the Branin-Hoo and Camelback functions are
shown in Figures 1 and 2, respectively. The nine surface plots in Figure 1 show that each surrogate
model fits the Branin-Hoo function well. However, Figure 2 shows that the different surrogate models
have considerable differences in the Camelback function fitting. Despite the two functions being highly
nonlinear, the RLS-EM can accurately approximate the actual functions. The boxplots of RMSE, AAE,
and R2 for the different test functions are shown in Figures 3–5; the mean and standard deviations of
the different surrogate models for the performances are listed in Table 3. After 100 runs were executed,
the mean and standard deviation of the RMSE, AAE, and R2 metrics for the numerical examples are
shown in Table 3. For each metric of the numerical examples, the values to the left of the symbol “/”
are the mean of the different models, and the values below are the standard deviations corresponding
to the models. For the RMSE and AAE metrics, the smaller mean values indicate the better model
accuracy, and the smaller standard deviation values show the better robustness. The R2 metric with
a mean value is closer to one and a smaller standard deviation indicate a more accurate and more
robust model.
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Table 2. Surrogate models setup details. KRG: Kriging, RBF: radial basis function, SVR: support
vector regression.

ndv Model Details 1

2
KRG
RBF
SVR

Constant regression, Gaussian correlation, θ0 = ndv (1/2), 0.01 < θi < 20
Gaussian basis functions, kernel parameter γ = 4, no polynomial term

Gaussian kernel γ = 5, regularization parameter C =∞, quadratic loss ε = 0.01

3
KRG
RBF
SVR

Constant regression, Gaussian correlation, θ0 = ndv (1/3), 0.01 < θi < 20
Gaussian basis functions, kernel parameter γ = 0.5, No polynomial term

Gaussian kernel γ = 0.5, regularization parameter C = 100, quadratic loss ε = 0.01

6
KRG
RBF
SVR

Linear regression, Gaussian correlation, θ0 = ndv (1/6), 0.01 < θi < 20
Gaussian basis functions, kernel parameter γ = 0.5, no polynomial term

Gaussian kernel γ = 0.5, regularization parameter C =∞, quadratic loss ε = 0.001

9
KRG
RBF
SVR

Linear regression, Gaussian correlation, θ0 = ndv (1/9), 0.01 < θi < 20
Gaussian basis functions, kernel parameter γ = 1, polynomial term = 1

Gaussian kernel γ = 0.5, regularization parameter C = 100, quadratic loss ε = 0.001

12
KRG
RBF
SVR

Quadratic regression, Gaussian correlation, θ0 = ndv(1/12), 0.01 < θi < 20
Gaussian basis functions, kernel parameter γ = 2, polynomial term = 1

Gaussian kernel γ = 0.5, regularization parameter C = 100, quadratic loss ε = 0.0001
1 The above parameters were set according to experience and can be fine-tuned by many optimization algorithms,
which is not covered in this study.
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From Table 3, and Figures 3–5, we can see that no individual surrogate model is always accurate for
all test cases, KRG fits the Branin-Hoo function well, while RBF shows a better fitting precision than KRG
for the Camelback function. The superiority of ensemble models is not evident for low-dimensional
variables functions; however, as the variable dimension and the degree of nonlinearity increase, the
ensemble models perform better than most of the individual surrogate models. RLS-EM outperforms
all the models in most of the error metrics for the six numerical problems. It shows good fitting
performance and lower RMSE values on the Camelback, Hartmann-3, Hartmann-6, and Dixon–Price
functions. The RMSE and AAE values in Table 3 and their boxplots in Figures 3–5 also show that the
RLS-EM is robust.
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Table 3. Comparison of root mean squared error (RMSE), average absolute error (AAE), and R2 for different surrogate models. BP: BestPRESS, PRESS: prediction sum
of squares, PWS: PRESS weighted surrogate, NPWS: non-parametric PRESS weighted surrogate, OWS: optimal weighted surrogate, RLS-EM: regularized least squares
ensemble model.

Function Metric KRG RBF SVR BP PWS NPWS OWS RLS-EM

Branin-Hoo
RMSE 1

AAE
R2

11.855/4.452
6.032/1.971
0.941/0.045

19.127/4.461
11.278/2.020
0.859/0.068

18.981/4.591
11.315/2.154
0.860/0.071

13.869/5.920
7.577/3.312
0.917/0.068

15.451/4.372
8.670/1.942
0.905/0.055

15.582/4.333
8.771/1.902
0.904/0.055

15.184/4.475
8.460/2.063
0.908/0.056

12.008/4.679
6.436/2.317
0.939/0.050

Camel back
RMSE
AAE

R2

19.490/4.823
11.367/2.764
0.698/0.157

7.855/5.755
4.591/2.366
0.930/0.197

13.005/4.262
7.136/2.147
0.859/0.091

10.961/7.590
6.389/3.683
0.867/0.221

11.190/3.312
6.519/1.676
0.898/0.073

11.441/3.027
6.651/1.551
0.895/0.064

10.842/4.059
6.329/2.001
0.899/0.097

7.812/3.862
4.834/2.148
0.943/0.062

Hart mann-3
RMSE
AAE

R2

0.235/0.060
0.159/0.036
0.929/0.038

0.417/0.049
0.281/0.030
0.788/0.049

0.372/0.076
0.221/0.035
0.826/0.077

0.253/0.083
0.170/0.051
0.914/0.061

0.273/0.045
0.176/0.024
0.907/0.032

0.278/0.044
0.179/0.023
0.905/0.032

0.265/0.048
0.171/0.027
0.913/0.033

0.233/0.044
0.157/0.034
0.931/0.030

Hart mann-6
RMSE
AAE

R2

0.239/0.034
0.156/0.022
0.588/0.114

0.192/0.019
0.115/0.008
0.739/0.046

0.214/0.025
0.115/0.008
0.677/0.055

0.193/0.021
0.116/0.011
0.734/0.057

0.196/0.023
0.112/0.010
0.728/0.050

0.196/0.023
0.112/0.010
0.727/0.051

0.195/0.023
0.111/0.009
0.731/0.049

0.190/0.019
0.114/0.008
0.743/0.045

Extended
Rosen-brock

RMSE (* 105)
AAE (* 105)

R2

0.201/0.023
0.154/0.017
0.765/0.028

0.185/0.021
0.142/0.015
0.801/0.024

0.201/0.027
0.154/0.019
0.764/0.036

0.187/0.022
0.144/0.017
0.796/0.027

0.180/0.021
0.138/0.016
0.811/0.023

0.181/0.022
0.138/0.016
0.811/0.023

0.180/0.022
0.138/0.016
0.812/0.022

0.184/0.020
0.141/0.015
0.808/0.023

Dixon–Price
RMSE (* 106)
AAE (* 106)

R2

0.159/0.017
0.238/0.034
0.835/0.025

0.195/0.022
0.151/0.017
0.753/0.034

0.230/0.029
0.174/0.022
0.760/0.045

0.161/0.019
0.151/0.019
0.831/0.033

0.175/0.020
0.166/0.020
0.802/0.026

0.177/0.020
0.168/0.020
0.797/0.026

0.171/0.019
0.162/0.019
0.810/0.025

0.158/0.019
0.160/0.019
0.841/0.057

1 The best error value in each category is shown in bold for ease of comparison.
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The BP, PWS, NPWS, and OWS use GMSE as error metric, and they require more computation
time than the individual surrogate models, especially for high-dimensional problems. The GMSE error
metric takes a relatively longer time to repeatedly construct the individual surrogate models, and the
computation time is also affected by the number of divisions. In the RLS-EM, the individual surrogate
models are constructed based on the initial samples, the weight factors are obtained by the regularization
least squares method, which helps avoid the time spent on repetitively constructing the individual
surrogate models. Figure 6 shows the computational cost of Hartmann-6, Extended-Rosenbrock, and
Dixon-Price problems, which are represented by the subscript numbers of 1, 2 and 3, respectively.
Further, Figure 6 shows that, as the variable dimension increases, BP, PWS, NPWS, and OWS are
considerably more time-consuming than RLS-EM.
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4.2. Deformation Prediction for the CNC Milling Machine Bed

A CNC milling machine is mainly composed of a bed, column, slider, and toolbox among other
components. The column and slider, under static conditions, exert a large force on the bed, which is
expressed by the red arrows in Figure 7. When the milling machine is being operated, the bed is also
affected by the milling impact from the toolbox. Since the deformation has a great influence on the
milling precision, the design of the milling machine bed needs good resistance to the deformation;
thus, it is very important to accurately predict the deformation during design.

As the milling force is small, we only considered the column and slider weights applied to the
milling machine bed, and we predicted the static deformation. The simplified structure of the bed is
mainly controlled by eight variables, which are shown in Figure 8. The variables’ design space is set
as x1 ∈ [40,60], x2 ∈ [40,60], x3 ∈ [50,80], x4 ∈ [40,60], x5 ∈ [20,40], x6 ∈ [20,45], x7 ∈ [15,30], x8 ∈ [50,80],
and x9 ∈ [40,60]; all the variables are in millimeters. The force of the beam is 56.5 kN and that of the
slider is 23.68 kN. The slider is positioned at the initial position of the bed. FEA simulations were
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carried out to obtain the sample set and the corresponding deformation values. An RLS-EM model
was constructed to evaluate the deformation of the bed under the two forces, which are based on
the variables with different size values. A total number of 200 sample points were selected for the
construction and verification of the proposed ensemble model.
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Owing to the heavy computation time, the data set for the milling machine bed design was fixed;
thus, it was not possible to generate 100 different designs of experiments cyclically. To solve this
problem, in each of the 100 runs, the points for the data sets (N, Nadd, Nt) were chosen randomly at
respective ratios from the 200 sampling points. The results of the test are listed in Table 4.

Table 4. Comparison for the design of milling machine bed.

Metric 1 KRG RBF SVR BP PWS NPWS OWS RLS-EM

RMSE 87.86 82.15 115.53 82.97 81.88 88.61 89.82 79.87
AAE 77.79 55.75 90.81 76.73 72.24 71.60 61.44 56.88

R2 0.82 0.82 0.85 0.82 0.84 0.86 0.85 0.87
1 The best error value in each category is shown in bold for ease of comparison.
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From Table 4, RLS-EM has the best RMSE and R2 values; further, it has the second-best AAE value.
The performance of BP is better than that of KRG, SVR, and other ensembles in AAE; however, the
performances of RMSEs of OWS, NPWS, and OWS are better than those of the individual surrogate
models. The results reveal that because the linear or nonlinear relationships inside are unknown, when
encountering a black-box engineering problem, using an individual surrogate model to approximate the
relationship between the design variables and the responses may yield inaccurate results. However, the
inaccuracies of each individual surrogate model do not considerably affect the approximate accuracy of
RLS-EM; the RLS-EM performs well for the deformation prediction of the milling machine bed. When
all the samples are obtained by a time-consuming FEA analysis process, there is no significant increase
in the amount of computation caused by the search of the regularization parameter compared to the
time-consuming error metrics used in other ensemble methods. Therefore, RLS-EM is an effective
engineering problem modeling method that effectively improves the computational efficiency while
keeping the modeling accuracy.

5. Results

In this work, a new method that combines the advantages of least squares method, the
regularization, and the augmentation is developed to construct a better and time-saving ensemble
model in the cases that only a small number of sample points are available. The weight factors
are calculated by the least squares method with the regularization strategy and the augmentation
strategy. The augmentation strategy helps to obtain the augmented samples in the unexplored regions
by a sample exploration method. On one hand, it helps to improve the accuracy of the individual
surrogate models; on the other hand, the augmentation strategy helps to reduce the collinearity
problem caused by the intrinsic properties of KRG and RBF and the approximate prediction values
on some densely distributed regions. The regularization strategy with an optimal search method to
find the best regularization parameter helps to further reduce the collinearity and avoid the potential
overfitting problem.

Six numerical functions and a 9-D CNC milling machine bed deformation prediction problem
were used to test the proposed RLS-EM method. Four other ensemble models and KRG, RBF, and
SVR were adopted for comparison with RLS-EM. The results show that for the numerical functions,
the RLS-EM model can provide satisfactory robustness and accuracy, with better or equivalent levels
compared to other ensemble methods, while saving a considerable amount of computational cost. The
results of the CNC milling machine bed deformation prediction problem also show that the RLS-EM
has a good accuracy and robust performance.

In the future work, the hyperparametric optimization will be studied in the RLS-EM, which will
further help improve the accuracy and robustness of the RLS-EM, and RLS-EM-based optimization
will be studied too.
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Appendix A

Appendix A.1. Kriging (KRG)

The basic assumption of KRG is the estimation of the response in the form of:

f (x) = p (x) + z (x) (A1)

where f (x) is the response value of the function, p(x) is a known polynomial that globally approximates
the response, and z(x) is the stochastic component that generates deviations such that the Kriging
model interpolates the sampled response data. z(x) has a mean value of zero and covariance as:

cov[xi, x j] = σ2R(xi, x j) (A2)

R(xi, xj) is a correlation function between the data points xi and xj, when choosing Gaussian; it is
represented as:

R(xi, x j) = exp[−θ
∣∣∣xi − x j

∣∣∣2],θ > 0 (A3)

Once the correlation function vector has been established, the response can be predicted as:

f̂ (x) = β̂+ rT(x)R−1(f− 1β̂)
β̂ = 1R−1f

1TR−11

(A4)

where the matrix R−1 is the inverse of the correlation matrix R whose elements Rij are computed by
(A3), f is the vector of the sample responses, and 1 is an n × 1 vector of ones. r(x) is calculated by:

rT(x) = (cov[x, x1], cov[x, x2], · · · , cov[x, xn]) (A5)

Using parameter estimation methods, γ = [β, σ2, θ] can be calculated by maximum likelihood
estimation, and the detailed derivation of Kriging can be found in [5]. In this work, the MATLAB
Kriging toolbox DACE [48] was used.

Appendix A.2. Radial Basis Function (RBF)

The radial basis function interpolant has the form of

f̂ (x) =
n∑

i=1

λiφ(‖x− xi‖) + p(x) (A6)

where n denotes the number of sample points, λi are the known coefficients to be determined, p(x)
is the polynomial item, and ‖x− xi‖ represents the Euclidean distance between x and xi. φ(.) is the
Gaussian basis function, which is defined as:

φ(r) = exp(−
r2

2γ2 ) (A7)

Other forms of the basis functions can be found in [7]. In the present study, we use different γ
values and polynomial items for different dimensional variables. The unknown parameters λi and the
coefficients of p(x) are obtained as the solution of the linear equations in a matrix system.(

Φ P
PT 0

)(
λ
c

)
=

(
F
0

)
(A8)

where F = [ f (x1), f (x2), · · · , f (xn)]
T represent the response values of the n samples.
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Appendix A.3. Support Vector Regression (SVR)

SVR approximates a linear function f (x) in the following form:

f (x) = wTx + b (A9)

where the coefficients w and b are the weight vector and bias term, respectively. This linear function
can be constrained to the following optimization problem [10,11,52]. Using ε as the insensitive loss
function, the corresponding SVR, which is called ε-SVR, can be represented as follows:

∣∣∣y− (wTx + b)
∣∣∣ = 0,

∣∣∣(w · xi + b) − yi
∣∣∣< ε∣∣∣(w · xi + b) − yi

∣∣∣−ε,
∣∣∣(w · xi + b) − yi

∣∣∣≥ ε (A10)

where ε is a positive constant. The characteristic of this function is that the fitting errors, which are
below ε can be ignored; thus, it has strong anti-noise properties. To measure the degree of deviation
from the ε insensitive band of training samples, two relaxation factors are introduced; thus, the objective
function of the SVR optimization is:

min
w∈RN ,b∈R

1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ) (A11)

Further, the constraint conditions are:

wxi + b− yi ≤ ε+ ξi, i = 1, 2, · · · , n
yi − (wxi + b) ≤ ε+ ξ∗i , i = 1, 2, · · · , n
ξi, ξ∗i ≥ 0

(A12)

By introducing a Lagrange function for the optimization problem, the mathematical expression of
SVR can be obtained by solving the dual formula:

f (x) =
m∑

i=1

(ai − a∗i )K(xi, x) + b (A13)

where m is the number of support vectors, K(xi, x) is the kernel function, and ai and a∗i are the Lagrange
multipliers; b is obtained by:

b = y j −
n∑

i=1
(ai − a∗i )K(xi, x j) + ε, a j ∈ (0, C)

b = yk −
n∑

i=1
(ai − a∗i )K(xi, x j) − ε, a∗k ∈ (0, C)

(A14)

In this paper, the Gaussian kernel was used; it is shown as:

k(xi, x) = exp(−
‖x− xi‖

2

σ2 ) = exp(−γ‖x− xi‖
2),γ > 0 (A15)

Appendix B

Appendix B.1. Branin-Hoo Function

y(x1, x2) = (x2 −
5.1x2

1
4π2 + 5x1

π − 6)
2
+ 10(1− 1

8π ) cos(x1) + 10
x1 ∈ [−5, 10], x2 ∈ [0, 15]

(A16)
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Appendix B.2. Camelback Function

y(x1, x2) = (4− 2.1x2
1 +

x4
1

3 )x
2
1 + x1x2 + (−4 + 4x2

2)x
2
2

x1, x2 ∈ [−2, 2]
(A17)

Appendix B.3. Hartman Functions

y(x) = −
4∑

i=1

ci exp[−
n∑

j=1

αi j(x j − pi j)
2] (A18)

where xi ∈ [0, 1]. Two types of Hartman functions are provided based on the number of input variables:
Hartman-3 with three inputs, and Hartman-6 with six input variables. The parameter c for both is the
same vector [1 1.2 3 3.2]T; the other parameters are listed in Tables A1 and A2.

Table A1. Parameters used in Hartman function (3-D), j = 1, 2, 3.

aij pij

3.0 10 30 0.3689 0.1170 0.2673
0.1 10 35 0.4699 0.4387 0.7470
3.0 10 30 0.1091 0.8732 0.5547
0.1 10 35 0.03815 0.5743 0.8828

Table A2. Parameters used in Hartman function (6-D), j = 1, 2, . . . , 6.

aij pij

10 3.0 17.0 3.5 1.7 8.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.05 10.0 17.0 0.1 8.0 14.0 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3.0 3.5 1.7 10.0 17.0 8.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
17.0 8.0 0.05 10.0 0.1 14.0 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Appendix B.4. Extended-Rosenbrock Function

y(x) =
m−1∑
i=1

[(1− xi)
2 + 100(xi+1 − x2

i )
2
]

xi ∈ [−5, 10], i = 1, 2, · · · , 9
(A19)

Appendix B.5. Dixion-Price Function

y(x) = (x1 − 1)2 +
m∑

i=2
i[2x2

i − xi−1]
2

xi ∈ [−10, 10], i = 1, 2, · · · , m = 12
(A20)
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