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Abstract: In this study, we propose adaptive locomotion for an autonomous multilegged walking
robot, an image infilling method for terrain classification based on a combination of speeded up
robust features, and binary robust invariant scalable keypoints (SURF-BRISK). The terrain classifier is
based on the bag-of-words (BoW) model and SURF-BRISK, both of which are fast and accurate. The
image infilling method is used for identifying terrain with obstacles and mixed terrain; their features
are magnified to help with recognition of different complex terrains. Local image infilling is used to
improve low accuracy caused by obstacles and super-pixel image infilling is employed for mixed
terrain. A series of experiments including classification of terrain with obstacles and mixed terrain
were conducted and the obtained results show that the proposed method can accurately identify all
terrain types and achieve adaptive locomotion.

Keywords: terrain classification; image infilling method; multilegged robot

1. Introduction

Multilegged robot that origniated from reptile bionics has good walking stability and low energy
consumption in its stationary state. It maintains good stability in complex environments owing to
its redundant limb structure [1]. Compared with a wheeled robot, the multilegged robot can cross
big obstacles and has many degrees of freedom. Its flexibility and adaptability on complex terrain
allow the legged robot to have wide application. Researchers have designed different multilegged
robots, such as mine-sweeping [2], volcano-detecting [3], underwater [4], strawberry-picking [5], and
transfer robots, in addition to other prototypes. The autonomous mobile ability of multilegged robots
is affected by how it perceives its surrounding environment. Multilegged robots mainly work in
unstructured environments, so classifying various terrains, detecting obstacles, and localizing and
recognizing complex terrain have become primary issues in the field.

For multilegged robots, environment perception is mainly related to accurate terrain identification
and obstacle detection. The most normal way is to use image processing methods and classifiers. By
extracting information from terrain images, such as spectra [6], color [7], texture [8,9], scale-invariant
feature transform (SIFT) features [10], speeded up robust features (SURF) [11], and the DAISY
descriptor [11], the terrain can be accurately identified. However, spectral-based methods concentrate
on spatial frequencies of texture distributions and color-based methods have poor robustness and
are easily affected by light and weather conditions. Among them, local features that are invariant in
terms of scale, rotation, brightness, and contrast have been widely used in visual classification. Besides
vision, legged robots are often equipped with other sensors, so information from multiple sensors for
terrain recognition is also available. Kim [12] used the friction coefficient of different terrains to classify
terrains using the Bayes classifier. Ojeda [13] proposed a terrain classification method based on an
integration of information from multiple sensors (gyroscopes, accelerometers, encoders). Larson [14]
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proposed a model based on robot inclination angle obtained from an odometer. Hoepflinger [15] used
current values of joint electricity and force sensor data to recognize terrain categories. Jitpakdee [16]
proposed a neural network model for terrain classification based on robot body acceleration and
angular velocity of the inertial measurement unit (IMU). These kinds of information are quite different
from visual information and so special methods are needed.

Most of the existing methods have good classification accuracy on single-type terrain, but few
are suitable for mixed terrain, which is common in the natural environment. To solve this problem,
Filitchkin [17] used a sliding window technique for heterogeneous terrain images. Liang [18] compiled
an algorithm for complex terrain classification based on multisensor fusion. Ugur [19] proposed
a learning method to predict the environment by consecutive distance- and shape-related feature
extraction. However, most of these methods have poor robustness because they require high-resolution
images. Mixed terrain has different features than single-type terrain and sometimes the edges of the
terrain cannot be recognized clearly, which makes identification of mixed terrain difficult. In order
to enhance the recognition rate of detecting mixed terrain and terrain with obstacles, a systematic
classification method for complex terrain is proposed in this paper. The following aspects were studied:
Terrain information collected by a Kinect 3D vision sensor. Herein, we established a fast and effective
terrain classifier based on speeded up robust features and binary robust invariant scalable key points
(SURF-BRISK) features and support vector machine (SVM). A segmentation method for complex terrain
images based on super-pixels is proposed, which can effectively segment complex terrain images
into single terrain images. An image infilling method for terrain with obstacles and mixed terrain is
also proposed. The local features are magnified to help the recognition of different complex terrains.
Experiments on classifying terrain with obstacles and mixed terrain are conducted. The proposed
system is validated by the multilegged robot.

This paper is organized as follows: In Section 2, the hexapod robot and SURF-BRISK–based image
infilling method are introduced. In Section 3, the experimental results are presented and analyzed.
Section 4 summarizes and concludes the paper.

2. Materials and Methods

2.1. Hexapod Walking Robot: SmartHex

In this paper, a six-legged robot with mammalian leg structure named SmartHex is used [20].
Each leg has three joints: base joint, hip joint, and knee joint. The robot is suitable for outdoor work
due to its low energy consumption and large load characteristics [21]. The robot is controlled by a
backward control based on a σ-Hopf oscillator with decoupled parameters for smooth locomotion [22].
The hardware structure of the robot is shown in Figure 1. BLi, HLi, and KLi (BRi, HRi, and KRi),
respectively, indicate the base joint, hip joint, and knee joint of the left (right) leg. LF, LM, and LH (RF,
RM, and RH), respectively, indicate the front leg, middle leg, and hind leg of the left (right) side. Each
joint consists of a high-reduction-rate gear system and a DC servo motor with an integrated encoder,
which is used to detect the position of the joint angle. In order to identify the environment around
the robot with a high accuracy, Microsoft’s Kinect 3D vision sensor is installed on the robot chassis
to collect terrain information. The Kinect’s red/green/blue (RGB) camera can collect color images
with a resolution of 1920 × 1080 px. A complementary metal-oxide superconductor (CMOS) sensor is
responsible for receiving and transmitting infrared signals. Meanwhile, current detection modules
(CuSLi and CuSRi) are installed to record the energy consumption of each leg for different gaits. The
arrows in Figure 1 indicate the directions of current flow. The robot’s posture is monitored by the
attitude sensor (AS). The data processed by the wireless module mounted on the control panel are
transmitted to the host computer to create instructions [23].
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Figure 1. Architecture of robot: (a) hardware structure; (b) distribution of sensors. BLi, HLi, and KLi 

(BRi, HRi, and KRi), respectively, indicate base joint, hip joint, and knee joint of left (right) leg. LF, 
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Figure 1. Architecture of robot: (a) hardware structure; (b) distribution of sensors. BLi, HLi, and KLi
(BRi, HRi, and KRi), respectively, indicate base joint, hip joint, and knee joint of left (right) leg. LF, LM,
and LH (RF, RM, and RH), respectively, indicate front leg, middle leg, and hind leg of left (right) side.

2.2. Terrain Classification Methodology

In robot navigation, terrain recognition can essentially be supposed as surface texture recognition.
Terrain recognition based on local features is the most popular because of its robustness to illumination
and weather and high recognition rate.

The terrain classification system proposed in this paper is depicted in Figure 2. The Kinect is
installed on top of the robot to collect information on terrain (color, depth, and infrared images) and an
obstacle detection module is established to detect obstacles in the front. If there are no obstacles, the
information will be directly transmitted to the terrain classifier. Otherwise, the module will locate
obstacles and identify their size. Meanwhile, a color image of the terrain is processed by the image
infilling method to decrease the influence of obstacles on terrain identification. After classification,
the confidence scores of each terrain are summarized into a pie chart. The analysis of the pie chart
shows whether the terrain is mixed or not. If the terrain is mixed, the color image would be subjected
to image segmentation and infilling. Then, the processed color image will be classified by the terrain
classifier again, which provides an accurate identification of multiple areas of complex terrain. Finally,
all terrain types can be predicted accurately, thus good performance by the robot is guaranteed. The
function modules are described in detail in the following section.
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2.2.1. Obstacle Detection Module

Detecting and localizing obstacles are important to realize autonomous motion and path planning.
The sensors used for traditional obstacle detection mainly include laser radar sensors, ultrasonic
sensors, infrared sensors, visual equipment, etc. [24]. In this paper, a fast and accurate detection method
based on depth and infrared information is used [25]. The image is segmented by the mean-shift
algorithm and the pixel gradient of the foreground is calculated. After pretreatment of edge detection
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and morphological operation, the depth and infrared information are fused. The characteristics of
depth and infrared images are used for edge detection. Thus, the false rate of detection is reduced
and detection precision is improved. Since depth images cannot be affected by natural sunlight,
the influence of light intensity and shadow on obstacle recognition is effectively eliminated and the
robustness of the algorithm is improved. This method can accurately identify the position and size of
obstacles. In this paper, the results obtained by obstacle detection with this method are used as the
input of the terrain image infilling method.

2.2.2. Terrain Classification Module

An online terrain classification system is needed to collect information on terrain through the
Kinect sensor and then the key points are extracted from a color image of the terrain. Since the terrain
classifier is based on the bag-of-words (BoW) module [26], all extracted features are processed by a
clustering algorithm to ensure that the clusters have high similarity. These cluster centers are the
visual vocabulary. Then, the terrain images are encoded to form the visual dictionary and a visual
vocabulary frequency histogram corresponding to each terrain type. Finally, the information is used
to train the support vector machine (SVM) [27] and an optimal hyperplane of each terrain type is
divided to classify all terrain types. The algorithm can grasp the key samples and eliminate many
redundant samples.

The main structure of the terrain classification system is demonstrated in Figure 3. The system is
mainly divided into two steps: training and testing. In the first step, the information of all terrain types
is collected and stored in memory and the data flow is presented as shown on the right in Figure 3.
Then, local features of images in memory are extracted and extracted features are clustered by the
k-means algorithm to generate a certain number of visual words [28]. Then, terrain images are encoded
using the BoW module to form the visual dictionary and the visual vocabulary frequency histogram
corresponding to each terrain type. Then, the information is used to train the SVM. With the aim of
validating the terrain classification system established in the training part, the testing part is introduced,
shown on the left in Figure 3. The local features from terrain images are extracted in the testing image
set and the visual word dictionary is encoded. The images are converted to the frequency histograms
that are input in the trained SVM to obtain the terrain label. This part is used by the hexapod robot for
terrain recognition. The hexapod robot’s gait transform algorithm is guided by terrain identification.
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In this paper, a dataset was created using six common terrains: grass, asphalt, sand, gravel, tile,
and soil. Each terrain image set contained 50 samples, which were acquired by a Kinect camera. A set
of samples of terrain images with different illuminations and weather conditions is shown in Figure 4.
The K-fold cross-validation was used and K = 5 [29]. All images were randomly partitioned into five
equally sized groups. Each group was chosen as validation data for testing the classifier and other 4
groups for training set.
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A. Point of Interesting Extracted by SURF

In the aspect of terrain image feature extraction, the SURF algorithm is a commonly used local
feature extraction algorithm in image classification. The matching accuracy is high, but the real-time
performance is generally poor. In recent years, many excellent algorithms have been proposed.
BRISK [30], which combines detection of key points of features from accelerated segment test (FAST)
and binary description can enhance the speed of the algorithm, but its classification performance is not
ideal. Since the SURF algorithm with many feature points cannot satisfy real-time detection and the
BRISK algorithm has fast computation speed but a low matching rate, a method for image matching
based on the SURF-BRISK algorithm is proposed. The SURF-BRISK algorithm is established by
combining the advantages of both algorithms. Points of interest are detected using the SURF algorithm,
descriptors are calculated using the BRISK algorithm, and the Hamming distance is used [31] for
similarity measurement, which enables not only high matching rates but also high calculation speed.
The algorithm process is described below. In SURF, the criterion of feature points is the determinant of
a Hessian matrix of pixel luminance. A pixel u(x, y) is given in image I. In this point, the scale σ of the
matrix is defined by:

H(µ, σ) =
[

Lxx(u, σ) Lxy(u, σ)
Lxy(u, σ) Lyy(u, σ)

]
, (1)

where Lxx(u,σ) is the Gaussian second-order differential ∂2g(σ)/∂x2 convolution of image I at point u,
and similarly for Lxy(u,σ) and Lyy(u,σ). In order to facilitate the calculation, the elements of the Hessian
matrix are labeled as Dxx, Dyy, Dxy, and the weight of a square area is set to a fixed value. Hence, the
approximate value of the Hessian matrix determinant Happrox is defined by:

det
(
Happrox

)
= DxxDyy −

(
ωDxy

)2
, (2)
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where the correlation weightω of the filter response is utilized to balance the expression of the Hessian
determinant. In order to preserve the energy conservation of the Gauss kernel and approximate
it, ω is usually set to 0.9. The Hessian matrix is used to calculate the partial derivative, which is
usually obtained by a convolution of pixel light intensity and a certain direction of Gauss kernel partial
derivative. In order to improve the speed of the SURF algorithm, the approximate box filter is used
instead of the Gauss kernel with very little impact on precision. The convolution calculation can be
used to optimize the integral image, which greatly improves the efficiency. It is necessary to use three
filters to calculate Dxx, Dyy, and Dxy for each point. After filtering, a response graph of the image is
obtained. The value of each pixel on the response graph is calculated by the determinant of the original
pixel. The image is filtered with different scales and a series of responses of the same image at different
scales is obtained. The detection method of feature points is if the value of det (Happrox) of a key
point is greater than the value of 26 points in its neighborhood. The number of interest points sampled
by SURF is shown in Figure 4.

B. Descriptors by BRISK

The BRISK descriptor adopts the neighborhood sampling model, which takes the feature points
as the center of the circle. The points on the concentric circles of several radii are selected as the
sampling points. In order to reduce the effect caused by sample image grayscale aliasing, the Gauss
function can be used for filtering. The Gauss function of standard deviation sigma is proportional to
the distance between the points on each concentric circle. Selecting a pair from the point pairs formed
by all sampling points, denoted as (Pi, Pj), the gray values after treatment are I(Pi, σi) and I(Pj,σj),
respectively. Hence, the gradient between two sampling points is

g(Pi, P j) = (P j − Pi) ·
I(P j, σ j) − I(Pi, σi)

‖P j − Pi‖
2 . (3)

Set A is a collection of all pairs of sampling points, S is a set containing all the short-range sampling
pairs, and L is a set containing all the long-distance pairs of sampling points:

A =
{
(Pi, P j) ∈ R2

×R2
∣∣∣i < N ∧ j < i∧ i, j ∈ N

}
, (4)

S =
{
(Pi, P j) ∈ A

∣∣∣‖P j − Pi‖ < δmax
}
⊆ A, (5)

L =
{
(Pi, P j) ∈ A

∣∣∣‖P j − Pi‖ < δmin

}
⊆ A. (6)

The general distance thresholds δmax = 9.75 t, δmin = 13.67 t, and t are characteristic point scales. The
main direction for each feature point is specified by the gradient direction distribution characteristics
of neighboring pixels of the feature point. In general, the BRISK algorithm can be used to solve for the
direction g of the overall pattern according to the gradient between two sampling points:

g =

(
gx

gy

)
=

1
L
·

∑
(Pi,P j)∈L

g(Pi, P j). (7)

In order to achieve rotation and scale invariance, the sampling pattern is sampled again after
the rotation angle θ = arctan2 (gy, gx). The binary descriptor b can be constructed by performing
Equation (8) on all pairs of points in set S by short-range sampling points.

b =

{
1
0

I(Pθj , σ j) > I(Pθi , σi)

otherwise
∀(Pθi , Pθj ) ∈ S (8)
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C. Local Feature Matching

After the feature descriptors extracted by SURF-BRISK are 512-bit binary bit strings consisting of
0 and 1, the Hamming distance is used to measure similarity. Assuming that there are two descriptors
of S1 and S2, the Hamming distance is determined as

Dkd(S1, S2) =
∑512

i=1
(xi ⊗ yi), (9)

where S1 = x1x1 . . . x512, S2 = y1y2 . . . y512, x, y and the value of x and y is 0 or 1. The smaller the value
of Dkd, the higher the matching rate, and vice versa. Therefore, the matching point pairs are obtained
using the nearest-neighbor Hamming distance in the matching process.

Here, three descriptors, SURF, BRISK, and SURF-BRISK, are compared. Two tile images have
been chosen for matching tests to compare the real-time and matching rate of these descriptors, as
shown in Table 1 and Figure 5. Obviously, the SURF algorithm has the most matching points, the
BRISK algorithm has the fastest matching, and the SURF-BRISK algorithm combines the advantages of
both. The algorithm is faster than SURF and gets more matching points than BRISK.

Table 1. Detection times of different descriptors. Brisk: binary robust invariant scalable keypoints.

Descriptor Type Detection Time (ms) Matching Time (ms)

SURF 852 1251
BRISK 127 98

SURF-BRISK 765 142
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D. BoW Model and SVM

Li et al. [32] first introduced the image method based on the BoW model. They believed that
an image can be analogized to a document and the “words” of an image can be defined as feature
vectors. The basic BoW model regards an image as a set of feature vectors and statistics of occurrence
frequency of feature vectors, which are used for terrain classification. The BoW model can be set up
by a clustering algorithm that is used to obtain the visual dictionary and the steps are as follows.
Feature extraction: m images (m ≥ 50) are collected for each terrain type and each image is extracted by
SURF-BRISK to obtain n(i) feature vectors. All terrain images form a total sum (n(i)) of feature vectors
(words). Generation of dictionary/codebook: The feature vectors obtained from the previous step are
clustered (here, the k-means clustering method is used [33]) to get k clustering centers in order to build
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the codebook. A histogram is generated according to the codebook. The nearest neighbor calculation
of each word of the picture is used to find the corresponding words in the codebook in order to form
the BoW model.

SVM is an excellent learning algorithm developed on the basis of statistics theory and is widely used
in many fields, such as image classification, handwriting recognition, and bioinformatics. The input
vector is mapped to a high-dimensional feature space by nonlinear mapping (a kernel function) and an
optimal hyperplane is constructed in this space. Compared with the artificial neural network, which
suffers from an overfitting problem, the support vector machine has better generalization ability for
unknown samples [34]. SVM can be divided into three groups: linear separable, nonlinear separable,
and kernel function mapping. Linear classifier performance is limited to linear problems, because in
nonlinear problems constraints of excessive relaxation can lead to a large number of error samples. At
this point, it can be transformed into a linear problem in a high-dimensional space using nonlinear
transformation in order to obtain an optimal classification hyperplane.

2.3. Complex Terrain Recognition

In the field, terrain is usually complex. The accuracy of terrain with obstacles and mixed terrain,
which is composed of two or more terrain types, is greatly reduced if traditional identification methods
are used. This scenario affects the normal operation of the robot. Therefore, a systematic method based
on image segmentation and infilling for recognition of terrain with obstacles and mixed terrain is
introduced in this section.

2.3.1. Image Local Infilling for Terrain with Obstacles

Information on terrain with obstacles collected by Kinect is used as input data for the terrain
classifier. It was found that large-volume obstacles cause low accuracy of final identification, because
acquired features of terrain information are severely affected, since SURF-BRISK and SURF have the
same points of interest. The distributions of points in different terrains with and without obstacles are
shown in Figure 6. The obstacles greatly influence local feature extraction. In order to improve the
accuracy of recognizing terrain with obstacles, a method of image local infilling (ILI) is presented. The
errors for terrain with obstacles in the first round of recognition are shown in Table 2.
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Figure 6. Distributions of feature points in terrain with and without obstacles.

The obstacle area of pixel matrix I(m, n) is obtained using the obstacle detection method, as are
the central pixel coordinates (u, v). Here, three infilling examples are illustrated for comparison. The
obstacle area with a pixel value of I = 255 is presented as a white area in Figure 7b. The obstacle area
with a pixel value of I = 0 is presented as a black area in Figure 7c. The obstacle area spliced by the
no-obstacle sides of the background terrain image is presented in Figure 7d. Due to the use of both left
and right sides of the terrain image for infilling, it only needs to compare the abscissa u of the obstacle
area center and the abscissa uc of the color image center. At the same time, according to the dimensions
of I(m, n), the size and orientation of obstacles are determined. If the width of the obstacle area, i.e., the
number n of matrix I(m, n), is too large, the image needs to be processed by multiple infilling. The
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classification and statistical results of the terrain classifier after ILI are also shown in Table 2. The first
two methods do not improve the accuracy of image recognition, since white and black features do not
contribute to the main feature points. However, the background terrain–based image infilling shows
satisfactory results.

Table 2. Classification results of first round and after image local infilling (ILI).

Images with
Obstacle
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2.3.2. Image Infilling for Mixed Terrain

After the first round of classification, both the terrain label and confidence score of the classified
image are obtained. In SVM, the confidence score represents the geometric interval between the
classified image and the hyperplane of each terrain type. Therefore, the confidence score needs to
be normalized before conducting an analysis. The confidence score is adjusted to the interval [0, 1]
to facilitate the comparison. Set Sd contains the confidence scores of all terrain types, and di is the
confidence of the test image that corresponds to i terrain class before normalization. Set SD contains
confidence scores after normalization and Di is normalized confidence. Therefore, after normalization
we get

SD = {Di|Di = |di|/
6∑

i=1

|di|, i = 1, 2, . . . , 6}. (10)

Moreover, a pie chart of confidence scores after normalization can clearly demonstrate the
contribution of each terrain type. A pie chart of confidence scores after the first round of classification
is shown in Figure 8. In the images of single terrain, the weight of single terrain is much higher
than the weights of other terrains. A series of experiments demonstrated that if the highest terrain
weight is larger than 30% and more than 10% higher than the second highest weight, the terrain can be
considered as a single terrain. Otherwise, it is mixed terrain. For mixed terrain, it is difficult to identify
the category from weights in the pie chart. In addition, it is important to note that mixed terrain
usually appears at the intersection of different terrains. The traditional methods are not practical for
images that contain two or more terrain types, because only one label will be notified. Obviously, some
approaches can identify the boundaries of different terrains in an image and then make the decision.
Actually, it is difficult to accurately determine terrain boundaries and the algorithm needs to do many
computations, which causes poor real-time performance that affects the robot’s outdoor walking. In
the process of the robot moving in a forward direction, the terrain type is gradually changing. Different
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types of terrain appear in up and down form in the images. Taking this into consideration, a new
method for identification of mixed terrain based on super-pixel image infilling (SPI) is presented.
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In the field of image segmentation, super-pixel has become a fast-developing image preprocessing
technology. Ren et al. [35] first proposed the concept of super-pixels, which quickly divide images into
a number of subareas that have image semantics. Compared with the traditional processing method,
the extraction and expression of super-pixels are more conducive to collecting local characteristics of
the image information. It can greatly reduce the calculation and subsequent processing complexity.
Existing segmentation algorithms generally restrict the number of pixels, the compactness, the quality
of segmentation, and the practicability of algorithms. Song et al. [36] evaluated the existing super-pixel
segmentation algorithms. Their results indicate that the simple linear iterative cluster (SLIC) super-pixel
segmentation algorithm has good performance in terms of the controllability of pixel numbers and
the close degree of controllability. Aiming at segmentation, the SLIC algorithm is used for mixed
terrain regions. The most super-pixels are selected as the target area in a multi-super-pixel area and
the boundary pixels of the pixel coordinates of curve fitting are extracted as the terrain boundary
segmentation of a complex terrain image. The procedure and results are shown in Figure 9.
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Figure 9. Segmentation result of mixed terrain images: (a) simple linear iterative cluster (SLIC)
algorithm; (b) maximum super-pixel extraction; (c) filtering out smaller areas; (d) finding the boundary
and fitting the line; (e) results.
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Classification results after image segmentation are shown in Table 3. The output labels do
not match actual terrain types. For this mismatch, the number of points of interest extracted from
segmented images is shown in Figure 10. Compared with the original terrain image in Figure 4,
the number of feature points of segmented images is still related to terrain type but much smaller.
Obviously, it is impossible to realize an accurate prediction using the segmentation image, because
the feature points are inadequate. Thus, the segmented images are spliced together to enhance the
terrain features. Segmented color images would have only some of the pixels of the original color
image collected by the Kinect camera and the blank pixels would be infilled by duplication of the
segmented image. In the test, the rotation–inversion operation is used for image infilling. The results
are shown in Figure 11.

Table 3. Image infilling and confidence scores.

Images
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Figure 10. Number of feature points in segmented images. 
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3. Results 

3.1. Complex Terrain 

In the experiments, the hexapod robot walked on six types of terrain without obstacles. Terrain 

images were collected by a Kinect camera installed on top of the robot. The inclination angle of the 

Kinect sensor is 40°. Images of terrain with obstacles were collected at different times and in 
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Figure 11. Number of feature points in spliced images.

The number of feature points in Figures 10 and 11 shows that the proposed method can enhance
local features of segmented images. The classification results of a spliced image using this approach
are shown in Table 3. Using the image infilling approach (rotation–inversion), the error results of
the first-round classification can be corrected. It can be seen that confidence scores of the correct
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terrain type increased after image infilling. On the contrary, confidence scores of wrong terrain types
decreased. That means the proposed method can effectively magnify image features for the classifier.

3. Results

3.1. Complex Terrain

In the experiments, the hexapod robot walked on six types of terrain without obstacles. Terrain
images were collected by a Kinect camera installed on top of the robot. The inclination angle of the
Kinect sensor is 40◦. Images of terrain with obstacles were collected at different times and in different
weather and light conditions. Obstacles mainly included cartons, trash, trees, and so on. There were 50
images collected for each terrain type. The collected images of terrain with obstacles were processed
by the ILI method. Then, all images before and after ILI processing were classified by the presented
terrain classifier. The recognition results for the two sets are shown in Figure 12a. The recognition rate
of terrain with obstacles before ILI processing was relatively low. Since obstacles seriously affect local
features of the terrain, error exists in most cases and average recognition accuracy is less than 75%. On
the contrary, after the image infilling process, recognition accuracy was improved to above 85%.
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Usually, mixed terrain appears at the intersection of different terrains. All mixed terrain images
were collected at that moment. Specifically, 50 images were collected and processed by the SPI method
for terrain recognition. The result is shown in Figure 12b. The classifier shows the labels of two terrain
types for different subareas in the image. The average recognition accuracy reached 85% and the results
show that the proposed method is effective in recognizing mixed terrain. At the same time, compared
with a single label classifier, the SPI method has more practical significance for gait transition of the
hexapod robot.

3.2. Robot Platform Application

When the robot walks on different terrains, different gaits have different effects on the robot’s
stability, performance, and energy consumption. The experiment showed that the gait can be changed
based on the output of the terrain classifier. In the experiment, the hexapod robot walked for 30 s
across three terrain types: asphalt, soil, and grass. The sampling period of the Kinect is 1 s. The gait
pattern of the hexapod robot was set according to the output of the terrain classifier. The pseudocode
of the gait transition algorithm is depicted in Table 4.

The value of G has a great influence on the smoothness and efficiency of motion on different
terrains. The terrain classification results, including gait value, leg current from robot legs SRL1, and
attitude angle, are shown in Figure 13. From 0–5 s, the terrain is supposed to be asphalt. Thus, the
robot moves in tripod gait. From 5–6 s, the robot is in transition gait and ready to stride across mixed
terrain consisting of asphalt and soil. The value of the terrain curve is nominal, showing that the
terrain is complex, e.g., 1.3 means the terrain is changing from type 1 to type 3. From 6–21 s, the
robot moves forward with its current gait. Then, from 22–23 s, it changes gait to get ready for another
terrain. Finally, from 23–30 s, the terrain is grass and the robot continues to move in a wave gait.
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The experimental results show that the robot can walk stably on a single-terrain type and transform
its gait successfully according to different terrains. At the initial moment, captured images from the
Kinect are classified by system. The confidence rating of the classified asphalt is greater than 30%,
so the terrain image is judged by the system to be asphalt pavement in a single terrain. Similarly, at
14 s and 22 s, the system outputs a single terrain label for soil and grass. At 5 s and 22 s, the terrain
image corresponds to the uncertain category and the highest confidence is less than 30%. Therefore,
the terrain is supposed to be mixed, and image infilling method is used until the classification result
meets recognition reliability requirements. The system outputs the labels of two terrains and causes
the robot to make the corresponding gait transitions.

Table 4. Gait transition algorithm.

Initialize G∈[0.5 1]; SD∈{Dij = 0, j = 1, 2, . . . , 6; i = 1, 2, . . . , 2n}; B∈{0, 1}; n = 0; Ti∈{1, 2, . . . , 6}
Repeat:
(1) Collect terrain images: color, depth, and infrared;
(2) Run the obstacle detection module and output B

if B = 1 then
Run image infilling processing I
Jump to (2)

else if B = 0 then
continue

end
(3) Run the terrain classifier module and output SD

for i = 1; i ≤ 2n; i++
if max {Dij, (j = 1, 2, . . . , 6)} < 0.3 then

n++
Run image segmentation processing
Run image infilling processing II
Jump to repeat (3);

Else if
output the subscript j of max {Dij, (j = 1, 2, . . . , 6)};
Ti = j

end
end

(4) Output classification results and gait G
for i = 1; i ≤ 2n–1; i++

if Ti = 1 or 2 then G = 0.5
else if Ti = 3 or 4 then G = 0.75
else if Ti = 5 or 6 then G = 0.83

end
end
T = T1,T2,T3, . . . , T2n–1

(5) Run the robot
Until: The robot is switched off.

Note: G is the walking gait; typically, 0.5 for tripod gait, 0.75 for quadruped gait, and 0.83 for wave gait.
SD is the confidence score; j refers to terrain type: 1 for asphalt, 2 for tile, 3 for soil, 4 for gravel, 5 for sand, 6
for grass; i is the serial number of images; B refers to the result of obstacle detection: B = 1 means there is an
obstacle, B = 0 means no obstacle. Ti is the output label of the terrain classifier. Image infilling processing I
represents the ILI module, and image infilling processing II represents the SPI module.
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4. Discussion

This paper describes a terrain classification system for a multilegged robot on complex terrain with
obstacles. Several topographic classification methods are summarized in Table 5 [8,11,17,37–41]. With
respect to single terrain recognition, several successful single terrain classification methods proved the
effectiveness of this kind of methodology via local features, BoW model, and SVM. The common points
(also advantages) of these works and our proposed algorithm include the following: Image features
are extracted by selecting local features. Unlike color-based and spectra-based methods, local features
are invariant to scale, rotation, brightness, and contrast and hence have become popular in image
classification. In these methods, the SURF algorithm is used to extract local features of terrain images
as input to the BoW model. The performance of SVM in classifying a small number of samples is also
excellent. The characteristics of sensor-based information including frequency of leg current [38] and
tactile data [40] are also used for terrain recognition. This kind of data is similar in the same terrain
and has certain regularity in different terrains. The methods of building the classifier mainly focus on
SVM [8,11,17], neural network [37–39], and mixtures of Gaussians [40,41]. Among them, SVM and
neural network are the two main classification models. The application of terrain identification to
legged robots is mainly concentrated on gait transition and path planning. For terrain classification
with a multilegged robot, the precision requirement is low and a simple SVM is good enough for
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expected results. Our image infilling algorithm has the effect of magnifying local features of the image,
which makes the classification more accurate. We also made an innovation in feature extraction: the
SURF-BRISK algorithm is more suitable for real-time classification, its matching speed is much faster
than the SURF algorithm alone, and its accuracy is also in line with the SURF algorithm.

Table 5. Comparison of recent terrain classification methods.

Author or Method
(Year) Feature Classification

Method
Number of

Terrains
For Mixed
Terrain? Application

Khan (2011) [8] SURF/DAISY SVM 5 No Visual terrain
classification

Zenker (2013) [11] SURF/SIFT SVM 8 No Energy-efficient gait

Filitchkin (2012) [17] SURF SVM 6 Yes Selecting
predetermined gaits

Lee (2011) [37] SURF ANN 5 No
Off-road terrain
classification for

UGV

Ordonez (2013) [38]
Characteristic
frequency of
leg current

PNN 4 No Robot planning and
motor control

Holder (2016) [39] Convolutional
encoder–decoder CNN/SVM 12 Yes Real-time road-scene

understanding

Dallaire (2015) [40] Tactile data Mixture of
Gaussians 12 No Gait switching

Manduchi (2005) [41] Color-based Mixture of
Gaussians 3 No

Recognizing
different terrains and

obstacles

This paper (2017) SURF-BRISK SVM 6 Yes All kinds of outdoor
robots

5. Conclusions

In this paper, a novel terrain classification system for accurate recognition of different terrains is
proposed. By using Kinect, color, infrared, and depth images are acquired simultaneously. The infrared
and depth information are fused and used for obstacle detection. The local feature extraction of terrain
images is done by the SURF-BRISK algorithm. A terrain classifier based on the BoW model and SVM
is employed. Using the proposed method, different terrains can be classified quickly and precisely.
Complex terrain recognition is achieved by the local image infilling method for terrain with obstacles
and mixed terrain. According to the experimental results, the proposed method greatly improves
the accuracy of complex terrain recognition and plays an important role in locomotion guidance of
multilegged robots.

The theoretical contributions and novelty of this paper can be summarized as follows:
(1) Images with obstacles are infilled by surrounding terrain parts in order to improve the

classification accuracy. Thus, the local features of images are magnified and the method can achieve
satisfactory results.

(2) A super-pixel image infilling method for mixed terrain classification is presented. The
average classification accuracy of the proposed method for mixed terrain is over 80%. The proposed
method can make acquired data more believable and reliable for locomotion planning and control of
intelligent robots.

(3) Multiple terrain labels can be given instead of a single label, which indicates that the presented
method is very practical for complex terrains.

This paper focuses on a complex terrain classification system and a combination of terrain
classification and obstacle detection to complete the planning of a robot path. In the future, we will
improve the rapid transformation of a robot’s gait based on terrain information and make the robot
more intelligent.
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