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Abstract: This paper proposes a neural network (NN)-based control scheme in an Adaptive
Actor-Critic (AAC) learning framework designed for output reference model tracking, as a
representative deep-learning application. The control learning scheme is model-free with respect to the
process model. AAC designs usually require an initial controller to start the learning process; however,
systematic guidelines for choosing the initial controller are not offered in the literature, especially in a
model-free manner. Virtual Reference Feedback Tuning (VRFT) is proposed for obtaining an initially
stabilizing NN nonlinear state-feedback controller, designed from input-state-output data collected
from the process in open-loop setting. The solution offers systematic design guidelines for initial
controller design. The resulting suboptimal state-feedback controller is next improved under the AAC
learning framework by online adaptation of a critic NN and a controller NN. The mixed VRFT-AAC
approach is validated on a multi-input multi-output nonlinear constrained coupled vertical two-tank
system. Discussions on the control system behavior are offered together with comparisons with
similar approaches.

Keywords: adaptive actor-critic; model-free control; data-driven control; reinforcement learning;
approximate dynamic programming; output reference model tracking; multi-input multi-output
systems; vertical tank systems; Virtual Reference Feedback Tuning

1. Introduction

Data-driven or data-based control techniques rely on data collected from the process in order to
learn and tune controllers that prevent control performance degradation due to mismatch between
the true process and its model—the main issue with model-based control design approaches [1].
The data-driven controller learning objective can be achieved either by using highly adaptive
simplified phenomenological models [2,3], or by using no model at all, except for common structural
assumptions about the true process such as linearity or nonlinearity. The latter approach can be
considered a true model-free one, with several representative techniques having first emerged from
classical control theory, such as: Virtual Reference Feedback Tuning (VRFT), [4], Iterative Feedback
Tuning [5], Simultaneous Perturbation Stochastic Approximation [6], Model-free Iterative Learning
Control [7,8]. Most of the above approaches relying on instruments specific to optimal control with
several recent applications [9–17].

Reinforcement learning (RL) [18] is a powerful data-driven technique that solves optimal control
problems with parallel developments in the machine learning and control systems communities
in which RL is better known as Adaptive (Approximate) Dynamic Programming (ADP) [19] or
neuro-dynamic programming [20]. Reinforcement Q-learning [21] with function approximators (FAs)
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is a particular version of Action Dependent Heuristic Dynamic Programming implemented without
a process model [22,23], which is only one of the several types of adaptive actor-critic (AAC) ADP
designs [24–27], besides Heuristic Dynamic Programming [28], Dual Heuristic Programming [29] and
all of their action-dependent versions.

For learning high performance control, Action Dependent Heuristic Dynamic Programming (a
form of continuous input-state space Q-learning) uses the Q-function as an extension of the cost (value)
function and only needs to efficiently explore the input-state space of the unknown process, hence
the model-free data-driven label is justified. The class of model-free AAC designs used with FAs
is attractive over the majority of the model-based AAC designs, where a partially known nonlinear
input-affine state-space representation is at least necessary [22,23]. The main disadvantages of the
Action Dependent Heuristic Dynamic Programming schemes are that many transition samples are
needed from the process—since the Q-function estimation is more informative, it needs to explore the
action space in addition to the state space—and the lack of convergence guarantees in the absence
of a process model, when generic FAs are used. Data-driven RL/ADP formulated in terms of control
systems theory has also offered recent results regarding different applications and stability and learning
convergence, in both model-free and model-based settings [30,31].

In output reference model (ORM) tracking control, the output of the controlled process should
track a reference model’s output regarded as a frequently changing time-varying learning goal.
This control objective can also be formulated in an optimal control setup. An initial stabilizing state
feedback controller that achieves suboptimal ORM tracking control is highly desirable in practice since
it could accelerate the learning process. In fact, most of the AAC learning control architectures start
the controller learning with respect to some objective using an initial controller, but lack systematic
guidelines for obtaining such initial controller.

VRFT is one solution to design data-driven model-free feedback controllers, commonly using
input-output data. Its linear time-invariant framework typically needs much fewer samples than
model-free AAC designs to obtain an initial controller. Unfortunately, a linear controller cannot
ensure good ORM tracking for nonlinear processes acting in wide operating ranges. Since AAC
should essentially learn a nonlinear state-feedback controller, it is of interest to obtain such an initial
(possibly suboptimal) controller, and this will be shown possible using the VRFT design and tuning
framework. This would be significant since model-free AAC approaches are data-hungry in practice
and any initial suboptimal solution would shorten the convergence time. Under such motivation, the
combination of VRFT and AAC is used to achieve ORM tracking control. The resulting AAC design
consists of two neural networks (NNs), one for the controller called the actor NN and one for the cost
function approximation called the critic NN. The correction signals during the adaptive learning are
backpropagated through the larger NN resulted from cascading the actor and the critic NNs, hence the
AAC architecture belongs to the deep reinforcement learning approaches from the literature [32].

The mixed VRFT-AAC approach developed in this paper is applied to a real-world Multi-Input
Multi-Output (MIMO) nonlinear coupled constrained laboratory vertical two-tank system for water
level control. The approach proposed as follows is novel with respect to the state-of-the-art since:

• it introduces an original nonlinear state-feedback neural network-based controller for ORM
tracking, tuned with VRFT, serving as initialization for the AAC learning controller that further
improves the ORM tracking and accelerates convergence to the optimal controller. This leads to
the novel VRFT-AAC combination;

• the case study proves implementation of the novel mixed control learning approach for ORM
tracking. The MIMO validation scenario also demonstrates good decoupling ability of learned
controllers, even under constraints and nonlinearities. Comparisons with a model-free batch fitted
Q-learning scheme and with a model-based batch-fitted Q-learning approach are also offered.
Statistical characterization case studies in different learning settings are given.

• theoretical analysis ensures that the AAC learning scheme preserves the CS stability throughout
the updates and converges to the optimal control.
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The paper is organized as follows: the next section formulates the ORM tracking control problem
in an optimal control framework and offers a way to solve it using VRFT (Section 3) and AAC design
(Section 4). Validation case study, useful implementation details, comparisons with similar control
learning techniques, thorough investigations and discussions of the observed results, are all presented
in Section 5. The concluding remarks are highlighted in Section 6.

2. Output Model Reference Control for Unknown Systems

Let the discrete-time nonlinear unknown open-loop minimum-phase state-space deterministic
strictly causal process be

P :
{

xk+1 = f(xk, uk),
yk = g(xk),

(1)

where k indexes the discrete time, xk = [xk,1 . . . xk,n]
T
∈ X ⊂ <n is the n-dimensional state vector (upper

T is matrix transpose), uk = [uk,1, . . . , uk,m]
T
∈ U ⊂ <m is the control input signal, yk = [yk,1, . . . , yk,p]

T
∈

Y ⊂ <p is the measurable controlled output, f : X ×U→ X is an unknown nonlinear system function,
g : X→ Y is an unknown nonlinear output function of the states, and the initial conditions are not
considered for analysis at this point. It is further assumed that the definition domains X, U, Y are
compact convex. The following assumptions common to the data-driven problem formulation [1] are:

A1: System (1) is controllable and fully state observable.
A2: System (1) is internally stable on X × U.
Assumptions A1 and A2 are common in the data-driven control literature and difficult to assess

when unknown process models are assumed. They may be supported from the experience on the
process operation or from the literature. If no knowledge exists whatsoever, control can be tried in
the constraining domains related to the minimum safety operating conditions of the process, which
is required minimum information on the process variables. Internal stability is sufficient for output
feedback control design and necessary for state-feedback control design using input-state samples.

Concerning the controllability and full state observability assumption A1 imposed to the process, if
the observability cannot be verified analytically, data-driven observers can be built using past samples
of either the inputs and outputs and/or of the partially measurable state, as shown for linear systems
in [33,34] and used for nonlinear systems in [35]. State measurement requires more insight on the
process than several pure input-output representations.

Equation (1) is a general form for most controlled processes in practice and it is not restrictive.
In this form, it obeys the definition of a deterministic Markov decision process.

The discrete-time known open-loop stable minimum-phase state-space deterministic strictly
causal ORM is

ORM :
 xm

k+1 = fm(xm
k , rk),

ym
k = gm(xm

k ),
(2)

where xm
k = [xm

k,1, . . . , xm
k,nm

]T ∈ Xm ⊂ <
nm is the state vector of the ORM, rk = [rk,1, . . . , rk,p]

T
∈ Rm ⊂ <

p

is the reference input signal, ym
k = [ym

k,1, . . . , ym
k,p]

T
∈ Ym ⊂ <

p is the ORM’s output, fm : Xm ×Rm → Xm ,
gm : Xm → Ym are known nonlinear maps. Initial conditions are zero unless stated otherwise. Note
that rk, yk, ym

k have the same size p for square feedback control systems. If the ORM (2) is linear
time-invariant in particular, it is always possible to express the ORM as an input-output linear
time-invariant transfer matrix ym

k = M(z)rk, where M(z) is an asymptotically stable unit gain (i.e.,
M(1) = I, where I is the identity matrix) rational transfer matrix and rk is the reference input that
drives both the feedback control system and the ORM. To extend the process (1) with the ORM (2),
we consider the reference input rk as a set of measurable exogenous signals that evolve according
to rk+1 = hm(rk), with unknown hm :<m

→<
m but measurable rk. Piecewise constant rk can be
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modeled for example as rk+1 = rk and it will be used throughout this paper. Then the extended
state-space model with output equations is

xE
k+1 =


xk+1
xm

k+1
rk+1

 =


f(xk, uk)

fm(xm
k , rk)

hm(rk)

 = F(xE
k , uk), xE

k ∈ XE = X ×Xm ×Rm,

yk = g(xE
k ),

ym
k = gm(xE

k ).

(3)

The ORM tracking control problem is formulated in an optimal control framework. Let the infinite
horizon cost function (c.f.) to be minimized starting with xi be [36]

J(xE
i , Ui,∞) =

∞∑
k=i

γk−iV(xE
k , uk), Ui,∞ = {ui, . . . , u∞}, (4)

where i indexes the starting time for xE
i , the discount factor 0 < γ ≤ 1 ensures the convergence of

J(xE
i , Ui,∞) [23] and sets the controller’s (or interacting agent’s) horizon, the stage cost V > 0 depends

on xE
k and uk and captures the distance relative to some pre-specified learning goal (target) usually

constant in many applications. The unknown control inputs ui, ui+1, ..., should minimize J(xE
i , Ui,∞).

A control sequence (or a controller) rendering a finite c.f. are called admissible.
ORM tracking control requires that the undisturbed process output yk (also the control system

output) tracks the ORM’s output ym
k = M(z)rk. For stage cost VMR = ‖ym

k (x
E
k ) − yk(x

E
k )‖

2
2

in Equation
(4) (measurable yk depends via unknown g( ) on xk, but not on xk+1), we introduce the discounted
infinite-horizon model reference tracking c.f.

J∞MR(x
E
0 ,θ) =

∞∑
k=0

γk
∥∥∥ym

k (x
E
k ) − yk(x

E
k ,θ)

∥∥∥2
2 =

∞∑
k=0

γk
∥∥∥εk(x

E
k ,θ)

∥∥∥2
2, (5)

where εk(xE
k ,θ) is the model reference tracking error vector, θ ∈ <nθ is a parameterization of a nonlinear

feedback admissible controller [23] defined as uk
de f
= C(xE

k ,θ), which used in Equation (5) reflects the
influence of θ on all system trajectories outcomes. This controller coupled with Equation (3) ensures
that the output of Equation (1) tracks the ORM’s output. J∞MR in (5) also serves as the value function
of using the controller C. For finite J∞MR when γ = 1, εk must be a square-summable sequence which

can be obtained with an asymptotically stabilizing controller that ensures lim
k→∞
‖ym

k (x
E
k ) − yk(x

E
k )‖

2
2
= 0.

In the general case when γ < 1, J∞MR will be finite with any stabilizing controller that renders a finite
upper bounded εk. Herein, admissible controller for Equations (4) and (5) means the controller that
ensures a finite c.f. J∞MR.

A nonlinear reference model M could have been used for tracking purposes as well; however,
imposing a linear time-invariant one for the feedback control system ensures indirect feedback
linearization of the controlled process. It is extremely beneficial to work with linearized feedback
control systems because their behavior generalizes well in wide operating ranges [37]. The ORM
tracking problem concerns the control system behavior from the reference input to the controlled
output, neglecting potential load disturbances [38]. Extension of the proposed theory to nonlinear
ORMs is not difficult. Under classical control rules, the process’s delay and non-minimum-phase
character should be included in M. However, the non-minimum-phase zeroes make M non-invertible
in addition to requiring their knowledge via identification [38], affecting the subsequent VRFT design,
motivating the minimum phase assumption on the process.



Appl. Sci. 2019, 9, 1807 5 of 24

3. Nonlinear State-Feedback VRFT for Approximate ORM Tracking Control Using
Neural Networks

An initial controller for the system (3) to achieve approximate ORM tracking employs the VRFT
concept. Under assumptions A1 and A2, for tuning a nonlinear state-feedback controller, the designer
may employ an input-state-output dataset of the form

{~
uk,

~
xk,

~
yk

}
, k = 0, N − 1, gathered from the

process in an open-loop experiment lasting for N sample time steps, where persistently exciting
~
uk

excites all the significant process dynamics. To achieve linear ORM tracking for a nonlinear process,
a nonlinear state-feedback controller is more suitable than a linear one, being able to cope with the
process nonlinearities.

VRFT concept assumes that, if the controlled output yk produced in an open-loop experiment
conducted on the stable process is both the control system’s output and the ORM’s output, then the
closed-loop control system will match the reference model [4,39–42]. Let

~
rk = M(z)−1 ~

yk be the virtual
reference input that generates

~
yk when filtered through M(z) which is assumed to be invertible with

respect to the inverse filtering operation. It is called virtual since it is never set as a reference input to
the closed-loop control system and it is only used in the offline controller tuning. The virtual states
of the ORM are computable from Equation (2) as

~
x

m
k+1 = fm(

~
x

m
k ,

~
rk) serving to reconstruct the virtual

extended state as
~
x

E
k = [

(~
xk

)T (~
x

m
k

)T (~
rk

)T
]
T

A controller that produces
~
uk when fed by

~
x

E
k achieves

the ORM tracking. VRFT translates the model reference tracking c.f. in Equation (5) to a controller
identification c.f. A finite-time controller identification c.f. is [4]

JN
VR(θ) =

N−1∑
k=0

∥∥∥∥ũk −C(̃xE
k ,θ)

∥∥∥∥2
. (6)

Let the optimal controller parameter vector θ* be the solution to the optimization problem
θ∗ = argmin

θ
JN
VR(θ). Theorem 2 in [41] shows that if the controller parameterization is rich enough,

then θ∗ also minimizes J∞MR, proven for input-output models only. Motivated by [41], a formal proof is
given as incentive for using state-feedback controllers tuned by nonlinear multi-input multi-output
(MIMO) VRFT. Several other assumptions are considered:

A3: The process (1) has an equivalent input-output form yk = P(yk−1, . . . , yk−ny, uk−1, . . . , uk−nu),
where ny, nu are unknown process orders and the nonlinear map P is invertible with respect to u,
meaning that for given yk, uk is recoverable as uk−1 = P−1(yk). Zero initial conditions are assumed at this
point. Also, the ORM (2) has an equivalent input-output form ym

k = M(ym
k−1, . . . , ym

k−nym, rk−1, . . . , rk−nr)

where nym, nr are known ORM’s orders, M is a nonlinear invertible map with stable inverse, allowing
the calculation of rk−1 = M−1(ym

k ). Zero initial conditions are also assumed.
A4: Let the process (1) and the ORM (2) be formally written as yk = s(xk, uk−1) and ym

k =

sm(xm
k , rk−1), respectively, to capture simultaneously both the input-output dependence and the

input-state-output one in a compact form. These expressions also reveal the relative degree one from
input to output, without loss of generality. Assume zero initial conditions for (1) and assume the map
s invertible with xk, uk−1 computable from yk as xk = (sx)

−1(yk), uk−1 = (su)
−1(yk). Further assume

that sm is a continuously differentiable invertible map such that xm
k , rk−1 are computable from ym

k as

xm
k = (sm

x )
−1(ym

k ), rk−1 = (sm
r )
−1(ym

k ) and assume there exists positive constants Bm
sx > 0, Bm

sr > 0 such

that ‖
∂sm(xm

k ,rk−1)

∂xm
k

‖ < Bm
sx, ‖

∂sm(xm
k ,rk−1)

∂rk−1
‖ < Bm

sr. Let zero initial conditions hold for (2). These inversion

assumptions are natural for state-space systems such as (1) and (2) that have equivalent input-output
models according to A4. For example, for given output yk of (1), the input is uniquely determined
as uk−1 = P−1(yk), after which the state can be generated by recursion from xk+1 = f(xk, uk) of
Equation (1). This is the sense of xk = (sx)

−1(yk).
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Moreover, let s, (sx)
−1 be continuously differentiable and of bounded derivative to satisfy

‖
∂s(xk,uk−1)

∂xk
‖ < Bsx, ‖∂s(xk,uk−1)

∂uk−1
‖ < Bsu, ‖∂(sx)

−1(yk)
∂yk

‖ < Bsy,

0 < BsxBsy < 1.
(7)

A5: Let a finite open-loop trajectory collected from the process be D =
{~
uk,

~
xk,

~
yk

}
⊂ U×X×Y, k =

0, N − 1 where
~
uk is: (1) persistently exciting, for

~
yk to capture all process dynamics and (2) ensuring

uniform exploration of the entire domain U ×X ×Y. Good exploration is achievable for large enough
N.

A6: There exists a set of nonlinear parameterized state-feedback continuously differentiable

controllers
{
C(xE

k ,θ)
}
, a

^
θ for which

^
uk = C(

^
x

E

k ,
^
θ), and an ε > 0 for which

JN
VR(

^
θ) =

N−1∑
k=0

∥∥∥∥ũk −C(̃xE
k , θ̂)

∥∥∥∥2
< ε2, (8)

‖

∂C(xE
k ,θ)

∂xE
k

‖ < Bcx, (9)

where
~
x

E
k = [

(~
xk

)T (~
x

m
k

)T (~
rk

)T
]
T

,
^
x

E

k = [
(

^
xk

)T (~
x

m
k

)T (~
rk

)T
]
T

and
~
x

m
k = (sm

x )
−1(

~
yk),

~
rk−1 = (sm

r )
−1(

~
yk).

Technically,
{

^
uk,

^
xk,

^
yk

}
are generated with

^
uk = C(

^
x

E

k ,
^
θ) in closed-loop, by processing the virtual

signals
~
x

m
k ,

~
rk−1 obtained from

~
yk.

Theorem 1: Under assumptions A3–A6, there exists a finite B > 0 such that

JN
MR(

^
θ) =

N∑
k=1

∥∥∥ŷk − ỹk

∥∥∥2
=

N∑
k=1

∥∥∥s(x̂k, ûk−1) − sm (̃xm
k , r̃k−1)

∥∥∥2
2 < Bε2. (10)

Proof : See Appendix A.

Corollary 1. The controller C(xE
k ,

^
θ) obtained by minimizing the c.f. (6) is stabilizing and admissible

for J∞MR in Equation (5) with γ < 1.

Proof. By Equation (8), properly identified C(xE
k ,

^
θ) renders the finite-time JN

MR(
^
θ) (10) arbitrarily

small. Secondly, a good exploration of U ×X ×Y ensured by D =
{~
uk,

~
xk,

~
yk

}
reflects in good exploration

of domains Rm, Xm by
~
rk,

~
x

m
k respectively. In (10),

^
uk,

^
xk,

^
yk,

~
x

m
k ,

^
x

E

k ,
~
x

E
k are all generated from the same

~
rk.

If (10) holds for many combinations
~
rk,

~
x

m
k rendered form exploratory data, then by the arguments of

continuous differentiability and bounded derivatives of the maps (7) and by assumption A4, they will
hold for any possible combination of rk and xm

k = fm(xm
k−1, rk−1) generated from any rk.

To show this, note that both
~
yk = ym

k = sm(
~
x

m
k ,

~
rk−1) and

^
yk = yk = s(

^
xk, uk−1) = s(

^
xk, C(

^
x

E

k−1,
^
θ))

in (10) can be generated from the same
~
rk (

^
x

E

k−1 contains
~
rk−1). Using this fact, it follows from (10) that

the ORM tracking errors ‖s(
^
xk, C(

^
x

E

k−1(
~
r
(1)
k−1))) − sm(

~
x

m
k ,

~
r
(1)
k−1)‖ and ‖s(

^
xk, C(

^
x

E

k−1(
~
r
(2)
k−1))) − sm(

~
x

m
k ,

~
r
(2)
k−1)‖

are bounded at each time step, for any two training pairs
~
r
(1)
k−1 and

~
r
(2)
k−1, since the sum in (10) is bounded.

Then, for any rk such that
~
r
(1)
k−1 ≤ rk ≤

~
r
(2)
k−1 (component wise), since s, sm are differentiable with bounded

derivatives with respect to their arguments, it must hold that ‖s(
^
xk, C(

^
x

E

k−1(rk−1))) − sm(xm
k , rk−1)‖ =

‖
^
yk − ym

k ‖ is bounded. Which makes the controller C(xE
k ,

^
θ) stabilizing for the control system in the
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sense of bounded output when rk is bounded. Then, it is an admissible one for the infinite horizon c.f.
J∞MR with γ < 1. This proves the claim.

An NN can be used as a controller for nonlinear state-feedback control learning. Nonlinear VRFT
is proposed in [41,42] and successfully applied to NN controllers in [41,43–45] but only for output
feedback control and not for state-feedback control as in here.

Notice that VRFT control does not need the entire extended state
~
x

E
k for feedback (i.e. including

the virtual states of the ORM), the process’ initial states would suffice for this purpose. However, state
extension is required for preserving the Markov property of the system (3) in order to ensure the correct
collection of the transition samples; this is not possible otherwise without special collection design
such as using a zero-order-hold for two-by-two consecutive time samples [43]. Correct transition
samples collection is required for adaptive actor-critic tuning approach of the same NN controller that
is initially tuned via VRFT.

Notice that in the proposed state-feedback VRFT design, knowledge of the output function
yk = g(xk) in Equation (1) is again not needed since

~
yk is used to calculate the virtual reference

~
rk,

while the controller only uses
~
x

E
k for feedback purposes.

4. Adaptive Actor-Critic Learning for ORM Tracking Control

If the system dynamics (3) is known, for a finite-time horizon version of the c.f. (4), numerical
dynamic programming solutions can be employed backwards in time only with finite state and action
spaces of moderate size, an issue referred to as the “curse of dimensionality”. For infinite horizon c.f.s,
Policy Iteration and Value Iteration [23] can be used even for large and/or continuous state and action
spaces, where FAs such as NNs are one option.

If the system dynamics in (3) is unknown, the minimization of the c.f. (4) becomes an RL problem.
To solve it model-free, an informative c.f. for each state-action pair is defined, called the Q-function (or
action-value function). With this respect, the action-value function of acting uk in state xE

k and then
following the control (policy) uk = C(xE

k ) is defined as

QC(xE
k , uk) = V(xE

k , uk) + γQC(xE
k+1, C(xE

k+1)). (11)

The optimal Q-function Q∗(xE
k , u∗k) satisfies Bellman’s optimality equation

Q∗(xE
k , u∗k) = min

uk

(
V(xE

k , uk) + γQ∗(xE
k+1, u∗k+1)

)
, (12)

with the optimal controller and optimal Q-function

u∗k = C∗(xE
k ) = argmin

C
QC(xE

k , uk) = argmin
u

Q∗(xE
k , u). (13)

Then J∗(xE
k ) = Q∗(xE

k , u∗k), where J∗(xE
k ) = min

u
J(xE

k , u) is the minimum value c.f. out of the c.f.s
defined in Equation (4). Notice that c.f. (4) encompasses (5) thus making the ORM tracking problem
consistent with the above equations. The optimal Q-function can be found using Policy Iteration or
Value Iteration in a model-free manner, using, e.g., NNs as FAs. The optimal Q-function estimate
and the optimal controller estimate can be updated from the transition samples in several ways: in
online/offline mode, batch mode, or sample-by-sample update [23,46]. A particular class of online RL
approaches is represented by the temporal difference-based AAC design that differs from the batch PI
and VI approaches, as it avoids alternate batch back-up of the Q-function FA and of the controller FA.
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4.1. Adaptive Actor-Critic Design

The proposed AAC design is a gradient-based scheme designed to converge to the optimal
Q-function and optimal controller estimates. Let the temporal-difference error be measured from
data as

δk(xE
k−1, uk−1) = V(xE

k−1, uk−1) + γQ̂k−1(xE
k , Ck(xE

k )) − Q̂k−1(xE
k−1, uk−1) (14)

where the continuous function Q̂k(·, ·) in its arguments is the Q-function estimate at time k, time at
which some controller Ck(xk) is also available. From this point onward, for notation simplicity, xk or plain x
are used instead of xk

E The proposed AAC design attempts the Q-function update to online minimize
the c.f. Ec, k = 0.5 δ k

2, while the controller attempts to online minimize the Q-function using gradient
descent. Taxonomically, the proposed AAC belongs to the online Policy Iteration schemes where
the policy evaluation step (of Bellman error residual minimization type) interleaves with the policy
improvement step. The update laws for the AAC design from input-state data are:

uk = Ck(x) = Ck−1(x) −αa ·
∂Q̂k−1(x, u)

∂u

∣∣∣∣∣∣
uk−1

,∀x, (15)

Q̂k(xk−1, uk−1) = Q̂k−1(xk−1, uk−1) + αcδk =

= Q̂k−1(xk−1, uk−1) + αc
(
V(xk−1, uk−1) + γQ̂k−1(xk, uk = Ck(xk)) − Q̂k−1(xk−1, uk−1)

)
,

(16)

where αa > 0, αc > 0 are learning rates. The controller C(xk) is imagined as a function (or as an
infinitely dense table) mapping any state to a control action.

Comment 1: In particular, for any admissible controller C0, repeated calls of (16), under proper
exploration (translated to visiting all the pairs (xk−1, uk−1) ∈ XE

×U often and to generating the sample
xk), and under proper selection of αc > 0, will update Q̂k(x, u), ∀x ∈ XE until δk = 0 at which point
(11) must hold and the converged QC0(xk, uk) evaluates C0. This is an online off-policy model-free policy
evaluation step. Then Q0(x, u) = QC0(x, u) can be an initialization for AAC. Whereas, an initial
admissible controller can be obtained for example using VRFT as shown later in the case study.

Comment 2: The converged Q-function of an admissible control C0, be it QC0 (xk, uk), is positive
by definition since it accumulates stage costs V > 0. Moreover, it is always greater than the optimal
Q-function, i.e., QC0 (xk, uk) ≥ Q*(xk, uk) > 0 and obeys the Bellman equation.

Comment 3: From (15), it follows that

Qk−1(x, Ck(x)) ≤ Qk−1(x, Ck−1(x)),∀x ∈ XE (17)

for a small enough αa > 0.
Lemma 1. Starting from an admissible controller C0 with corresponding Q-function initialization

Q̂0(x, u) = QC0(x, u), the sequence
{
Q̂k(x, u)

}
is monotonic and non-increasing ensuring that

Q̂k(x, u) ≤ Q̂k−1(x, u), (x, u) ∈ XE
×U (18)

Proof. Q̂0(x, u) is initialization for Equation (16) and obeys the Bellman Equation (11) for the
admissible controller C0, i.e.,

Q̂0(xk, uk) = V(xk, uk) + γQ̂0(xk+1, C0(xk+1)). (19)
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Starting the AAC update law from initial state x0, C1(x) is updated first by Equation (15), then it
follows that

Q̂1(x0, u) = Q̂0(x0, u) + αc


V(x0, u) + γQ̂0(x1, C1(x1))︸                              ︷︷                              ︸

(18)
= Q̂0(x0,C0(x0))

− Q̂0(x0, u)


= Q̂0(x0, u) ≤ Q̂0(x0, u),∀u. (20)

Since x0 can be any state x ∈ XE, then Equation (18) holds for k = 1. Assume by induction that (18)
holds for some k. Using Comment 3, it follows that

Q̂k+1(xk, uk) = Q̂k(xk, uk) + αc
(
V(xk, uk) + γQ̂k(xk+1, Ck+1(xk+1)) − Q̂k(xk, uk)

)
≤ Q̂k(xk, uk) + αc

(
V(xk, uk) + γQ̂k(xk+1, Ck(xk+1)) − Q̂k(xk, uk)

)
≤

(18)
≤ Q̂k−1(xk, uk) + αc

(
V(xk, uk) + γQ̂k−1(xk+1, Ck(xk+1)) − Q̂k−1(xk, uk)

)
= Q̂k(xk, uk),

(21)

and since xk, uk can be any pair (x, u) ∈ XE
× U, the conclusion of Lemma 1 follows.

Theorem 2. Let Q̂0(x, u) > 0, finite for any finite argument) be an initialization for the Q-function of
an initial admissible controller C0. Starting with any x0 the control u0 = C0(x0) is applied to the process.
Specifically, the AAC update laws ((15), (16)) ensures that at time k = 1, C1 is updated from C0, Q̂0(x, u)
is updated with (16) using u1 = C1(x1) in the right-hand side, the control u1 is sent to the process, and
then k← 2, with the above strategy repeated for subsequent times. Claim: The feedback control system
under time-varying control Ck is stabilized for γ < 1 and asymptotically stabilized for γ = 1.

Proof. It is valid for the first three time steps that

Q̂1(x0, u0)
(16)
= Q̂0(x0, u0) + αc[V(x0, u0) + γQ̂0(x1, u1 = C1(x1)) − Q̂0(x0, u0)]

(18)
≤ Q̂0(x0, u0). (22a)

Q̂2(x1, u1)
(16)
= Q̂1(x1, u1) + αc[V(x1, u1) + γQ̂1(x2, u2 = C2(x2)) − Q̂1(x1, u1)]

(18)
≤ Q̂1(x1, u1). (22b)

Q̂3(x2, u2)
(16)
= Q̂2(x2, u2) + αc[V(x2, u2) + γQ̂2(x3, u3 = C3(x3)) − Q̂2(x2, u2)]

(18)
≤ Q̂2(x2, u2). (22c)

Cancelling the same terms in both sides of Equation (22a–c), since αc > 0, it follows that the sums
in square parentheses are negative. These sums are further refined using Lemma 1 as

V(x0, u0) + γQ̂0(x1, u1) ≤ Q̂0(x0, u0), (23a)

V(x1, u1) + γQ̂1(x2, u2) ≤ Q̂1(x1, u1)
(18)
≤ Q̂0(x1, u1), (23b)

V(x2, u2) + γQ̂2(x3, u3) ≤ Q̂2(x2, u2)
(18)
≤ Q̂1(x2, u2), (23c)

Using (23c) in (23b) it follows that V(x1, u1) + γV(x1, u1) + γ
2Q̂2(x3, u3) ≤ Q̂0(x1, u1), which

used in (23a) results inV(x0, u0) + γV(x1, u1) + γ
2V(x2, u2) + γ

3Q̂2(x3, u3) ≤ Q̂0(x0, u0). Extending
the exemplified reasoning backwards from infinity it follows that

lim
N→∞

N−1∑
i=0

γiV(xi, ui) + γ
NQ̂N−1(xN, uN)

 ≤ Q̂0(x0, u0). (24)

Since lim
N→∞

γNQ̂N−1(xN, uN) = 0 because Q̂N−1(xN, uN) is bounded since resulting from a

non-increasing sequence, it follows that lim
N→∞

N−1∑
i=0

γiV(xi, ui) ≤ Q̂0(x0, u0) is finite. The left term

in the inequality is the cost of using the controller u0 = C0(x0), u1 = C1(x1), . . .. Then it follows that
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the control system remains stable under the time-varying control of the AAC updates. Moreover, for

γ = 1, the sequence
{√

V(xi, ui)
}
, i = 0,∞must be square-summable which implies that the control

system is asymptotically stabilized by Ck, thus proving the claim of the theorem.
Comment 4: The above proof resembles the stabilizing action-dependent value iteration of [30],

but here relies on gradient-based updates of the Q-function estimate and of the controller, rather than
on its minimization. The stability result of the Theorem 2 is valid under continuous updates of the AAC
laws (15), (16) under no exploration. It ensures that, starting from an admissible controller C0, the
AAC updates (15), (16) preserve the control system stability. Since exploratory controls uk are critical, a
compromising solution is to perform the controller update (15) only for non- exploratory sampling
instants, while the Q-function estimates are continuously updated per (16).

4.2. AAC Using Neural Networks As Approximators

In practice, specific FAs such as NNs are employed as approximators for the Q-function and
for the controller, respectively. Using NNs as FAs (implying nonlinear features parameterization),
the convergence of the learning scheme depends on a large extent to the selection of the learning
parameters. However, the advantage of using generic NN architectures is that no manual or automatic
feature selection is needed for parameterizing the Q-function and controller estimates.

The proposed AAC design herein uses two NNs to approximate the Q-function (critic, referred
to herein as Q-NN), and the controller (actor, referred to herein as C-NN), respectively. Assume an
initial admissible NN VRFT state-feedback controller exists. Let the critic NN FA and controller NN
FA be parameterized as Q̂k(xE

k , uk,θc
k) and Ck(xE

k ,θa
k), respectively. With three-layer feed-forward NNs

having one hidden layer, fully connected with bias, the critic and the controller are modeled by:

Q̂k = Wk
c,nhc+1 +

nhc∑
i=1

Wk
c,iσi(

nic+1∑
j=1

Vk
c, jiI

k
j ), (25)

ul
k = Wk,l

a,nha+1 +

nha∑
i=1

Wk,l
a,iσi(

nia+1∑
j=1

Vk
a, jiI

k
j ), l = 1, m, (26)

with Wc = [Wk
c,1
. . .Wk

c,nhc+1]
T

—the critic output layer weights having nhc hidden neurons,

Vc = [Vk
c, ji]i=1...nhc, j=1...nic+1

—the critic hidden layer weights matrix, Ik
c = [Ik

1 . . . I
k
nic+1]

T
=

[
(
xE

k

)T
(uk)

T 1]
T

—the critic input vector of size nic + 1 (the bias input is constant 1), Wk,l
a =

[Wk,l
a,1 . . .W

k,l
a,nha+1]

T
, l = 1..m – the output layer weights of the l-th controller output uk = [u1

k . . . u
m
k ]

T,

having nha hidden neurons, and Va = [Vk
a, ji]i=1...nha, j=1...nia+1

—the controller hidden layer weights

matrix, Ik
a = [Ik

1 . . . I
k
nia+1]

T
= [

(
xE

k

)T
1]

T
– the controller input vector of size nia + 1 (bias input 1 included).

σi = tanhi, is the hyperbolic tangent activation function at the output of ith hidden neuron. The controller
and critic are cascaded, with the actor output uk as a part of the critic input alongside xE

k The actor

and critic weights are formally parameterized as θk
a = [(Wk,l

a )
T
(Vk

a)
T
]
T

and θk
c = [(Wk

c)
T
(Vk

c)
T
]
T

,
respectively.
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The AAC’s gradient descent tuning rules for the critic (25) and controller (26) as parameterized
variants of (15) and (16) are

θc
k = θ

c
k−1 + αc ·

∂Q̂(x,u,θ)
∂θ

∣∣∣∣
(xE

k−1,uk−1,θk−1
c )
· δk, detailed as :

Wk
c,i = Wk−1

c,i + δkαc ×

 σi(
nic+1∑
j=1

Vk−1
c, ji Ik−1

j ), if i , nhc + 1,

1, if i = nhc + 1,

Vk
c, ji = Vk−1

c, ji + δkαcWk−1
c,i Ik−1

j σ′i (
nic+1∑
j=1

Vk−1
c, ji Ik−1

j ),

(27)



θa
k = θ

a
k−1 −αa ·

∂Q̂(x,u,θ)
∂u

∣∣∣∣
(xE

k−1,uk−1,θk−1
c )
·
∂u(x,θ)
∂θ

∣∣∣∣
(xE

k−1,θk−1
a )

, as :

Wk,l
a,i = Wk−1,l

a,i −αa

 nhc∑
i=1

Wk−1
c,i Vk−1

c,ξi σ
′

i (

nic+1∑
j=1

Vk−1
c, ji Ik−1

j )

︸                                      ︷︷                                      ︸
∂Q̂(x,u,θ)

∂u |
(xE

k−1
,uk−1,θk−1

c )

×

 σi(
nia+1∑

j=1
Vk−1

a, ji Ik−1
j ), if i , nha + 1,

1, if i , nha + 1,

Vk
a, ji = Vk

a, ji −αa
∂Q̂(x,u,θ)

∂u

∣∣∣∣
(xE

k−1,uk−1,θk−1
c )

Wk−1,l
a,i Ik−1

j σ′i(
nia+1∑

j=1
Vk−1

a, ji Ik−1
j ),

(28)

with αa, αc—the learning rate magnitudes of the critic and controller training rules, respectively and σ′i
is the derivative of σi w.r.t its argument and ξ is the index of ul

k in the Ik
c .

In many practical applications, the designer chooses to perform either full or partial adaptation of
the NNs’ weights, the latter implying only output weights adaptation. In this latter case, the Q-NN
and C-NN parameterizations are:

Q̂k(xE
k , uk) =

(
Wk

c

)T
σ(Vk

c [
(
xE

k

)T
(uk)

T 1]
T
) =

(
Wk

c

)T
Φk

c(xE
k , uk),

uk = Ck(xE
k ) =

(
Wk

a

)T
σ(Vk

a[
(
xE

k

)T
1]

T
) =

(
Wk

a

)T
Φk

c(xE
k ),

(29)

where Φk
c(xE

k , uk), Φk
a(xE

k ) are the matrices of basis functions (or input features) and Wc
k, Wa

k are
the tunable output weights parameters, rendering Q̂k, uk as linear combination of basis functions.
This linear parameterization simplifies the convergence analysis but also requires manual features
selection and training as a disadvantage.

As it is well-known, the AAC architecture performs online with the C-NN sending controls to
the process and the Q-NN serving both to estimate the Q-function and to adaptively tune the C-NN.
The closed-loop control system with the process (3) combined with the AAC tuning rules (27), (28) has
the unique property that its dynamics is mainly driven by the reference input rk viewed as a particular
state of the extended state vector and, possibly, by exogenous unknown disturbances. Since rk is user
selectable, it can be used to drive the control system in a wide operating range to ensure efficient
exploration of the state space. Enhanced exploration of the domain XE

× U can be performed by trying
random actions in every state, usually as additive uniform random actions.

4.3. Convergence of the AAC Learning Scheme with NNs

While the results from Section 4.1 are formulated under generic functions for the Q-function and
for the controller, the convergence to the optimal controller and optimal Q-function is not ensured.
In the following, the convergence to of the AAC learning with NNs is shown. Linear parameterization
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is the most widely used and supports tractable analysis. Let the output weight parameterization (29)
of the Q-NN and C-NN lead to the update laws

Wk
c = Wk−1

c + αcδkΦk
c(xE

k−1, uk−1),

Wk
a = Wk−1

a −αaΦk
a(xE

k−1)
(
Wk−1

c

)T ∂Φc
∂u (xE

k−1, uk−1),
(30)

be compactly written as
Wk

c = Wk−1
c + αcδkΦk−1

c ,

Wk
a = Wk−1

a −αaΦk−1
a

(
Wk−1

c

)T
Φk−1

c,u ,
(31)

where δk = V(xE
k−1, uk−1)︸          ︷︷          ︸
Uk−1

+
(
Wk−1

c

)T(
γΦk

c −Φk−1
c

)
Let the weights of the optimal Q-NN and optimal

C-NN be Wc
*, Wa

*, the estimation errors being
~

W
k

c = Wk
c −W∗c,

~
W

k

a = Wk
a −W∗a that render the

estimation error dynamics
~

W
k

c =
~

W
k−1

c + αcδkΦk−1
c ,

~
W

k

a =
~

W
k−1

a −αaΦk−1
a

(
Wk−1

c

)T
Φk−1

c,u ,
(32)

Some assumptions follow:

A7. Let the estimation error of the critic be denoted as ζk−1
c =

(
~

W
k−1

c

)T

Φk−1
c , let the critic’s and

actor’s hidden activation layers be bounded as ‖Φk−1
c ‖

2
≤ ϕc, ‖Φk−1

a ‖
2
≤ ϕa and let the critic’s activation

layer derivative w.r.t. u be bounded as ‖Φk−1
c,u ‖

2
≤ ϕc,u where Frobenius norm was used, which is

equivalent to the Euclidean norm when it is applied to vectors. The above upper bounds follow since
the activation functions are bounded and so are their derivatives.

Theorem 3. Under A7, the AAC learning scheme converges to a vicinity of the optimal controller

and optimal Q-function since the estimation errors
~

W
k

c ,
~

W
k

a are uniformly ultimately bounded provided
that αc > 4ϕ2

c − 2ϕc + 1, for ϕc > 1.
Proof : See Appendix B.
Comment 5. Notice that the temporal difference error δk is calculated in terms of the Q-NN’s output.

Then δk is backpropagated to correct the Q-NN weights. Moreover, δk is further backpropagated to
correct the C-NN weights, since the C-NN output is an input to the Q-NN. Hence, the resulted AAC
architecture belongs to the deep learning approaches (the architecture is presented in Figure 1b of the
next Section).
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Figure 1. (a) control system with the VRFT controller; (b) control system with the VRFT NN controller
further tuned by AAC design in a deep learning architecture; (c) the vertical tank system.
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4.4. Summary of the Mixed VRFT-AAC Design Approach

The steps of the VRFT-AAC design approach are summarized next:
S1. Collect input-state-output samples from the open-loop stable process (1) in a dataset

D =
{~
uk,

~
xk,

~
yk

}
⊂ U ×X ×Y, k = 0, N − 1 where

~
uk persistently exciting, under conditions of A5.

S2. Obtain the initial state-feedback VRFT controller by minimizing the c.f. in Equation (6) as
θa

k = argmin
θ

JN
VR(θ). When NNs are used, minimization of the c.f. (6) is equivalent to training the NN.

The obtained controller is Ck(xE
k ,θa

k), which is a controller for both the process (1) and for the extended
process (3). It is also a close initialization to the optimal controller that minimizes J∞MR from (5), since
VRFT identifies a controller that approximately minimizes JN

MR from (10) as a finite horizon version of
J∞MR. This is supported by Theorem 1.

S3. Close the control system loop on process (1) (it is equivalent to closing it on extended process
(3)) using controller Ck(xE

k ,θa
k). The architecture is presented in Figure 2b). Use update (16) (in

explicitly parameterized form, use (28)) under an exploratory reference input rk in order to learn
the Q-function of the controller Ck(xE

k ,θa
k). This serves as properly initializing Q̂k(xE

k , uk,θc
k) for the

subsequent AAC tuning.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 23 
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S4. Use the updates (15), (16), (27), (28), in explicitly parameterized form), in this exact order
and under an exploratory reference input rk, to learn the optimal controller C∗(xE

k ,θa
k
∗ = W∗a) and

the optimal Q-function Q̂∗(xE
k , uk,θc

k
∗ = W∗c). Using the above updates for a finite time on a random

learning scenario is called a learning episode.
S5. After every learning episode, measure the tracking performance on a standard test scenario.

When the prescribed number of maximum tests is reached or the tracking performance on the standard
scenario is not improving anymore, the controller learning is stopped. Otherwise, proceed to the next
learning episode.

All implementation details of the above VRFT-AAC design are presented in the following
Section 5.1 when validation is performed on the complex multivariable tank system case study.

5. Validation Case Study

5.1. AAC Design for a MIMO Vertical Tank System

The controlled process is a vertical MIMO two-tank system (Figure 1c) built around a three-tank
laboratory equipment [47] with the continuous-time state-space equations

.
H1 = k

aw u1 −
1

aw C1Hα1
1 (2.5ũ2 − 0.5),

.
H2 = 1

aw C1Hα1
1 (2.5ũ2 − 0.5) − 1

cw+
H2

H2max
bw

C2Hα2
2 ,

ũ2 = min(max(u2, 0.6), 1),

(33)
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with a = 0.25 [m], w = 0.035 [m], c = 0.1 [m], b = 0.345 [m] and H1max = H2max = 0.35 [m].
x1 = y1 = H1 ∈ [0, H1max] and x2 = y2 = H2 ∈ [0, H2max] are the water levels in the two tanks
considered as system states and controlled outputs. The control inputs u1, u2 ∈ [0, 1] (also expressible
in [%]) are the duty cycles of the pump direct current (DC) motor and of the electrically controlled
valve C1, respectively. k = 1.66 · 10−4[m3/(s ·%)] is the gain from the pump input to the inflow,
C1 = 5.65 · 10−5[m3−α1/s], C2 = 8 · 10−5[m3−α2/s] are the resistances of the outflow orifices of the first
(upper) and second (lower) tank, called T1 and T2, respectively, and α1 = 0.29, α2 = 0.22. The third
equality in Equation (33) reflects the dead-zone plus saturation in the second control input u2.

Features of this process include: no water level setpoint for the tank T2 can be set if the water level
in T1 is zero; the electrical valve controlling the outflow from T1 (which is inflow to T2) is changed by
ũ2(u2); no setpoint can be tracked for each tank if there is more outflow than inflow; T1’s outflow has a
minimum value and can be zero only when H1 = 0, as per first equality in (33). T2’s dynamics is slower
than T1’s. Proper selection of the parameters C1, C2 through manual valves allows feasible control
trajectories in the constrained input-state-output space. Discretization of (33) reveals its Markov form.
The water level is measured using piezoelectric sensors (PS1 and PS2 in Figure 1c). Protection logic
disables the pump voltage when water level exceeds the upper bound. The sampling period used for
control experiments is Ts = 0.5 s. Model (33) is not used for control design.

For VRFT-based control design, the ORM is selected as the ZOH discretization of M(s) =

diag(M1(s), M2(s)). M1(s) = ω2
0/(s2 + 2ςω0s +ω2

0), with the damping factor ς = 1.0 and the natural
frequency ω0 = 0.5rad/s selects the speed and shape of the desired response ym

k,1 while similar
M2(s) with ς = 1.0 andω0 = 0.2rad/s describes ym

k,2. For collecting the open-loop input-state-output

data
{~
uk,

~
xk,

~
yk

}
k=0...N−1

, 16,000 samples have been generated from 16,000 samples of a uniformly

random sequence of persistently exciting steps lasting for 20 s
~
uk = [ũk,1 ũk,2]

T
∈ [0, 0.5] × [0, 1], for an

experiment of 8000 s. The collected data is displayed in Figure 2 and ensures the exploratory conditions
from Assumption A5.

The controllable canonical state-space realizations (A1, B1, C1, D1) and (A2, B2, C2, D2) and of
M1(z) and M2(z) are, respectively:

A1 =

(
1.5576 −0.6065

1 0

)
, B1 =

(
1
0

)
, C1 =

(
0.0265
0.0224

)T

, D1 = 0,

A2 =

(
1.8097 −0.8187

1 0

)
, B2 =

(
1
0

)
, C2 =

(
0.0047
0.0044

)T

, D2 = 0,

(34)

The ORM state will then be xm
k = [xm

k,1 xm
k,2 xm

k,3 xm
k,4]

T. The virtual reference
¯
rk = M(z)−1 ~

yk is used

as input to the state-space models (34) to obtain the ORM’s virtual states
~
x

m
k . The extended virtual

state vector
~
x

E
k = [

(~
xk

)T (~
x

m
k

)T (~
rk

)T
]
T
∈ <

8 is used to offline compute the C-NN via VRFT by fitting

the inputs
~
x

E
k to the outputs

~
uk. Note that using two second order ORM’s produces four states in the

extended state-space, which is disadvantageous. The ORM’s orders should to be as low as possible
(usually one) but a second order model offers greater flexibility in output response shaping.

The VRFT C-NN architecture (Figure 1a) is a feedforward 8–10–2 fully connected one with biases
having nha = 10 hidden neurons with tanh( ) activation function and the output activation functions are
linear. The weights are initialized with random uniform numbers in [−1.5, 1.5]. Since the NN training
is performed offline, standard gradient backpropagation training with Levernberg-Marquardt [48]
is used for maximum 50 epochs to learn a stabilizing VRFT C-NN controller C(xE

k ) for the MIMO
control system, that minimizes JN

VR. 80% of the data is effectively used for training while the rest of
20% serves as validation data. Early stopping is used after six consecutive increases in the mean
sum of squared error evaluated on the validation data. Other offline training algorithms such as
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Broyden-Fletcher-Goldfarb-Shanno [49,50] and conjugate gradient [51,52] may be similarly efficient
while their computational burden is prohibitive for online real-time training.

Results on a standard test scenario with the initial VRFT C-NN controller are shown in Figure 3.
It is observed that the ORM tracking errors are bounded, since the VRFT controller is stabilizing
(though not asymptotically) and validates the theoretical results of Theorem 1 and Corollary 1. Then it
is an admissible controller for J∞MR in Equation (5) with γ < 1. The initial controller tuning using
VRFT is attractive also because it has learned a feature matrix Φa(xE

k ), so from this point onwards, the
designer can choose to perform either output weights adaptation or full weights adaptation.
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the BFQ controller (blue), the model-based BFQ controller (magenta) and the ORM outputs (red).

The Q-function estimate of the VRFT C-NN (i.e., the critic Q-NN) is next learned in a policy
evaluation step in order to serve as a good initial estimate of the Q-function that is needed for the
following AAC learning and also to fulfil the requirements of Lemma 1. This step is possible since
the VRFT controller is admissible and, for properly selected learning rate, the weights of the Q-NN
will converge. The critic Q-NN approximating the Q-function has similar architecture with the C-NN,
of size 10–25–1 (eight states and two controls), with nhc = 25. The critic Q-NN output weights are
randomly drawn from a zero-mean normal distribution with variance σ2 = 90 while the hidden layer
weighs are uniformly randomly initialized in [−1.5, 1.5]. Setting γ = 0.95, the learning rates αc = 0.01
in (27) and αa = 0 in (28) (no controller tuning), all the Q-NN weights are updated using the gradient
back-propagation in (27), by driving the MIMO control system with a sequence of uniformly random
piecewise constant steps in rk = [rk,1 rk,2]

T
∈ [0.05, 0.25] × [0.01, 0.2]. This procedure also serves as a

tuning step for αc. With rk,1 and rk,2 lasting 20 s and 33 s, respectively, we ensure they do not switch
simultaneously, to better reveal the coupling effects between the control channels. After 500 s, the critic
weights stabilize, the output weights being shown in Figure 4 for 4500 s. This pre-tuned Q-NN will be
used as initialization to the following case studies. After this intermediate tuning step of the Q-NN,
the designer can choose for full weight adaptation of the Q-NN or only for output weights’ adaptation
of the Q-NN while the features matrix Φc(xE

k , uk) is kept constant.
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The C-NN is now further tuned (in the architecture from Figure 1b to improve the ORM control
performance. Setting αa = 10−8 in (28) and αc = 0.01 in (27) (critic adaptation should generally be faster
than actor adaptation), both the C-NN and Q-NN are adaptively trained online. Although carried out
in an adaptive framework, the training unfolds on consecutive episodes where the feedback control
system is driven by a sequence of random reference input steps for 700 s. The reference inputs are
uniformly random piecewise constant steps in rk = [rk,1 rk,2]

T
∈ [0.05, 0.25] × [0.01, 0.2], with rk,1 and

rk,2 lasting 20 s and 33 s, respectively. Updates (27), (28) are skipped when either rk,1 or rk,2 switch,
to preserve the Markov property of the extended model. The controller parameters at the end of an
episode are the initial ones for the following episode, the Q-NN weights following the same transfer
rule. To ensure enhanced exploration of the state-action space, the C-NN controller output is perturbed
every third sample time with probing noise according to:

uk = C(xE
k ) +

(
rand
rand

)
·Ω, Ω =

1 if mod(k, 3) = 0,

0 otherwise,
(35)

where rand is a normally distributed random number with zero-mean and variance σ2 = 3.56 and
mod(k, s) is the remainder after dividing k by s. This is in fact a form of ε0-greedy exploration strategy
useful to try many actions in the vicinity of the current state. A typical learning episode is shown in
Figure 5. After each learning episode, the learning is stopped and the C-NN performance is measured
on the standard test scenario from Figure 3 and the decrease of a finite-time version of the c.f. J∞MR
from Equation (5), namely J1400

MR , is aimed. This standard test scenario is not seen during training.
The learning then resumes with the next episode. After maximum 30 learning episodes (meaning
21,000 s and 42,000 samples), the C-NN and Q-NN adaptations are stopped and the learning trial
(comprising of learning episodes) converges under Theorem 3. The final adaptively learned C-NN
and the initial VRFT controller are shown performing in Figure 3. The episodic learning allows us
to test the improvement in control performance between episodes. Figure 6 illustrates the J1400

MR_AC
decrease over episodes of a convergent learning trial. Throughout each learning episode, under the
AAC update laws, the control system preserves its stability, ensured by Theorem 2.
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For comparisons, a model-free approximated batch-fitted Q-learning (BFQ) controller [53,54] is
also proposed, using the same Q-NN and C-NN architectures with the same sizes. BFQ alternates offline
training of the C-NN and the Q-NN, using 12,000 transition samples collected under the randomly
perturbed model-free single-input single-output VRFT linear controllers C1(z) = (2.6092 + 0.1184z−1

−

2.3609z−2)/(1− z−1) and C2(z) = (1.5735 + 0.2405z−1
− 1.3547z−2)/(1− z−1), independently designed

for the two tanks, respectively. BFQ implements a Value Iteration algorithm. The training settings
assume that the weights of both NNs are initialized to uniform random numbers in [−1.5, 1.5].
Maximum 200 epochs are used for training with Levenberg-Marquardt on 80% effectively training
data and 20% validation data. Early stopping is employed to prevent overfitting after six maximum
increases of the mean sum of squared errors on the validation data. 200 iterations of BFQ take about
2 hours and the best controller is saved.

The value of J1400
MR for the initial VRFT controller is J1400

MR_VRFT = 1.58, for the final adaptively learned
controller is J1400

MR_AAC = 0.45 and for the BFQ controller is J1400
MR_MBBFQ = 0.32.

Additionally, a model-based approximated BFQ solution is also offered for comparisons. A first
dimensionality reduction of the extended state space is performed by inspecting that, for both the ORMs,
xm

k+1,2 = xm
k,1 and xm

k+1,4 = xm
k,3 from the state-space matrices in Equation (34) and, moreover, ym

k,1 =

C1

[
xm

k,1 xm
k,2

]T
≈ 2C1(1)xm

k,1, ym
k,2 = C2

[
xm

k,3 xm
k,4

]T
≈ 2C2(1)xm

k,3. Then xm
k,2, xm

k,4 are considered approximate
duplicates of xm

k,1, xm
k,3 and removed from the extended state vector, now defined as a reduced extended

state vector xER
k = [xk,1, xk,2, xm

k,1, xm
k,3, rk,1, rk,2]

T
∈ <

6 when used for feedback and controller learning.

For [0.05, 0.25] × [0.03, 0.15] × [0.5, 4.5] × [1, 12] × [0.05, 0.25] × [0.03, 0.15] as the domain of xER
k and

[0, 1]× [0.5, 1] the domain of uk, we generate a grid of NP = 5× 5× 7× 7× 6× 6× 3× 3 = 396900 linearly
spaced points. 5 points for each of xm

k,2, xm
k,4 would have led to NP of almost 10 million. Let the discrete

domains be denoted XE
d and Ud, respectively. Domains of xm

k,1, xm
k,3 and rk,1, rk,2 are found by simulating

the ORMs offline such that ym
k,1, ym

k,2 overlap the constrained domains of xk,1 = yk,1, xk,2 = yk,2. For a
Q-NN of size 8–8–1, a C-NN of size 6–6–2 and γ = 0.8 found to ensure learning convergence, each
iteration of the model-based BFQ trains both the Q-NN and the C-NN. For the Q-NN current iteration

estimate (indexed by iter) denoted Q̂iter
(
xER

k , uk

)
, the inputs patterns are

{
[
(
xER

k

)T
(uk)

T]
T
}

and the

target patterns are
{

VMR(xER
k ) + γmin

u∈Ud
Q̂iter−1

(
F(xER

k , uk), u
)}

., evaluated for all the points in XE
d ×Ud.

For the current iteration C-NN Citer
(
xER

k

)
, the input patterns are

{(
xER

k

)}
and the target patterns are{

uk = argmin
u∈Ud

Q̂iter
(
xER

k , u
)}

. Note that evaluation of F(xER
k , uk) to get xER

k+1 uses the original extended

state vector where xm
k,2, xm

k,4 are copies of generated xm
k,1, xm

k,3 and a piecewise constant reference input
generative model is used where rk+1,1 = rk,1, rk+1,2 = rk,2. To keep the training computationally
tractable and timely, only one third of uniformly sampled data points form the training set are used,
differently for each of the Q-NN and the C-NN. The weights of both NNs are initialized to uniform
random numbers in [−1.5, 1.5]. Maximum 200 epochs are used for training with Levenberg-Marquardt
on 80% training data and 20% validation data. Early stopping is employed to prevent overfitting after
six maximum increases of the mean sum of squared errors on the validation data. Just 14 iterations
(taking about 20 min) of this approximate model-based BFQ produce the control results in Figure 3 (in
magenta), with J1400

MR_MFBFQ = 0.25 naturally the smallest, with the best ORM tracking performance,
since it uses the process model.

5.2. Statistical Investigations of the AAC Control Performance

Several thorough investigation case studies are considered, for which the initial C-NN tuned by
VRFT and the initial Q-NN are the same. The investigation concerns full vs. partial tuning of the
Q-NN and C-NN weights, while measuring the probing noise effect on the convergence. All statistics
are measured on learning trials of maximum 50 episodes. The minimal and average J1400

MR_AAC values on
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100 trials are measured along with the success percentage of convergent learning trials. The average
number of episodes until reaching the minimal J1400

MR_AAC of a successful learning trial together with the
standard deviation of the number of episodes in a successful learning trial, are both rendered in Table 1.

Table 1. AAC tuning statistics over maximum 50 episodes per trial.

Scenario Avg.
J1400
MR_AAC

Min.
J1400
MR_AAC

Success
Rate

Avg.
Episodes

Std.
EpisodesFull Tuning Perturbed

yes yes 0.48 0.46 88% 25 4.9
yes no 0.76 0.45 53% 43 6.3
no yes 0.64 0.59 100% 16 3.2
no no 0.526 0.50 100% 10 2.1

Case 1. Under learning rates αc = 0.01 in (27) and αa = 10−8 in (28), with full adaptation of the
Q-NN and of the C-NN, the learning process convergence starting from the initial C-NN tuned by
VRFT and initial Q-NN is investigated. For a convergent learning trial, for the constant learning rates
being used, the best performance did never drop below J1400

MR_AAC = 0.46, which is inferior to the BFQ
performance, suggesting that the proposed adaptive learning strategy is prone to getting stuck in local
minima under the adaptive gradient-based update rules. In fact, BFQ is generally advertised as being
more data-efficient, although actor-critic learning architectures also allow alternative updates of the
C-NN and Q-NN for improving data usage efficiency. The learning trials converges in about 88% of
the cases, comparable with other perturbed AAC designs [55,56] given the wide operating range used
for the controlled process.

Case 2. For full weights adaptation of both Q-NN and C-NN, without random perturbation of the
control action, with αc = 0.01 in (27) and αa = 10−7 in (28), the convergence rate drops to 53% and the
best performance is J1400

MR_AAC = 0.45.
Case 3. In the case of output weights only tuning of both Q-NN and C-NN, with random

perturbation of the control action, with αc = 0.01 in (27) and αa = 10−6 in (28), 100% convergence rate
was observed, but the performance never dropped below J1400

MR_AAC = 0.59.
Case 4. With output weights only tuning of both the Q-NN and C-NN, starting from the initialized

C-NN tuned by VRFT and the initial C-NN, in the absence of random perturbation of the control action,
with αc = 0.01 in (27) and αa = 10−5 in (28), the AAC learning is 100% convergent in all trials but the
performance never drops below J1400

MR_AAC = 0.50. For αa = 10−6, the average number of episodes per
trial increases only to 11.

The above four case studies are statistically characterized in Table 1. Concluding, full weight
tuning of Q-NN and C-NN offers better performance (smaller J1400

MR_AAC) than when output weights only
tuning is used. But full weight tuning lowers the convergence rate, as prone to stuck in local minima.
In Case 1 vs. Case 2, the probing noise significantly improves the convergence, slightly improves
the average J1400

MR_AAC and decreases the average number of episodes per convergent trial. While full
weights adaptation is more sensitive since even small corrections in the input-to-hidden layer weights
may lead to learning divergence.

The output weights only tuning is more robust, with 100% convergence success rate to an improved
solution, but with inferior achievable performance. The perturbing noise in this case worsens the
average number of episodes per trial and the best achievable performance. Guaranteed convergence
to an improved solution corresponding to a local minimum in Cases 3 and 4 is also caused by the
good initial tuning offered by VRFT. Case 4 with output weights only tuning without probing noise
offers the best compromise regarding convergence, performance and few episodes per trial (i.e., fewer
transition samples until convergence).

The initial Q-function learning of the NN-VRFT controller is not necessary and learning
convergence was obtained without this step also. For the selected critic learning rate, the weights
converge fast enough, however, this step serves for tuning the critic learning rate and also for
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initialization of the features matrix when output weights only adaptation is sought. This tuning step is
achievable exactly because an initially stabilizing VRFT controller exists.

5.3. Comments on the AAC Learning Performance

The AAC learning data efficiency is clearly inferior to the BFQ strategy as a comparable model-free
approach. The BFQ control is learned from scratch just from transition samples, whereas the proposed
AAC controller learns from a NN-VRFT controller delivering an initial suboptimal ORM tracking
solution. Both AAC and model-free BFQ are inferior to the model-based BFQ solution which exploits
the process model knowledge.

AAC is a form of Action Dependent Heuristic Dynamic Programming which is also less
data-efficient than other similar approaches such as Dual Heuristic Programming, where the learned
co-state vector carries more information than the Q-function. On the other hand, AAC is less
computationally demanding and requires less memory than Dual Heuristic Programming, BFQ and
model-based BFQ, owing to AAC’s adaptive implementation. However, AAC becomes competitive
when used together with VRFT since the VRFT pre-tuning provides an initial controller close to
the optimal one, which then can be fine-tuned using AAC. The initial NN VRFT controller ensures
stabilized exploration over a wide operating range for ensuring ORM tracking in a wide range, which is
equivalent to indirect feedback linearization. Then the combined VRFT-AAC design for ORM tracking
is more attractive for practical data-driven applications [57,58].

6. Conclusions

A model-free combination of VRFT and AAC design approach was successfully validated to
learn improved nonlinear state-feedback control for linear ORM tracking in a wide operating range.
Learned controllers indirectly account for several nonlinearities such as actuator saturation plus
dead-zone and output saturation, while they also show good decoupling abilities. AAC design shares
similar conceptual framework with model-free techniques like Q-Learning, or SARSA, VRFT, Iterative
Feedback Tuning and model-free Iterative Learning Control, by exploiting only the process model
structure but not its parameters. The convergence of the proposed adaptive learning strategy relies on
several key aspects: efficient exploration correlated with the size of the training dataset and with the
process complexity, selected learning architecture and selection of the approximators with appropriate
parameterizations. In a wider context, VRFT shows significant potential for obtaining close-to-optimal
initially admissible controllers with respect to the ORM objective.

Future work targets the validation of the proposed tuning approach to other difficult nonlinear
processes and its improvement using data-driven techniques.
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Appendix A

Proof of Theorem 1.

Let s(
^
xk,

^
uk−1) − s(

~
xk,

~
uk−1) =

^
yk −

~
yk = ∆yk, where

^
yk = s(

^
xk,

^
uk−1 = C(

^
ζk−1,

^
θ)). In VRFT, it is

also valid that
~
yk = s(

~
xk,

~
uk−1) = sm(

~
x

m
k ,

~
rk−1) is the output of both the process and of the ORM driven

by
~
rk−1 = M−1(

~
yk). By the mean value theorem, there is a 0 < Γ < 1 making

∆yk =
∂s(xΓ

k , uΓ
k−1)

∂xk
(

^
xk −

~
xk) +

∂s(xΓ
k , uΓ

k−1)

∂uk−1
(

^
uk−1 −

~
uk−1), (A1)
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leading to
‖∆yk‖ ≤ Bsx‖∆xk‖+ Bsu‖∆uk−1‖, (A2)

where xΓ
k = Γ

^
xk + (1− Γ)

~
xk, uΓ

k−1 = Γ
^
uk−1 + (1− Γ)

~
uk−1, and ∆xk =

^
xk −

~
xk, ∆uk−1 =

^
uk−1 −

~
uk−1.

Observe that (8) implies ‖
~
uk −C(

~
x

E
k ,

^
θ)‖ < ε, ∀k = 0, N − 1. But ∆uk = C(

^
x

E

k ,
^
θ) −

~
uk = C(

^
x

E

k ,
^
θ) −

C(
~
x

E
k ,

^
θ) + C(

~
x

E
k ,

^
θ) −

~
uk and by the MVT there is a 0 < Γ < 1 such that

∆uk =
∂C(xEΓ

k ,θ)

∂xE
k

(
^
x

E

k −
~
x

E
k ) + C(

~
x

E
k ,

^
θ) −

~
uk, (A3)

with xEΓ
k = Γ

^
x

E

k + (1− Γ)
~
x

E
k , leading to

‖∆uk‖ ≤ Bcx‖∆xE
k ‖+ ε, (A4)

for ∆xE
k =

^
x

E

k −
~
x

E
k . But ∆xE

k =
^
x

E

k −
~
x

E
k = [

(
^
xk −

~
xk

)T
0T 0T]

T

resulting in ‖∆xE
k ‖ = ‖∆xk‖ which

transforms (A4) into
‖∆uk‖ ≤ Bcx‖∆xk‖+ ε. (A5)

Next, by the mean value theorem, there is a 0 < Γ < 1 ensuring that

∆xk =
^
xk −

~
xk = (sx)

−1(
^
yk) − (sx)

−1(
~
yk) =

∂(sx)
−1(yΓ

k )

∂yk
(

^
yk −

~
yk), yΓ

k = Γ
^
yk + (1− Γ)

~
yk.. (A6)

It then follows that
‖∆xk‖ ≤ Bsy‖∆yk‖. (A7)

Using (A5) and (A7) in (A2) it results

‖∆yk‖ ≤ BsxBsy‖∆yk‖+ Bsu(Bcx‖∆xk−1‖+ ε) ≤ BsxBsy‖∆yk‖+ BsuBcxBsy‖∆yk−1‖+ Bsuε, (A8)

which is equivalent to

‖∆yk‖ ≤
BsuBcxBsy

1− BsxBsy︸      ︷︷      ︸
B1

‖∆yk−1‖+
Bsu

1− BsxBsy︸      ︷︷      ︸
B2

ε. (A9)

One can write that

JN
MR(

^
θ) =

N∑
k=1

∥∥∥∆yk
∥∥∥2
≤

B2

N∑
k=1

k−1∑
j=0

B j
1


2

ε2 = Bε2. (A10)

which is the conclusion (10), and the proof of Theorem 1 is completed.

Appendix B

Proof of Theorem 3.
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)
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Define the Lyapunov function

Lk−1 =
1
αc

tr
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(tr{.} meaning the matrix trace operator) leading to the first order differences in L1 and L2
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Using estimation error dynamics (32), ∆L1, ∆L2 are refined further. Let
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One can show that the coefficient of (ζe
k−1) in the first term, is a function of γ, i.e., f̃ (γ) = 1 +

2αc(γ− 1) + 2αcϕc(γ− 1)2, which will have two real roots for αc > 2ϕc. Let these roots be γ1 < γ2. By
ensuring γ1 < 0,γ2 > 1 then for any γ such that γ1 < 0 < γ ≤ 1 < γ2, it means that f̃ (γ) < 0. A sufficient
condition to ensure f̃ (γ) < 0 for all 0 < γ ≤ 1, is to selectαc > max

{
2ϕc, 4ϕ2

c − 2ϕc + 1
}
= 4ϕ2

c − 2ϕc + 1
for all ϕc > 1.

Note further that the term E3 in (A13) is positive. Let ∆L2 be further expressed as
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(A14)

Eventually,

∆L = ∆L1 + ∆L2 = [1 + 2αc(γ− 1) + 2αcϕc(γ− 1)2]
(
ζk−1

c

)2
− E2 + E3 + E4, (A15)
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can be shown negative if

[1 + 2αc(γ− 1) + 2αcϕc(γ− 1)2]
(
ζk−1

c

)2
+ E3 + E4 < 0 (A16)

holds, where, considering the first term as negative for αc > 4ϕ2
c − 2ϕc + 1 while E3 > 0, E4 > 0, it

follows that it suffices to have(
ζk−1

c

)2
>

E3 + E4

|1 + 2αc(γ− 1) + 2αcϕc(γ− 1)2
|

(A17)

in order to make ∆L negative definite. Then by Lyapunov extension theorem [59], the AAC learning is
stable and the NN estimation errors are uniformly ultimately bounded, concluding the proof.
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