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Abstract: Recent developments in Convolutional Neural Networks (CNNs) have allowed for the
achievement of solid advances in semantic segmentation of high-resolution remote sensing (HRRS)
images. Nevertheless, the problems of poor classification of small objects and unclear boundaries
caused by the characteristics of the HRRS image data have not been fully considered by previous works.
To tackle these challenging problems, we propose an improved semantic segmentation neural network,
which adopts dilated convolution, a fully connected (FC) fusion path and pre-trained encoder for the
semantic segmentation task of HRRS imagery. The network is built with the computationally-efficient
DeepLabv3 architecture, with added Augmented Atrous Spatial Pyramid Pool and FC Fusion Path
layers. Dilated convolution enlarges the receptive field of feature points without decreasing the feature
map resolution. The improved neural network architecture enhances HRRS image segmentation,
reaching the classification accuracy of 91%, and the precision of recognition of small objects is
improved. The applicability of the improved model to the remote sensing image segmentation task
is verified.

Keywords: semantic segmentation; remote sensing; dilated convolution; fully convolutional neural
network; deep learning

1. Introduction

Remote sensing (RS) image segmentation technology plays a key role in the fields of urban
planning [1], RS mapping [2,3], precision agriculture [4,5], landscape classification [6,7], traffic
monitoring [8], environmental protection [9], climate change [10] and forest vegetation [11], and
therefore provides important decision support for human work and life.

Traditional image segmentation methods are mainly based on spectral statistical features, such as
minimum distance, maximum likelihood, and K-means clustering [12,13]. Although these methods
achieved good results, with the improvement of RS image resolution, segmentation and recognition
accuracy can no longer meet the requirements [14]. Motivated by the ongoing success of deep learning
methods in computer vision, the RS image segmentation tasks have been tackled by Convolutional

Appl. Sci. 2019, 9, 1816; doi:10.3390/app9091816 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9073-5347
https://orcid.org/0000-0001-9990-1084
http://www.mdpi.com/2076-3417/9/9/1816?type=check_update&version=1
http://dx.doi.org/10.3390/app9091816
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1816 20f13

Neural Networks (CNNSs) [15], which greatly improved the precision. In the classical CNN model,
the image blocks composed of a pixel point and its adjacent pixels were input into the network to
extract the feature, which are used for the classification of each pixel [16]. This approach introduces
much redundant computation in the batch operation, and leads to large memory consumption and
low partition efficiency. Shelhamer et al. [17] proposed Fully CNN (FCN), which can accept image
of any size as input, extract the features by the convolutional layer, followed by deconvolution
upsampling, and output a segmentation image with the same size, with accurate target object edges
and assigned label. At present, the FCN model has been widely used in image segmentation [18-23].
In addition, since the image resolution is decreasing in the convolution and pooling operations of CNN,
the segmentation result generated by the last layer is often low in resolution. Many subsequent models
for image segmentation further extend the idea of FCN. The representative models include SegNet [24],
U-Net [25], DeepUNet [26], Y-Net [27] and DeepLab [28,29]. Among them, DeepLabv3 network is
one of the most excellent methods for image segmentation. It acquires a larger receptive field by
migrating learning to initialize the encoder ResNet [12] in ImageNet [30-33] pre-trained weights and
frame capture of the Atrous Spatial Pyramid Pooling (ASPP) composed of parallel convolution with
different expansion rates. Similarly, in [34], the pyramid pooling module is used to extract feature
maps at multiple scales.

Other recent state-of-the art ideas include attention structure to deal with different scale information
and select features, akin to learning in the discriminative feature network [35]; the refinement residual
block [36], which can aggregate the information across different channels and refine the feature map to
improve the recognition ability of each stage; and maximum fusion strategy to combine information
from deep and shallow layers to avert the loss of detailed information because of downsampling in
FCN [37]; and controlling network training strategies using multi-threading [38]. Gates (or entropy
maps), introduced in Gated CNN (GCNN) [39], allow to ascribe adaptive weights to feature maps
depending on their importance. As a result, the gates can train the network to target pixels with high
uncertainty to enhance the separability of these pixels. The use of pre-trained semantic segmentation
network layers can improve the representability of the low-level features, while allowing the effective
use of CNNs for smaller datasets [40]. In Intersection of Union (IoU)-Adaptive deformable region-based
CNN (IAD R-CNN) [41], the number of dilated convolutions and the IoU threshold of the detectors for
training is defined by the IoU value corresponding to a small object, while cascade R-CNN architecture
is used to achieve a better overall detection performance. Merging Fast R-CNN, which use a multi-task
loss in a single network training stage, with Region Proposal Network (RPN) allowing for the sharing
of their convolution features, thus achieving much faster object detection [8].

To decrease the complexity of the network, a number of techniques could be employed, such as to
use energy-driven sampling to segment the image into homogeneous superpixels thereby decreasing
the number of processing units [42,43]. Kussul et al. [4] use self-organizing Kohonen maps (SOMs) as
data pre-processing step for image segmentation and restoration of missing data, which are further
processed with 1-D CNN with spectral domain convolutions. Ji et al. [44] propose a scale-robust FCN
(SR-FCN). The architecture concatenates the multi-layer features extracted in VGG-16 network to
the similar scale features in decoding, in a different way from FCN and DeepLab, where features in
encoding are not fully assimilated into features in decoding. Cheng et al. [7] use DeconvNet with a
novel local smooth regularization that makes segmentation spatially consistent. An integration of edge
network with DeconvNet allows for achieving more accurate edge results as compared with common
methods. Panboonyuen et al. [45] used a global convolutional network (GCN) with the modification of
backbone architecture with more layers for higher resolution RS images, additional channel attention
block to select the most discriminative filters (features), and domain-specific transfer learning to deal
with the scarcity problem by employing other RS datasets with varying resolutions as pre-trained data.
Shrestha and Vanneschi [46] proposed an enhanced fully CNN (EFCN) that uses the exponential linear
unit (ELU), to boost the network performance for more accurate prediction, while Conditional Random
Fields (CRFs) are used as a last stage to reduce noise and sharpen the edges of objects. Xu et al. [47]
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proposed replacing a convolution layer with a deformable convolution layer in order to obtain the
Deformable ConvNet network that is able to recognize the RS objects with a complex shape and visual
appearance. Zhao et al. [48] integrated FCN with simple linear iterative clustering (SLIC) in order
to utilize the superpixel information for accurate identification of semantic information and precise
positioning of small edges.

Because of the improvement in resolution of the RS images, the high resolution RS (HRRS) image
contains a large amount of information, which expands the application scope of RS image, and the
size of recognized objects of interest is relatively smaller. The existing CNN is directly applied for RS
image segmentation, which has some problems, such as the poor segmentation effect of small objects
and fuzzy boundary. Based on the DeepLabv3 network [28] and the properties of RS image data, we
suggest a new method for HRRS image segmentation. The main contributions of this paper are: (1) that
the parallel dilated convolution in the ASPP structure uses varying dilation factors, obtains denser
sampling, gathers local information at higher level, and improves the segmentation performance for
small objects; (2) fully connected (FC) fusion path is added to ensure the information propagation
ability of the model, and the information complementary to the full convolution path is employed to
capture diversity of information as well as to further improve segmentation accuracy.

The remainder of this manuscript is organized as follows. In Section 2, we introduced atrous
convolution and DeepLab v3 network [28] structure, pointing out the problem of existing ASPP
structure applied to small object segmentation. Then we proposed improved structure A-ASPP and a
fully connected path fusion method, which is proposed to improve the segmentation effect of remote
sensing images. Section 3 is the experimental part, wherein we detail the improvement of some
experimental processes, and share the experience of training the proposed model, and compare it with
the existing model. Finally, in Section 4 we summarize the full text.

2. Materials and Methods

2.1. Dilated Convolution

In the classical CNN, the convolution kernel can obtain a large receptive field by pooling operation.
The size of input and output of the RS image segmentation is the same. Therefore, the image with
smaller size after pooling needs to be expanded back to the original size by the deconvolution operation,
but the loss of image information in the deconvolution process will be too great if the downsampling by
the pool is too large. The dilated convolution can obtain different size receptive fields by controlling the
expansion rate. Assuming that in two-dimensional cases, for each position i, the corresponding output
is y and the weight of the feature is w, the convolution of the input feature layer x is calculated as:

yi = Z Xlirxk] X Wk 1
k

where k is the size of the convolution kernel, and r is the expansion rate.

In the dilated convolution, the convolution kernel is expanded by the dilation factors, and r — 1
zeros are placed along the space dimension between the adjacent weights to create a sparse filter. The
extended convolution is checked to input feature x for conventional convolution. The convolution of
different expansion rates is shown in Figure 1.

Figure 1a shows a standard 3 X 3 convolution, a special form of dilated convolution rate = 1,
covering a 3 X 3 size field of view each time; Figure 1b shows a 3 x 3 dilated convolution with rate = 2.
The convolution kernel size is still 3 X 3, but the computational field of view of the convolution kernel
is increased to 7 X 7, while the actual parameter is still 3 X 3. The size of the receptive field can be
expressed as:

o= ((k+1)x (r=1) +k)’ @)
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Therefore, by adjusting the expansion rate in diluted convolution, the receptive field can be
expanded without adding additional parameters.

(a) (b)

Figure 1. Convolution with kernel size 3 x 3 and different rates. (a) Standard convolution corresponds
to atrous convolution with rate = 1. (b) Employing large value of atrous rate enlarges the model’s
field-of-view, rate = 2.

2.2. Architecture of DeeplLab v3

The main structure of DeepLabv3 network consists of three parts, as shown in Figure 2. The first
part is the basic network, which uses the ResNet architecture, and is trained on the ImageNet as the
main feature extraction network, which performs the learning of multi-scale features and the last block
in the original ResNet contains atrous convolution with the rate = 2, respectively.

The second part is the Atrous Spatial Pyramid Pool (ASPP) structure, which uses four kinds
of dilated convolution with different expansion rate to perform the convolution operation on the
output result of the previous layer, in order to obtain the multi-scale information and perform the
upsampling to restore the correct dimension size. In addition, global average pooling adds more global
context information.

In the last part, the features of each branch are merged into a single feature map by a concentration
operation. Then we use a 1 X 1 convolution filter to get the result of fine tuning and get the final
segmentation logic of 5 channels (the ground truth objects are divided into 5 categories).

(a) Atrous Spatial

Pyramid Pooling
L] 1x1 Conv
Rate 2 EEE 3x3 Conv
Convl ae= rate=6 | Concat
+ +
Pooll Block1 Block2 Block3 E}E Block4 R : 4 3x3Conv |1x1 Conv
- rate=12
L
output 3x3 Conv
Image 0PM 4 8 16 16 R =W tel1s 16
|

(b) Image Pooling

[

Figure 2. Overview of DeepLab v3 architecture consisting of three stages: basic network, Atrous Spatial
Pyramid Pooling (ASPP) module and post-processing stage [28].

2.3. Proposed Model

As pointed out in [31], context information is important for detecting minute objects. Context
information, such as roads, cars or other buildings, helps to recognize objects. A higher resolution
is also important. In low resolution images, fine details can be over-segmented into a single mask,
or missed altogether. Figure 3 presents an architecture of the proposed segmentation network: basic
network model, Augmented ASPP (A-ASPP) module, fully convoluted (FC) fusion path and post
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processing. Each module has a different role. The structure of the basic network and the post-processing
module are the same as in the DeepLab v3 architecture. The basic network module model is designed
to extract basic features, while the post-processing model is designed to combine the characteristics of
each branch into a single feature map through a concentration operation. The A-ASPP layer is designed
to make calculations more intensive and enhance the learning of small object features, and thus, firstly
to cover large context, calculate more intensive features, gradually increase the dilation factors; then
decrease the dilation factors to aggregating local features scattered by the increased dilation factors.
The fully connected (FC) fusion path is designed to capture different views for FCN path to further
improve the result.

(a) A-ASPP
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Figure 3. Schematic representation of the proposed architecture: Augmented ASPP network with

Fully Convoluted fusion path, and post-processing stage. (a) Augmented Atrous Spatial Pyramid
Pooling (A-ASPP) module with three parallel dilated convolution branches, each branch consists of
four different expansion rate dilated convolution layers. (b) Fully connected (FC) fusion branch module
consists of two convolution layers and one FC layer, our method fuse predictions from A-ASPP and FC
outputs for better prediction.

2.4. A-ASPP Module

As the main structure of ASPP, dilated convolution is important for the segmentation task.
Although it is useful with regards to resolution and background context, it is not friendly to small object
segmentation in HRRS images. The role of the A-ASPP module is to solve problems of the ASPP module.
Specifically, aggressive application of dilated convolution in ASPP causes two problems, (1) dilation
factors that are too big lead to a sparse convolution kernel, and a large amount of computational
information is lost. (2) The consistency of adjacent spaces becomes weak, and local information is lost
at the upsampling layer.

Firstly, in order to solve the sparsity problem caused by diluted convolution, more intensive
computation is needed, and the dilation factors are increased. For example, in the one-dimensional
volume set with convolution kernel of 3, the combination of expansion rate of 3 and expansion rate of 6,
compared with only expansion rate of 6, there are seven eigenvalues in the convolution of combinatorial
expansion rate. Only three eigenvalues are involved in the computation of convolution with expansion
rate of 6.

Therefore, the large expansion can be calculated from the small expansion, which makes the
computation and sampling denser, thus allowing for obtaining more detailed context information.
Therefore, the A-ASPP structure first uses a gradual expansion rate.
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To handle the second problem, we propose decreasing the dilation factor. The idea is that the
main cause of the problems is an increasing dilation factor. If we attach structure with decreasing
dilation factor after increasing one, information pyramids of neighboring units can be connected again.
Thus, decreasing the structure gradually recovers consistency between neighboring units and extracts
local structure in higher layer.

The structure of A-ASPP is shown in the (a) section of Figure 3. The A-ASPP structure uses
the dilation factors that expands first and then decreases to maintain the advantage of multi-scale
information acquisition and enhance the learning ability. First, the dilution factors are gradually
expanded to make the receptive field larger and denser, and more detailed contextual information is
obtained, and then the feature extraction of small objects is enhanced through the aggregation of local
information by decreasing the dilation factors.

2.5. FC Fusion Path

Each node of the FC layer is connected to all the nodes in the previous layer, which synthesizes
the previously extracted features. The output of the FC layer can be obtained by the weighted sum of
the output of the previous layer and the response of the activation function:

w = w4+ b 3)

where u; is the FC layer, which is weighted and biased by the output x'~! of the previous layer, and ',
b is the weight coefficient and the bias coefficient, respectively.

When compared with FCN, the FC layer has different characteristics. The FCN predicts each
pixel based on the local receiving domain and shares parameters in different spatial locations. On the
contrary, the FC layer is location-sensitive. The prediction of different spatial positions is realized by
different sets of parameters. As a result, they can adapt to the different spatial positions. At the same
time, the prediction of each spatial position is based on the global information of the whole image,
which helps to distinguish different objects.

Based on the different properties of the FC layer and convolution layer, we introduce a FC fusion
path with the FC layer to fuse with the FCN path. Due to the difference between the natural image and
the target remote sensing image in the ResNet, the addition of the FC layer can achieve better model
performance and ensure the transfer of the model representation ability.

As seen in Figure 3, the main path is an FCN structure, which consists of basic network blocks
and dilated convolution structure. Each image pixel is independently predicted to decouple the
segmentation and classification. By creating a short path from the basic network module to the FC
layer through two 3 X 3 convolution layers, the second convolution layer cuts the number of channels
by half to reduce computation costs.

Since the size of RS image is larger and easy to calculate, the RS image is cut into 512 x 512
sub-images and the output size is 32 x 32 after four residuals with output step of 16, so the FC layer
produces a vector of 5120 x 1 x 1. The vector is reshaped to output the same size as that of the FCN
structure. Only one layer of FC path is used to avoid collapsing hidden feature maps into a short
feature vector to lose spatial information.

3. Experimental Results, Analysis and Discussion

3.1. Hardware and Software

Our experiments were based on the open source deep learning framework Tensorflow. The GPU
(Graphics Processing Unit) is Tesla K20m, the main CPU frequency is 2.10 GHz, and the memory
is 128 GB. In the experiment, the training set is randomly sampled with a sub-image of 512 x 512,
the batch size is 10, and the initial learning rate is set to 0.0001.
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3.2. Experiment Dataset

The data set used in the experiment was derived from the “CCF Satellite Image AI Classification
and Recognition Competition”, which is a high-resolution remote sensing image of a region in southern
China in 2015, and the data type is aerial imagery. The resolution of the image is sub-meter, which
contains three bands of RGB, and the types of features are divided into five categories: background,
vegetation, road, building and water body. An example of images in the dataset is shown in Figure 4a,
the corresponding category diagram is shown in Figure 4b, and the annotation is given in Figure 4c.
The size of the pictures from left to right is 5664 x 5142, 7969 x 7939 and 3357 x 6116, 4096 x 4096,
respectively. The first three groups of the HRRS images from left to right were selected as the training
set and the fourth group was selected as the test set.

Architec Plant
ture

()

Figure 4. Sample images from dataset: (a) example of training data; (b) ground truth; (c) image

annotation of feature category.
3.3. Evaluation Index

We evaluate the segmentation result using visual inspection and the quantitative index. From
the visual inspection, good segmentation requires maintaining edge characteristics and having good
regional consistency. As quantitative indicators we use the classification accuracy and mean intersection
over union (mIOU) as an evaluation index.
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The higher the accuracy is, the training model has a stronger ability to extract and segment the
image features. The accuracy is defined as follows:

1 m
Acc = ;Z[ﬁ == yi 4

i=1

where m is the number of samples, f;, y; are the true and predicted pixel label values, and [-] is
the Iverson bracket operator, which evaluates to 1, when the labels match, and to 0, when labels
are inconsistent.

The Mean Intersection-Over-Union (mloU)) is a common evaluation metric for semantic image
segmentation, which first computes the IoU for each semantic class and then computes the average
over classes. IoU is defined as follows:

true positives

IoU @)

~ true positives + false positives + false negatives
where the values are the number of predictions accumulated in a confusion matrix.

3.4. Experiment and Analysis

Our experiments included three axes: the choice of the number of changes in the rate of expansion,
the effectiveness of varying the rate of expansion, and the use of the FC path fusion module (with or
without). First, in terms of the number of expansion rate changes, a different type of change based on
the DeepLab model is used. Then, set the verification effect of increasing and decreasing expansion rate.
We will use DeepLab v3 [28] as the baseline for our experiments. Finally, we evaluate the effectiveness
of the FC path fusion.

3.4.1. Ablation Studies on A-ASPP

We first choose the number of atrous rate changes without changing the number of parameters of
the ASPP module, because if there are too many changes, each change rate corresponds to a small
number of layers, which is not conducive to extracting more abstract features. As shown in Table 1,
the effect of selecting four different expansion rates is better than the basic version. Note that the
effect of continuously increasing and decreasing the expansion rate is significantly better than the
basic experiment.

Table 1. Employing different parameter method for A-ASPP with different number of layers at output
stride = 16. The best model performance is shown in bold.

Parallel Parallel Parallel

Structure Convl Conv2 Conv3 Road Water Arch Plant Back mloU Acc
ASPP (6) (12) (18) 404 475 836 742 754 642 772
l;y‘?r’s (3,6) (6,12) (12,18) 421 482 847 737 739 645 799
Three

(2,3,6) (4,6,12) (6,12,18) 445 509 839 743 751 657 832
layers
11:}(,)2; (2346) (46612  (612,12,18) 492 533 836 742 764 673 857
1:;‘; 23456) (466612) (6121212,18) 487 519 815 738 763 664 834

Increase  (2,34,6) (46612)  (612,12,18) 492 533 836 742 764 673 857
Decrease  (6432)  (12664)  (1812126) 491 519 849 741 773 675 862

Increase- (3¢ 10 (61264) (1218126) 507 537 844 753 761 680 889
Decrease
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Finally, the network parameters of A-ASPP structure are designed based on the number of selected
changes and the method of increasing and then decreasing the expansion rate. Our best model is the
case where (ratel, rate2, rate3, rate4) = ((1), (3,6,4,2), (6,12,6,4), (12,18,12,6)).

3.4.2. Ablation Studies on FC Fusion Path

We investigate the performance with different ways to instantiate the FC fusion path. We consider
two aspects, i.e., the ResNet block to start the new branch and the way to fuse predictions from the
new branch and DeepLab v3. We experiment with creating new paths from block1, block2, block3

and block4, respectively, “max”, “sum” and “product” operations are used for fusion. We take our
re-implemented DeepLab v3 network as the baseline. The results are presented in Table 2.

Table 2. Ablation studies on FC fusion path on HRRS data in terms of mean Intersection of Union (IoU)
(mlou) and Acc. The best model performance is shown in bold.

FC-Block Road Water Architecture Plant Background mloU  Acc

baseline 40.4 47.5 83.6 74.2 754 64.2 77.2
block1 41.1 46.9 83.0 74.4 76.9 64.5 79.0
block2 43.2 48.4 84.3 742 754 65.1 83.2
block3 43.7 49.5 83.1 753 76.8 65.7 85.6
block4 44.2 49.9 83.9 75.1 77.2 66.1 87.1
PROD 43.4 49.1 83.6 749 75.8 65.4 85.7

SUM 44.2 49.9 83.9 75.1 77.2 66.1 87.1
MAX 429 48.8 83.4 74.8 76.9 65.4 84.8

3.4.3. Experiments on HRRS Dataset

We compared the state-of arts in Table 3 from two aspects of accuracy and mean IoU (mloU).
According to the HRRS data training, the accuracy of the A-ASPP is almost the same as that of the
method with FC fusion path, and the overall accuracy of the second method is improved by at least
10% when compared with the baseline method.

Table 3. Results on HRRS data in terms of mean IoU (mlou) and Acc. The best model performance is
shown in bold.

Method Road Water Architecture Plant Background mloU  Acc
FCN-8s 234 37.5 53.2 52.2 55.1 443 61.4
Unet 36.1 419 66.1 62.1 57.2 52.7 67.5
SegNet 39.2 47.8 70.1 64.4 65.3 57.4 71.7
PSPNet 424 50.1 72.6 73.2 72.8 62.2 74.5
RefineNet 413 49.7 76.7 72.4 73.5 62.7 76.2
DeepLabv3 40.4 47.5 83.6 74.2 75.4 64.2 77.2
A-ASPP 50.7 53.7 84.4 753 76.1 68.0 88.9
ASPP + FC 44.2 499 83.9 75.1 77.2 66.1 87.1
A-ASPP + FC 52.5 54.2 84.9 76.1 77.8 69.1 91.4

From the IoU indicator, the segmentation effect improved by FC and A-ASPP is different. The effect
of FC is relatively average in each category. The A-ASPP is more effective in improving the size
of small-sized objects, such as road water. Because FC provides more underlying information flow
through hopping connections, the A-ASPP structure uses deeper and more detailed deep information
to enhance the network’s expressive ability. The two methods complement each other, so the effect
is improved when they work together. The results suggest that the improved model can obviously
enhance the feature extraction ability of the model for RS images and thus improve the segmentation
accuracy. The method with both A-ASPP and FC fusion path achieves the highest accuracy when
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compared with the A-ASPP and FC fusion methods. Our method is further improved, as the small
object segmentation effect is obviously improved, the road IoU is 14% higher than achieved using
DeepLab v3, the water IoU is increased by 7%, and the overall effect is the best, the precision reaches
91.4%, mloU reached 69.1%. By pre-training on ImageNet, we scored significantly better than DeepLab
v3 with the same settings. Therefore, both improvements complement each other and enhance the
prediction result. The visual results are shown in Figure 5.

Figure 5. Classification results by different models on testing image data: (a) DeepLabv3; (b) FC fusion
path; (¢) A-ASPP; (d) our network.

From Figure 5, we can see that the results of the baseline DeepLab v3 network model [28] are very
rough, the edges are fuzzy, the labeling of roads and water is obviously wrong, and the visual effect is
the worst. With the addition of the FC fusion path and the improvement of the ASPP structure, the
edges of objects became clearer, although there are still some miss-classifications. When two improved
models (A-ASPP and FC fusion path) are added at the same time, the visual effect is the best.
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4. Conclusions

In this paper, we have presented a novel segment module based on dilated convolution to precisely
segment small objects in remote sensing imagery, and designed a simple and yet effective component to
enhance information propagation and provide additional contextual information. In particular, we did
many experiments to verify the effectiveness of this module. Our method shows good effectiveness for
segmentation of small objects. Finally, the proposed network architecture can be applied beyond the
remote sensing imagery tasks and is also expected to be effective to applications in image processing
where small objects are of importance, such as the segmentation of cells in the biomedical domain.
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