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Abstract: Augmented reality (AR) is an emerging technology that allows users to interact with
simulated environments, including those emulating scenes in the real world. Most current AR
technologies involve the placement of virtual objects within these scenes. However, difficulties in
modeling real-world objects greatly limit the scope of the simulation, and thus the depth of the user
experience. In this study, we developed a process by which to realize virtual environments that
are based entirely on scenes in the real world. In modeling the real world, the proposed scheme
divides scenes into discrete objects, which are then replaced with virtual objects. This enables users
to interact in and with virtual environments without limitations. An RGB-D camera is used in
conjunction with simultaneous localization and mapping (SLAM) to obtain the movement trajectory
of the user and derive information related to the real environment. In modeling the environment,
graph-based segmentation is used to segment point clouds and perform object segmentation to enable
the subsequent replacement of objects with equivalent virtual entities. Superquadrics are used to
derive shape parameters and location information from the segmentation results in order to ensure
that the scale of the virtual objects matches the original objects in the real world. Only after the objects
have been replaced with their virtual counterparts in the real environment converted into a virtual
scene. Experiments involving the emulation of real-world locations demonstrated the feasibility of
the proposed rendering scheme. A rock-climbing application scenario is finally presented to illustrate
the potential use of the proposed system in AR applications.

Keywords: augmented reality; simultaneous localization and mapping; point cloud segmentation;
shape fitting; object replacement

1. Introduction

Two technologies are currently used to create virtual environments or connect cyberspace with the
real world: virtual reality (VR) and augmented reality (AR). VR users wear a head-mounted display
that creates the illusion that they are in a virtual environment [1]. This approach generally requires
positioning devices to locate the user within the environments (real and simulated). VR technologies
allow users to move within the confines of the space defined by the positioning scheme. However,
the need to wear closed head-mounted displays makes it nearly impossible to obtain information from
the outside world. In other words, all objects within a user’s range of movement must be removed to
avoid collisions.

AR [2] combines virtual objects within a scene of the real world, thereby removing the primary
limitation of VR and eliminating the need to simulate every entity within the scene. This has led to the
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development of numerous AR applications, such as navigation systems for the blind [3], devices to
assist in component assembly [4], and methods to facilitate surgical procedures [5]. The fact that current
AR technologies simply place a number of virtual objects within a real environment greatly limits the
depth of the simulation. In this study, we developed a scheme by which to replace all of the objects
in a real-world environment with equivalent virtual entities, i.e., creating an AR environment based
entirely on scenes from the real world. This is meant to allow users to experience virtual environments
without being limited by the real-world environment in which their bodies reside.

As shown in Figure 1, the proposed system comprises three parts: (1) mapping, (2) point cloud
segmentation, and (3) shape fitting. Mapping uses the differences between two images captured by
a moving camera to characterize the movement relationship and establish 3D environmental point
clouds. Point cloud segmentation uses environmental information to characterize the relationship
between points and segment the environment into independent objects during the mapping process.
Shape fitting involves identifying the geometric features of segmented objects and using geometric
similarities as the basis for the replacement of virtual objects in our system.
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Figure 1. Flow chart of the proposed system. (a) Mapping, (b) point cloud segmentation, (c) shape fitting.
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We developed an object replacement scheme that allows users to segment scenes and perform
environment modeling even as the cameras are moving. This scheme also makes it possible to obtain
shape information of segmented objects. The segmentation and shape fitting results can then be used
to construct virtual objects to replace (within the virtual world) actual objects encountered (within
the real world). Our ultimate objective was to eliminate limitations imposed by the real environment,
which could otherwise limit the ability of the user to experience the virtual environment and enable
the application of AR technology to a diversity of applications. The contributions of this study are
as follows:

1. We developed a comprehensive rendering system combining mapping, point cloud segmentation,
and shape fitting.

2. In point cloud segmentation, local loop closure optimization is used to reduce local errors,
and global loop closure eliminates errors from the positions pertaining to the origin and
destination, without affecting the segmented map.

3. Prior to point cloud segmentation, supervoxel generation and plane detection are used for
preprocessing methods aimed at reducing the number of segments and overall computation time.

The remainder of this paper is organized as follows. Section 2 reviews the work relevant to the
current study. Section 3 introduces the proposed mapping scheme. Section 4 outlines point cloud
segmentation. Section 5 describes our approach to shape fitting using the superquadric method.
Section 6 describes the replacement of actual objects with their virtual counterparts in a real-world
scene. Conclusions are drawn at the end of the paper.

2. Related Work

The proposed system uses simultaneous localization and mapping (SLAM) [6–19] to generate
point cloud information of the real environment for mapping. In [6], an extended Kalman filter (EKF)
method was used in conjunction with a laser rangefinder and SLAM algorithm for use by a robot
equipped with a monocular camera. In [7–9], multi-threading SLAM methods were used to divide
tracking and mapping into two independent threads, while bundle adjustment (BA) was used to refine
the accuracy of camera positions. In [10], Oriented Fast and Rotated BRIEF (ORB) feature detection
was combined with additional threads for loop closure. In [11,12], dense point clouds were used
for tracking and mapping. That scheme is referred to as a direct SLAM algorithm. In [13], a direct
method was combined with a non-direct method (feature-based method) to enhance computation
speeds. The above studies focused on obtaining camera poses and improving SLAM computation
speeds. Other studies [14–19] investigated surface reconstruction from point clouds. Nevertheless,
the aforementioned SLAM algorithms focused on mapping, the applications of which are limited.
In this study, we sought to move beyond mere modeling of real environments. Our objective was to
perform object segmentation in order to replace real-world entities with virtual replicas.

Researchers dealing with object segmentation have applied object recognition to mapping results
to segment scenes [20–22]. Computer-aided design (CAD) models can be used as an alternative to
object recognition [22]. However, the a priori completion of models (via training) is not conducive to
the segmentation of unknown objects. Methods that require the a priori establishment of datasets are
also greatly limited in terms of applicability. Other segmentation methods, such as region growing
ones [23,24] are highly efficient. However, they require that users define the locations of seed points
and tend to be susceptible to noise interference. The Hough transform [25] is highly robust against
noise. However, it imposes a heavy computational burden. Thus, it is really only suitable for the
segmentation of basic shapes, such as cylinders. Graph-based segmentation [26,27] does not require
the definition of seed points and is not limited in terms of object shape. Therefore, training is not
required. However, all of the above-mentioned methods are applicable only to single frames or
segmentation results pertaining to an environment that has already been modeled. These methods
have not been applied to the segmentation of objects in multiple consecutive frames. The massive
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volume of information in real environments imposes a heavy computational burden, and segmentation
cannot commence until the environment has been modeled entirely. In this study, we developed a
segmentation process applicable to environments with multiple consecutive frames.

Following the completion of object segmentation, the physical meaning of the information (e.g.,
shape and dimensions) must be defined to serve as the basis for virtual objects subsequently inserted
into the scene. In this study, we employed shape fitting to derive the shapes, dimensions, positions,
and directions of segmentation point groups in order to create virtual objects that are representative of
the real-world entities on which they were modeled. In [28,29], random sample consensus (RANSAC)
and mean shift methods were used to identify objects and poses by group. However, these methods
depend heavily on information from two-dimensional (2D) images and require off-line training.
In [30,31], superquadrics were used to obtain shape information to avoid the need for off-line training
by deriving shape information from three-dimensional (3D) information. In this study, we also adopted
superquadrics to derive the shape of object point groups.

3. Mapping

In this study, we used a standard RGB-D camera (Microsoft Kinect) to obtain color images with
depth information. In the mapping step, the color and depth images underwent preprocessing to derive
features and feature descriptors, identify features similar to those in the previous frame, and then
use said features to estimate the pose transformation from the previous image into the current image.
Finally, loop closure was used to eliminate the degree of reprojection error to refine the camera pose.
Figure 2 presents a flow chart of this process. The symbols used in the following rendering process can
be found in the appendix Table as a reference.

3.1. Image Preprocessing

Principal component analysis (PCA) [32] was applied to 2D images to remove noise and decrease
dimensionality as well as the number of features.

Given a 2D input image (640 × 480 pixels), we assumed that there were n = s × s patches from
which to obtain m pieces of sample:

{x1, x2, . . . , xm} ∈ Rn (1)

For each patch, we first calculated the mean µ:

µ =
1
m

m∑
j=1

xj (2)

where xj denoted the jth piece of sample. To obtain the eigenvectors, we calculated the covariance
matrix Σ:

Σ =
1
m

m∑
i=1

(xj − µ)(xj − µ)
T (3)

After obtaining the eigenvalues and eigenvectors, we selected the top k eigenvectors as the basis for
the construction of a low-dimensional space. The original data was mapped into the low-dimensional
space, thereby completing dimension reduction.

For 3D images, we used the intrinsic parameters of the camera to obtain 3D point cloud coordinates
of the depth values, as follows:
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where [u, v]T were the coordinates of the image plane and also the perspective projection of points
P = [X c, Yc, Zc]

T in a 3D space on the image plane, K was the intrinsic parameter matrix of the camera,
and f represented the focal length of the camera.

The relationship between the world coordinate system and camera coordinate system can be
expressed using the extrinsic parameters of the camera, as shown in Equation (5), using rotation matrix
R and translation matrix t. We generally assumed that the camera coordinate system applied to the
first frame is the world coordinate system.
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Figure 2. Flow-chart showing proposed mapping process.

3.2. Feature Extraction and Matching

We applied the speeded-up robust features (SURF) method [33] to each new frame to identify
the features and feature descriptors in the current frame as well as the corresponding features in
the previous frame. This information was then used to derive changes in posture that occur as the
user moves.

Similar objects in an environment can lead to false matches, which must be removed. To this
end, we used the RANSAC algorithm to obtain optimal feature matching results [34]. If the distance
between two matched points exceeded δdepth, then we deemed the two points as a false match. If the
above condition was met, then the number of points matching the inliers must have exceeded a given
threshold value in order to estimate the change in camera posture between the two frames.
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3.3. Pose Optimization

Calculation errors and measurement errors from depth sensors can lead to the gradual
accumulation of errors as the user moves, eventually resulting in environment modeling errors.
Thus, we adopted loop closure [35] to enhance system stability by adjusting the camera postures and
optimizing the movement trajectories. Suppose that there are n 3D points and m images in a given
space. Let the intrinsic and extrinsic camera parameters of image j be vector aj, and 3D point i be
vector bi; the point i seen in image j is xij, Q(aj, bi) denotes the projection point of object point bi under
camera aj. Thus, reprojection error E can be defined as follows:

E =
n∑

i=1

m∑
j=1

∣∣∣∣Q(aj, bi) − xij

∣∣∣∣2 (6)

We then solved the optimal intrinsic and extrinsic camera parameters aj and the 3D feature coordinate
bi and minimized E in posture optimization as a non-linear least squares problem.

We developed a scheme to enable loop closure in a large-scale environment, while taking into
account continuity in the subsequent segmentation of objects. We first established two chunks of
data in which were stored the optimization parameters required for local loop closure and global
loop closure.

The chunk for local loop closure stores n pieces of image data. The first-in-first-out strategy was
used to obtain the new frame to ensure that the oldest frame is extracted. The information obtained
from the chunk was used in subsequent processing, such as image segmentation, and was not altered
after extraction. This process is illustrated in Figure 3.
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The global loop closure chunk stores information from the first few images for use in optimizing
the entire environment, i.e., the final step in environment modeling.

4. Point Cloud Segmentation

The point clouds obtained during mapping were insufficient to differentiate between different
objects. Thus, the point clouds must have been segmented to facilitate subsequent processing. Figure 4
presents a flow chart showing the process of point cloud segmentation. The original point clouds were
preprocessed prior to segmentation in order to reduce the amount of data required for segmentation.
This involved the supervoxel generation and plane detection, as shown in Figure 4.
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4.1. Supervoxel Generation

We generated supervoxels to reduce the number of point clouds and increase computation speed
without losing adjacency relations between points. Supervoxel generation is based on the concept of
voxel cloud connectivity segmentation (VCCS) [36], which uses color, the distance between points,
and fast point feature histograms (FPFH) to divide voxels into groups. To enhance overall calculation
efficiency, only the distance between points and the normal direction were used to generate supervoxels.

4.2. Plane Detection

Following the completion of supervoxelization, the system began segmentation of the scene.
The scene was first divided into two parts: planar and non-planar point clouds. The purpose of
this was to remove planes and thereby increase the efficiency of object segmentation. Furthermore,
the planes were considered complete point groups that did not require further segmentation. In this
study, planes were identified using the RANSAC method [34], in which the plane equation of three
random points was calculated, and then other points were tested to see whether they belonged to this
plane. When a set number of points did belong to a particular plane, they were considered a plane
unto themselves. Plane detection results are shown in Figure 5.
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Figure 5. Plane detection results. (a) Original image, (b) obtained planes.

4.3. Graph-Based Segmentation

In this study, we used the methods outlined in [28,29] to segment objects. This approach involves
the use of graphs to construct models, wherein the vertices in a graph are used as 3D points. The edges
in graphs represent adjacency relations between points. Therefore, we drew edges between the
point in question and adjacent points. The edge weights indicated the degree of geometric similarity
between points.

4.3.1. Graph Construction

As shown in Figure 6, there are four types of adjacency relationship between points: stair-like,
convex, concave, and invalid. In real scenes, stair-like adjacency is common between objects located at
various distances from the viewer, such as two books stacked together. Convex adjacency is commonly
seen in object surfaces, such as the corner of a box or the surface of a cup. Concave adjacency is
typically found where two objects intersect, such as between the surface of a table and an object on the
table. Invalid adjacency generally only occurs when two objects of different height are placed together.
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Suppose there are two supervoxels, vi and vj. The centers of the supervoxels are pi and pj, and the
normal directions of the two points are ni and nj. We determined whether the adjacency relation
between the points was convex or concave as follows:

Convex(vi, v j) =

{
true if(n j − ni)·(p j − pi) > 0
false otherwise

(7)

Given angles αi and αj, we denoted the adjacency relation between the points as stair-like when
the two angles were nearly parallel and below the threshold value θthresh, as follows:

Step(vi, v j) =

{
true if(αi − θthresh)·(α j − θthresh) > 0
false otherwise

(8)

Using Equations (7) and (8), we considered the geometric relationships of most connecting edges.
However, the real environment is extremely complex. Therefore, we must also take the rarer invalid
adjacency into account. Using the external product of the normal directions s = (ni × nj) and the vector
of the two points d = (pj − pi), we defined angle θij as

θi j = min(∠(d, s), ∠(d,−s)) (9)

where ∠(:, :) represented the angle between the two vectors. If θij was less than the preset threshold
value, then the two points were deemed to belong to different objects. The threshold value determined
the weight value between two points.

4.3.2. Graph Construction

Once the setting of weights between points was completed, segmentation could commence.
We employed the graph-based segmentation method using adaptive thresholds to determine the
degree of similarity between two neighboring points. We first regarded points Vi of a supervoxel as a
single group Si. The image segmentation algorithm is outlined in the following:

Step 1. Calculate the degree of similarity between each supervoxel centroid and its neighboring
centroids, and obtain a graph with n points and m edges;

Step 2. Arrange similarity e of the edges in ascending order to obtain E = (e1, . . . , em), where E is
a set of similarity values e1, . . . , em;

Step 3. Apply Step 4 to edge q, q = 1, . . . , m;
Step 4. Perform comprehensive judgment of eq. Suppose that there are two connected vertices.

If they do not belong to the same component, then the maximum degree of internal similarity between
the two, τ, is calculated as follows:

τ = max(Ii +
δ

|Si|
, I j +

δ∣∣∣S j
∣∣∣ ) (10)

where Ii and Ij denoted the internal difference of a component, δ indicated the threshold value, and |S|

represented the number of points within point group S.
Ifωi j, (i.e., the degree of similarity between the two) exceeds τ, then the two groups were combined

and updated as follows:
Sk = Si ∪ S j

Ik = ωi j +
δ
|Sk|

(11)

4.3.3. Segmentation Post-Processing

The process outlined in the previous section was used to complete the segmentation of the
point groups currently used as inputs. The proposed system performed mapping and segmentation
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simultaneously, rather than waiting for the user to finish an action before initiating segmentation.
Thus, it was necessary to integrate the segmentation results that overlapped previous frames or were
from the same object. Figure 7 presents the results obtained from two frames following point cloud
segmentation and integration after supervoxel generation and plane removal.
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In Figure 7, we can see that if the overlapping parts of two frames contained different groups,
and the distance and normal angle were less than the threshold values, then the two groups were
associated with the same object. This completed the point cloud segmentation of multiple frames
during motion.

When segmentation and integration were applied to a set number of frames, the system began
shape fitting based on the segmentation results for the range in question. However, before initiating
shape fitting, it was necessary to conduct a final check of the segmentation results. In previous steps,
large planes had already been removed via plane detection. However, smaller planes could still
result in erroneous judgments due to the fact that the number of planes failed to reach the threshold
value. The segmentation results may have contained fragmented point groups or planes resulting
from measurement errors imposed by depth sensors and/or the creation of rugged shapes from planes
distal to the depth sensors. We sought to overcome this problem by conducting a final correction
and confirmation step, in which point groups that were too small, flat, or slim, were integrated with
surrounding point groups or discarded.

5. Shape Fitting

Even after obtaining the results of point cloud segmentation for a given range, the point groups
themselves still had no physical meaning. Thus, we must have identified the shapes represented by
the point groups and then inserted objects with a similar form. In this study, we adopted the method
described in [31] in which superquadrics are used to obtain the shape of unknown objects.
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5.1. Inside-Outside Function

Superquadrics are a set of geometric shapes. In a basic superquadric, the center is assumed to be
the origin, the parametric expression of which is written as follows:

x
y
z

 =


a1 cosε1 η cosε2 ω
a2 cosε1 η sinε2 ω

a3 sinε1 η

, −π2 ≤ η ≤ π
2

−π ≤ ω < π
(12)

where x, y, and z are the coordinates of a point on the superquadric, a1, a2, and a3 are the dimensions of
the superquadric on the various axes, and ε1 and ε2 represent the shape of the superquadric.

Using the above equation, we could derive the inside-outside function F, as shown in Equation
(13). This equation could be used to determine whether a given point was on the inside or outside of the
superquadric. For instance, F = 1 meant that the point was on the surface of the superquadric, whereas
F < 1 and F > 1 indicated that the point was on the inside and outside of the superquadric, respectively.

F(x, y, z) =

( x
a1

) 2
ε2

+
( y

a2

) 2
ε2


ε2
ε1

+

(
z
a3

) 2
ε1

(13)

However, the above equation relied on the fact that the center of the superquadric lied at the origin
and that the coordinate axes were aligned with the world coordinate axes. In the real world, the world
coordinates of an object are different from the model coordinates, which means that a rotation matrix R
and translation matrix t are required to convert the world coordinates of the point cloud of the real
object into model coordinates. Suppose that world coordinate point X becomes model coordinate point
x after conversion:

X = [R|t]x (14)

x = [R|t]−1X (15)

Thus, expressing the superquadric model of an object in the real world requires at least
11 parameters:

F(xw, yw, zw) = F(xw, yw, zw;
a1, a2, a3, ε1, ε2, f ,θ,ψ, px, py, pz)

(16)

where θ, f ,ψ are the parameters of the rotation matrix, and px, py, pz are the parameters of the translation
matrix. Below, we express these 11 parameters using the following set: Λ = {λ1,λ2, L,λ11}.

We employed the Levenberg–Marquardt (LM) algorithm to obtain the optimal solution for the
parameters of point group shapes by minimizing the value of the equation:

min
Λ

n∑
i=1

(F(xi, yi, zi;λ1, . . . ,λ11) − 1)2 (17)

However, the LM approach produces a local optimal solution and is extremely sensitive to initial
parameter settings. To illustrate the influence of the initial optimization parameters, we randomly
selected the following initial parameters:

a1 = 0.5, a2 = 0.5, a3 = 0.5, ε1 = 1, ε2 = 1,
f = 0

◦

,θ = 0
◦

,ψ = 0
◦

, px = 0, py = 0, pz = 0

This means performing optimization without choosing suitable initial parameter settings. Figure 8
presents the simulation results, in which the white points indicate the model that needs to be estimated
and the red points are the estimation results. Clearly, deviations in the initial parameters and model to
be estimated can result in significant simulation errors.
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5.2. Initial Parameter Settings

To obtain estimates of the initial parameters for the point group, we used PCA to derive the main
direction of the point group and the directions of the other two orthogonal axes, as shown in Figure 9,
where v1, v2, and v3 are the eigenvectors of the point group.
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We first used the eigenvectors to obtain approximate values of the rotation parameters θ, f ,ψ.
The lengths of the projections of the point group on the eigenvectors determined the size parameters of
the point cloud shape: a1, a2, and a3. Information pertaining to the center point of the point group
could be used to derive translation parameters px, py, and pz. As for the shape parameter settings,
we initially made the assumption of an ovoid. Figure 10 presents the simulation results obtained
using these parameter settings. Again, the white points indicate the model that needs to be estimated,
and the red points indicate the simulation results. Clearly, the adoption of suitable initial parameter
settings enhances the accuracy of shape locations and dimensions.
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5.3. Point Group Normalization

Under real-world conditions, the size of the input point group varies. The use of projection
relationships allows us to obtain rough estimates of the shape dimensions. However, dimensions that
are overly large or small can still produce incorrect results. To enhance the stability of the output
results, we first normalized the point groups prior to shape fitting to ensure that all of the dimensions
of the point groups fell within a set range.

In the following, we respectively present coordinate Xi of the point group before and after
normalization: 

x j
y j
z j
1


Normalized

= T


xi
yi
zi
1


Original

(18)

T =


sx 0 0 −sxx
0 sy 0 −syy
0 0 sz −szz
0 0 0 1

 (19)

where (sx, sy, sz) are the scaling ratios, and X =
[

x y z 1
]T

is the center of the point group. Let l
be the mean distance between the point and the center, and s be the scaling rate. Assuming that the
point group contains n points, we derive the following:

sx = sy = sz =
s
l

l = 1
n

n∑
i=1

∥∥∥Xi −X
∥∥∥ (20)

Performing normalization before estimating and solving the initial parameters enables the
generation of a geometric shape that is highly similar to that of the point group.

For AR applications, we can replace the identified objects with similar virtual objects using
pre-established databases, model database, and scene database. The model database records the shape
features of object models, and the scene database stores the index values and probability of the objects
relevant to various scenes. Assume that the scene to be generated is known. The step after acquiring
the size, shape, and position of the object point group is to search the model information from the
database and identify the relevance between the object and the scene for a best-fitted model. The object
replacement procedure can then be finished by importing this fitted model into the real scene (or
virtual scene) and moving the model to the position of object point group with the correct orientation.

6. Experiments and Discussion

We applied mapping, point cloud segmentation, and shape fitting procedures in succession
to a variety of typical bedroom scenes to verify the feasibility of the proposed virtual object
replacement scheme.

6.1. System Description

The cameras commonly used for SLAM can be divided into monocular, multiocular, RGB-D,
and dynamic vision sensors (event cameras). RGB-D cameras such as Kinect are inexpensive and
provide depth information quickly and efficiently. We, therefore, adopted an RGB-D camera as our
main instrument for capturing images. Figure 11 presents the framework of the system proposed in
this study. Kinect for Windows v1 was used to obtain color and depth images, which were then input
into a personal computer equipped with an Intel Core i7-7700 CPU 3.60 GHz processor for program
development and algorithm execution. The results were then output to a display.
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6.2. Verification of the Proposed Rendering System

Figure 12 presents the results of the mapping experiment involving an actual private bedroom.
During the experiment, the user held the camera, while continuously moving throughout the room.
Local loop closure and optimization were performed simultaneously. When the user completed one
circuit around the room, global loop closure was performed to prevent the accumulation of errors.
In the mapping experiments, the data acquisition and reconstruction time were approximately 1~2 s
by using CPU for computation only, and the reconstruction accuracy was within the range of 10 mm.
The results demonstrate that the proposed loop closure strategy (Section 3.3) is highly effective in
modeling an indoor environment for subsequent object segmentation and shape fitting.
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Figure 13a presents the test scene used for point cloud segmentation. As previously mentioned,
the supervoxels and plane detection used in this study reduce the number of point clouds to decrease
computational overhead. As shown in Table 1, we compared the segmentation times resulting from the
various procedures to elucidate the influence of these two steps on computation time. Clearly, the use
of these two steps can significantly reduce (by approximately 60%) the number of point clouds. This
greatly reduces segmentation time and overall computation time, i.e., enhancing the efficiency of point
cloud segmentation.
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Table 1. Comparison of segmentation times.

Original Number of Point Clouds
25023

Test 1 Test 2 Test 3

Supervoxelization No Yes Yes
Time spent N/A 1.674 s 1.674 s

Plane detection Yes No Yes
Time spent 4.997 s N/A 0.64 s

Number of segmentation point clouds 3284 3215 952

Segmentation time 49.674 s 15.178 s 2.207 s

Total time spent 54.671 s 16.852 s 4.521 s

We then conducted an experiment on object segmentation using the simple scene in Figure 13a.
Figure 13b–e illustrate the segmentation process using information derived from a single frame.
Figure 13b presents the 3D image obtained using a Kinect camera. Figure 13e presents the results after
supervoxelization and plane removal. From this, we can clearly see that the proposed method is able to
differentiate between a variety of objects. Note that some of the parts show signs of over-segmentation,
which could be resolved by integrating smaller groups.
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segmented point groups, we could assume that the object was no longer connected to the object in 
the following frame. Otherwise, we kept the point groups and integrated them with the point clouds 
in the next frame. Figure 14 illustrates the point cloud segmentation process applied to multiple 
frames captured in a complex environment. When the number of frames reached the threshold 
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Figure 13. Results of point cloud segmentation using a simple test scene. (a) test scene (2D image),
(b) 3D point clouds obtained using Kinect camera, (c) supervoxelization results, (d) plane removal,
(e) point cloud segmentation.

In the experiment above, the point clouds in each frame were integrated with the previous point
clouds after segmentation was completed. This was because the images captured by the camera
presented a consecutive sequence, which means that most of the objects in one frame were identical
to those in the next frame. This allowed us to treat the overlapping portions or protrusions where
two-point groups intersected as the same object suitable for integration. Furthermore, we could not be
sure about the size of the environment, and computation time increased with the number of frames.
Thus, the system began shape fitting immediately after a threshold number of segmentation frames
had been met. Point groups were also checked at that time. In the event that the check results did not
indicate a plane and the point groups in the current frame are connected to previously segmented point
groups, we could assume that the object was no longer connected to the object in the following frame.
Otherwise, we kept the point groups and integrated them with the point clouds in the next frame.
Figure 14 illustrates the point cloud segmentation process applied to multiple frames captured in a
complex environment. When the number of frames reached the threshold value, the overly fragmented
or flat point clouds on the left side of the red line in Figure 14b were re-integrated, and the results
applied directly to the subsequent shape fitting procedure. The regions on the right side of the red line
were kept to serve as the basis for integration following completion of segmentation in the next image.Appl. Sci. 2019, 9, 1797 17 of 22 
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We then performed a shape fitting test using the simple scene, the results of which are presented
in Figure 15. The results of modeling the scene using multiple frames and object segmentation are
presented in Figure 15b. Application of the algorithm in Section 5 to the segmentation results for shape
fitting generated the result in Figure 15c. If we place the required images on the flat point clouds and
use related virtual objects in place of the shape fitting results, then elements in the real environment can
be replaced with virtual ones. Suppose that we want to create a scene from the African plains. The final
result might look like that shown in Figure 15d. The original objects can be replaced with objects
presenting a similar geometric shape, such as an elephant, a tiger, a giraffe, a monkey, and a zebra.
To verify the versatility of the presented methods, we conducted an additional experiment involving a
complex scene in which the camera was moved from right to left, the results of which are presented in
Figure 16. The proposed scheme has a number of advantages over existing object segmentation results
(i.e., using machine-learning or graph-based methods). As shown in Figure 16a–d, our system is able
to perform object segmentation during the mapping process (i.e., online object segmentation) and does
not require a priori training to deal with objects in actual scenes. The shape-fitting results in Figure 16e
demonstrate the effectiveness of the proposed methods in AR applications.
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segmentation using multiple frames (top view), (c) shape fitting and plane point cloud (top view with
green dots indicating the plane), (d) virtual scene.
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Figure 16. Mapping and the segmentation of objects in a complex scene by moving the camera from
right to left. (a) Initial camera view, (b) intermediate camera view (I), (c) intermediate camera view (II),
(d) final camera view, (e) shape fitting results obtained from the scanned scene.

7. Conclusions

In this study, we developed a comprehensive rendering scheme that includes real-time mapping,
point cloud segmentation, and shape fitting for use in AR. We derived the extrinsic parameters of the
RGB-D camera based on differences between image frames. We then modeled an accurate point cloud
environment using the degree of similarity between points and segmented point clouds. We then
added a threshold value to enable the system to complete point cloud segmentation and integration
on its own, prior to shape fitting. Multi-frame shape fitting was used to obtain the primary shape,
dimensions, and posture of the point groups.

7.1. Implementation Scenario

The proposed scheme could be used to replace real objects with corresponding virtual objects in
game engines or simulation platforms. For example, a natural 3D wall with rocks could be reconstructed
and projected through head-mounted displays to a gym wall to allow climbers to “feel” real physical
environments. This would give the users a more realistic experience and eliminate many of the
limitations on the size of the virtual environment imposed by elements in the environment in which
the user resides.

7.2. Limitations

Currently, the proposed system is suitable only for single-room venues and applicable mainly to
static environments.

7.3. Future Work

In the future, global loop closure information could be established in crucial areas, such as
doorways, to enhance the scope of the system. Furthermore, Dynamic environment detection could be
added in the future to make the mapping process more robust.
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Abbreviation

Symbol Definition
a1, a2, a3 Dimensions of the superquadric on the various axes
aj Intrinsic and extrinsic camera parameters of image j
bi 3D point i
d Vector of two points
E Reprojection error
E A set of similarity values
e Similarity of the edges

F(x,y,z)
Function to determine whether a given point is on the inside or
outside of the superquadric

Ii, Ij Internal difference of a component
K Intrinsic parameter matrix of the camera
k Number of top eigenvectors
l Mean distance between the point and the center
ni, nj Normal directions of two points
P Points in a 3D space on the image plane
pi, pj Centers of the supervoxels
px,py,pz Parameters of the translation matrix
Q(aj,bi) Projection point of object point bi under camera parameters aj
s External product of the normal directions
s Scaling rate
|S| Number of points within point group S
Si A single group
sx,sy,sz Scaling ratios
u,v Coordinates of the image plane
v1,v2,v3 Eigenvectors of the point group
Vi A supervoxel point
vi, vj Supervoxels
x,y,z Coordinates of a point on the superquadric
X Center of the point group
Xc, Yc, Zc Camera coordinate of points
xij Point i seen in image j
xj jth piece of image sample
Xw, Yw, Zw World coordinate of points
αi, αj Angles used to define the type of adjacency between points
δ Threshold value used in image segmentation
δdepth Threshold value used in image matching
ε1, ε2 Shape of the superquadric
η,ω Surface parameters of superquadric
θ,f,ψ Parameters of the rotation matrix
θthresh Threshold value used to determine the type of stair-like adjacency
τ Maximum degree of internal similarity
ωij Degree of similarity between two neighboring points
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