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Featured Application: We present an improved methodology for increasing the wind power
utilization by responsive loads; the consumption of wind power and cost of system operation
are optimized simultaneously through the multi-objective differential evolution method. The
responsive loads are divided into two kinds according to their response characteristic and the
randomness of wind power are considered by chance constraint. The proposed methodology can
maximize the wind power utilization and minimize the system operation cost more effectively.

Abstract: In this paper, we present the extensive load scheduling problem with intermittent and
uncertain wind power availability. A chance-constrained bilateral tradeoff decision model is
established to solve the problem. Our model aims at maximizing the wind power utilization and
minimizing the system operation cost simultaneously by means of responsive loads, which are
precisely divided into shiftable loads and high-energy loads. The chance constraint is applied to
restrict the system imbalance with a small probability. Then, a revised sample average approximation
(SAA) algorithm is developed to transform the chance constraint into sample average reformulations.
Furthermore, the multi-objective differential evolution (MODE) method combined with SAA is
proposed to solve the problem. Experiments enabling an effectiveness analysis of the two kinds of
responsive loads are performed on the power system in Yancheng. The research of parameters of
MODE, the sensitivity of different risk levels and the influence of iteration numbers are discussed.
Finally, computational results prove that the combination of shiftable loads and high-energy loads
have a better effect than adopting shiftable loads and high-energy loads separately, and the proposed
method is convergent and valid in solving the problem.

Keywords: chance constraint; dual objectives; high-energy loads; multi-objective differential
evolution; sample average approximation; shiftable loads

1. Introduction

Wind power, which is clean and renewable, has been integrated with the grid on a large scale
to replace fossil fuels [1,2]. A lot of countries have set goals for high-penetration wind power levels
in the grid to increase the wind power utilization. China aims to achieve an average wind power
utilization rate of 95% in 2020. However, the randomness and intermittence of wind power have
increased the tremendous challenges in wind energy utilization as well as the power system operators
and planners [3,4]. The traditional dispatching operating mode of a power system, designed to address
limited uncertainty in the system, encounters challenges in accommodating the high penetration of
large-scale wind power. Thus, new methods should be developed to cope with the situation [5].
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The chance-constrained optimization technique has been adopted to manage the problems
involved stochastic variables in some previous studies [6,7]. In [7], the chance constraints in the
optimization formulations guarantees that the failure probability of the EV charging plan fulfilling the
driving requirement is below the predetermined confidence parameter. In [6], a chance constrained
programing approach was presented to ensure desired confidence levels of meeting future stochastic
power and natural gas demands while minimizing the investment cost. In the present study, the
chance constraint is applied to ensure the probability of system imbalance caused by too little system
reserve capacity is less than a certain probability. These types of constraints could not be inverted to
obtain equivalent deterministic equalities. Thus, the method developed in [7] could not be directly
applied here to solve our problem. In addition, the joint chance constrained problem in [6] are
formulated through mixed-integer quadratic programming (MIQP), which is not efficient method to
solve our problem related to not joint chance constraints. Therefore, we propose the sample average
approximation (SAA) algorithm [8] to solve the problem. The approach can provide a solution that
converges to the optimal one as the number of samples increases.

During the Spring Festival, the load is expected to drop sharply which will decrease the usage of
power. In 2018, to ensure the safe and stable operation of the power grid, Shandong Electric Power
Company took measures to limit renewable energy output, which means that a large amount of
wind power would be abandoned. However, Jiangsu Electric Power Company actively encourages
enterprises to produce, which not only increases the load of 9000 MW for trough load periods but also
promotes the consumption of renewable energy. In the first three days of the Spring Festival, a total of
72000 MWh of renewable energy consumption was added. In the smart grid, the load, as an important
responsive resource [9,10], is an excellent alternative for wind power consumption [11,12].

Extensive research has been done to increase wind power utilization through the participation of
responsive loads. In [13], a model for solving the combined effect of PEVs and wind power integration
with a DR (demand response) program on static transmission network expansion planning was
proposed, but the uncertainty of wind power has not been considered. A two-stage stochastic model
which handling the forecast errors of renewable generations in a microgrid with responsive loads
was implemented in [14], however, the objective of the model is only operation cost not including
the renewable energy utilization. Hajibandeh Neda [15] investigated the potential of DR as an
emerging alternative in systems with significant amounts of wind power. A comprehensive set of
DR programs including tariff-based, incentive-based and combinational DR programs are considered
in a stochastic network-constrained market clearing framework. Kalavani Farshad [16] provided a
stochastic method to conduct the optimal scheduling of the combination of wind power and energy
storage with considering the DR program in the electricity market. The DR program was adopted to
increase the total expected profit and decrease the total operational cost.

Most models in this context have optimized wind power utilization by responsive loads. However,
the scheduling characteristics of loads were not considered, and responsive loads were not divided
finely. Different types of responsive loads have different characteristics [17]. Therefore, different
loads can participate in the optimized operation in different ways [18], which may lead to better
optimized results.

In this study, according to their regulating characteristics, loads are grouped into two types,
including the high-peneration energy load (HL) and the shiftable load (SL). The HL possesses both
adjustable and interruptible characteristics, which can achieve power control in the range of 0%–100%.
The regulate action can be completed in an instant. The HL is suitable for increasing wind power
consumption because we can raise its power when the wind power is high and reduce its power in the
opposite case. The use of an SL implies shifting the load from one period to another to maintain the
electricity consumption. Loads can be cut out or put in at any periods of the whole cycle. Generally, an
SL is put in during the peak wind power periods and cut out in trough wind power periods to increase
the wind power utilization. HLs and SLs are shown in Figure 1.
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Figure 1. Introduction of an HL and an SL. (a) The scheduling characteristic of an HL. (b) The 
scheduling characteristic of an SL. 

The two types of responsive load participate in the optimal scheduling with conventional power, 
developing a new scheduling mode based on source-load coordinate optimal operation. However, 
the dispatch of responsive loads will damage the users’ benefit. Economic compensation needs to be 
made for them, which incurs additional costs. Thus, besides the amount of consumption of wind 
power, the cost of system operation should be considered as well. The model contains two objectives: 
to obtain the maximum capacity of wind power accommodation and to minimize the system 
operation costs. A multi-objective optimal model is established in this study. 

There are many algorithms that can be used to solve the multi-objective optimal problem, for 
example: the Non-dominated sorting genetic algorithm II (NSGA-II) [19], the Strength pareto 
evolutionary algorithm (SPEA) [20], the Pareto archived evolution strategy (PAES) [21] and the Multi-
objective differential evolution (MODE) [22]. In [19], NSGA-II, SPEA2 and PAES were designed for 
multi-objective problems, and NSGA-II achieved the best results in terms of Pareto front spread. In 
[22], NSGA-II, MODE and multi-objective particle swarm optimization (MOPSO) algorithms are 
compared in accuracy and computational time. The results show that the obtained Pareto Front of 
MODE is more accurate and faster. It can be concluded that MODE performs better among these 
algorithms. So we adopted MODE algorithm to solve the multi-objective model in this paper. 

The remaining part of this paper is organized as follows. Section 2 describes the problem with 
chance constraints. Section 3 presents the solution methods which including SAA and MODE 
algorithms. Section 4 reports the computational experiments for the power system of Yancheng City 
of Jiangsu province in China. Section 5 concludes the study. 

2. Problem Description  

In this section, we develop a chance-constrained multi-objective formulation to address 
uncertain wind power availability. The two objectives are to maximize the utilization of wind power 
WE  and to minimize the system operation cost GLC , which including the costs of thermal generator 

and the operation costs of SLs and HLs. HLs and SLs are adopted in the optimization. The 
formulation is to determine the regulate or shift operations of the responsive loads. The detailed 
formulation is shown as follows: 
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Figure 1. Introduction of an HL and an SL. (a) The scheduling characteristic of an HL. (b) The scheduling
characteristic of an SL.

The two types of responsive load participate in the optimal scheduling with conventional power,
developing a new scheduling mode based on source-load coordinate optimal operation. However, the
dispatch of responsive loads will damage the users’ benefit. Economic compensation needs to be made
for them, which incurs additional costs. Thus, besides the amount of consumption of wind power, the
cost of system operation should be considered as well. The model contains two objectives: to obtain
the maximum capacity of wind power accommodation and to minimize the system operation costs.
A multi-objective optimal model is established in this study.

There are many algorithms that can be used to solve the multi-objective optimal problem,
for example: the Non-dominated sorting genetic algorithm II (NSGA-II) [19], the Strength pareto
evolutionary algorithm (SPEA) [20], the Pareto archived evolution strategy (PAES) [21] and the
Multi-objective differential evolution (MODE) [22]. In [19], NSGA-II, SPEA2 and PAES were designed
for multi-objective problems, and NSGA-II achieved the best results in terms of Pareto front spread.
In [22], NSGA-II, MODE and multi-objective particle swarm optimization (MOPSO) algorithms are
compared in accuracy and computational time. The results show that the obtained Pareto Front of
MODE is more accurate and faster. It can be concluded that MODE performs better among these
algorithms. So we adopted MODE algorithm to solve the multi-objective model in this paper.

The remaining part of this paper is organized as follows. Section 2 describes the problem
with chance constraints. Section 3 presents the solution methods which including SAA and MODE
algorithms. Section 4 reports the computational experiments for the power system of Yancheng City of
Jiangsu province in China. Section 5 concludes the study.

2. Problem Description

In this section, we develop a chance-constrained multi-objective formulation to address uncertain
wind power availability. The two objectives are to maximize the utilization of wind power EW and
to minimize the system operation cost CGL, which including the costs of thermal generator and the
operation costs of SLs and HLs. HLs and SLs are adopted in the optimization. The formulation is to
determine the regulate or shift operations of the responsive loads. The detailed formulation is shown
as follows:  maxEW =

T∑
t=1

NW∑
i=1

Pt
Wi∆T

minCGL = Cgen + CSL + CHL

(1)
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λHbSt
HbPt

Hb∆T (22)

In the above formulation, the functions (1) represents the two objectives. One is to maximize
utilization of wind power; the other is to minimize the system operation cost, which is composed
of the generation cost of thermal generators Cgen, the operation cost of shiftable loads CSL and the
operation cost of high-energy loads CHL. Constraint (2) represents the power balance of the system. Pt

L



Appl. Sci. 2019, 9, 1777 5 of 15

is the total amount of conventional system load over time period t which doesn’t include SL and HL.
Constraint (3) describes that the reserve needed for loads forecast error and wind power forecast error
should be satisfied. Constraint (4) limits the upper and lower bounds of power generation of each unit.
Constraints (5) and (6) mean the status (on or off) of each unit must last for a minimum time once it is
started up or shut down. Constraints (7) and (8) are the unit ramping up constraints and ramping
down constraints respectively. Constraint (9) represents that the utilization of wind power cannot
exceed the maximum value. Chance-constraint (10) means that the probability of system imbalance
caused by the too little system reserve capacity is less than risk level ε. Constraints (11) and (13)
indicate the SLs and HLs must be less than or equal to the schedulable capacity. Constraint (12) show
that the total power consumption of each shiftable load can’t change. Constraints (14) and (15) describe
the use of SLs and HLs should exceed a certain minimum time. Constraints (16) and (17) describe the
limitation of the dispatched numbers of each SL and HL. Constraint (18) represents the transmission
capacity constraints of each line. Constraint (19) is the formula of DC power flow calculation.

Equalities (20), (21) and (22) describe the costs of thermal generator and the operation costs of SLs
and HLs.

To sum up, the bilateral tradeoff model can be described as (23). F = (−EW , CGL) is the objective
function for this study. x is a decision variable. f j(x) is the equality constraint function, and gk(x) is
the inequality constraint function.

minF(x),

s.t.
{

f j(x) = 0, j = 1
gk(x) ≤ 0, k = 1, 2, · · · , n

(23)

3. Solution Method

3.1. Revised Sample Average Approximation

SAA is an effective method to solve the chance-constrained problem. The basic idea of SAA is to
approximate the true distribution of random variables with an empirical distribution through Monte
Carlo sampling technology. Multiple theoretical research studies and computational studies of SAA
have been developed for chance-constrained stochastic problems [23]. In this section, we develop a
combined SAA algorithm to solve the chance-constrained program. The combined SAA framework
contains three parts: scenario generation, convergence analysis and solution validation.

3.1.1. Scenario Generation

The wind power availability is closely related to the wind speed. Recently, a variety of theoretical
distributions were proposed to fit the probability distribution of wind speed [24]. In the present study,
we adopt two-parameter Weibull distribution to fit the probability distribution of actual wind speed.
The Monte Carlo simulation is run to generate N scenarios of the wind power random variable ζt,n

wi ,
and each scenario has the same probability of 1/N. 1(0,∞)(·) is an indicator function, i.e.,

1(0,∞)(t) =
{

1 t > 0
0 t ≤ 0

(24)

The chance constraints (10) can be replaced by

P̂N(x) =
1
N

N∑
n=1

1(0,∞)(p
t
wi − βpt

wi − ζ
t,n
wi ) ≤ δ (25)

First, if δ = ε, as the sample size N goes to infinity, we can prove that the solution of the SAA
problem converges to the solution of the true problem. Since N cannot be infinity, it is possible that the
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solution of the SAA problem is infeasible with respect to the true problem. To increase the confidence
level for the solution of SAA problem to be feasible, we let δ < ε. Generally, and N = 2/ε, δ = ε/2.

3.1.2. Solution Validation

Assume that x̂ is the solution of the SAA problem and that v̂ is the corresponding value of objective
function. To test the feasibility of x̂, we construct the upper bound of v̂.

First, S iterations were taken. For each iteration, we run the SAA problem M times with N
scenarios. As described in [23], we let L be the largest integer to meet the constraint (27).

θN = B(δN; ε, N) (26)

B(L− 1; θN, M) ≤ ω (27)

With B denoting the binomial distribution. Then, selecting the Lth smallest optimal value denoted
as v̂Ls, the confidence level for v̂Ls to be the upper bound of the chance-constrained problem is more
than 1−ω. The average of v̂L1, v̂L2, . . . , v̂LS is the upper bound; the smallest one of v̂L1, v̂L2, . . . , v̂LS is
the optimal value ṽo.

3.1.3. Summary of the SAA Algorithm

The proposed SAA algorithm is summarized in the following steps.

(1) For s = 1, 2, · · · S, repeat steps 1O– 2O. 1O For m = 1, 2, · · ·M, repeat steps i-ii. i. Generate N
scenarios of the random vector ζ; ii. Solve the proposed model by MODE to obtain the solution
as x̂ and the objective value as v̂. 2O Sort the M optimal values in an ascending order, and denote
the Lth value v̂L as v̂Ls.

(2) The upper bound is defined as v̂ = 1
S

S∑
s=1

v̂Ls, and the minimum value from v̂L1 to v̂Ls is taken as

the optimal objective value ṽo. The corresponding optimal solution x̂ can also be obtained.
(3) Calculate the optimality gap by (v̂− ṽo)/ṽo × 100%.

3.2. Multi-Objective Differential Evolution

The problem is a multi-objective mixed-integer linear program (MILP) [25], which cannot be
solved by CPLEX. CPLEX can provide flexible high-performance optimization programs to solve the
single-objective problems, which including linear programming problem, quadratic programming
problem and mixed-integer programming problem. However, it is not applicable in multi-objective
problems. Hence, MODE algorithm was proposed in this paper. Because of the dual objectives, a set of
Pareto optimal solutions would be obtained. Therefore, a novel fuzzy membership function [26] is
introduced to select the optimal compromise solution from Pareto solution set.

3.2.1. Multi-Objective Differential Evolution

MODE is a type of random parallel direct global search algorithm with the advantages of simple
and easy-to-use global optimization. Its details are as follows:

(1) Population initialization: The initial population X0 is chosen arbitrarily in the solution space, and
the population scale number is Np.

(2) Mutation operation: The variation operation is based on the difference of random sampling
individuals as follows:

vi,G+1 = xr1,G + F× (xr2,G − xr3,G) (28)

where G is the evolution times, vi,G+1 is a variation individual and xr1,G is the father individual.
(xr2,G − xr3,G) is the father difference vector, and r1 , r2 , r3 , i. F is a control parameter that
satisfies F ∈ [0, 1].
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(3) Crossover operation: Once the perturbed individual vi,G+1 is generated, this individual is
subjected to crossover operation with a target individual Xi,G+1 that ultimately generates the trial
solution,ui,G+1, as follows:

ui j,G+1 =

{
vi j,G+1, rand j() ≤ Cr or j = jrand

ui j,G, otherwise
(29)

(4) Selection operation: We make a temporary population X∗ and then let the test individual zi,G+1

compete with the father individual xi,G. The better one would be selected to X∗ [27].

3.2.2. Selection of the Optimal Compromise Solution

To obtain the balance of wind power cost and economical operation of the system, we need
to measure the membership of each Pareto solution and use this measurement to find the optimal
compromise solution. In this study, we introduce a novel fuzzy membership function as follows:

ui =
fimax − fi

fimax − fimin
(30)

where fimax and fimin are the upper and lower bound of the ith objective function, respectively. The

standard membership degree is estimated as u =
2∑

i=1
ui. The largest membership is corresponding

to the optimal compromise solution. The flowchart of the SAA algorithm combined with MODE is
shown in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 16 
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4. Results and Discussion

In this section, we conduct a series of experiments on the power system of Yancheng in Jiangsu,
China to illustrate the proposed approach. The advantages of dual-objective model and the impact of
SLs and HLs are manifested. We also discuss the sensitivity of risk level and the convergence of the
proposed SAA algorithm combined with MODE. The time horizon was 24 h at 0.5 h step. The relevant
information can be obtained from the state grid corporation.
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4.1. Introduction of the Yancheng Power System

Yancheng, with six wind farms, has abundant wind power resources. The topological structure
of the Yancheng power system is shown in Figure 3. The specific information of HLs and SLs is
shown in the Tables 1 and 2. MHb and MSa are the maximum schedule times for HLs b and SLs a,
respectively. The reserve capacity of the thermal generators needed for the load forecast error is 10% of
the maximum system loads. The reserve of thermal units needed for the fluctuation of wind power is
15% of the wind power generation. The maximum ramping speed of thermal units is 1% of the rated
capacity every minute. Other information for the thermal generators is shown in Table 3. The iteration
numbers of SAA are kept as S×M = 5× 5 and risk level is ε = 0.2. The population size of the MODE
is 100, the maximum iteration number is 500, the crossover probability is 0.3, the mutation probability
is 0.5. In the study, we adopt two-parameter Weibull distribution to fit the probability distribution of
actual wind speed. All the experiments are conducted on a computer workstation with 4 Intel Cores
and 8 GB RAM.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 16 
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Table 1. Parameters of high-energy load users. 

Load Type Location Number HbP

(MW) 
maxHP

(MW) 
Hλ

($/MWh) HbM  min min
, ,,Hb on Hb offT T  

Beneficiation Binhai 13 10 130 60 3 1 
Chemical 

engineering Funing 10 6 60 65 3 1 

Industrial 
engineering Dongtai 8 10 80 55 3 1 

Table 2. Parameters of Shiftable load users. 

Load Type Location Number SaP

(MW) 
maxSP

(MW) 
Sλ

($/MWh) SaM  min min
, ,,  Sa on Sa offT T  

Beneficiation Dafeng 13 20 260 140 2 2 
Chemical 

engineering 
Xiangshui 10 12 120 180 2 2 

Industrial 
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Table 1. Parameters of high-energy load users.

Load Type Location Number PHb
(MW)

PHmax
(MW)

λH
($/MWh) MHb Tmin

Hb,on,Tmin
Hb,off

Beneficiation Binhai 13 10 130 60 3 1
Chemical engineering Funing 10 6 60 65 3 1
Industrial engineering Dongtai 8 10 80 55 3 1

Table 2. Parameters of Shiftable load users.

Load Type Location Number PSa (MW) PSmax
(MW)

λS
($/MWh) MSa Tmin

Sa,on, Tmin
Sa,off

Beneficiation Dafeng 13 20 260 140 2 2
Chemical engineering Xiangshui 10 12 120 180 2 2
Industrial engineering Sheyang 8 20 160 150 2 2
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Table 3. Parameters of conventional units.

Region Pmax
Gj Pmin

Gj n m l λG

Binhai 1000 MW 400 MW 0.00611 38 380 1200
Dafeng 1000 MW 400 MW 0.00713 42.45 363 1100
Chenjia 660 MW 265 MW 0.00711 45.31 360 1080
Sheyang 660 MW 265 MW 0.00898 46.57 350 880
Funing 268 MW 135 MW 0.00935 40.89 420 760

Yancheng 135 MW 70 MW 0.00828 39 390 600

4.2. Research for Parameters of MODE

There are some important parameters of MODE like population size, iteration number, crossover
probability, and mutation probability. In order to study the impacts of population size and iteration
number on the execution time, they were set as different values. The results are shown in Figure 4.
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From Figure 4, it is apparent that population size and iteration number have great influences on
the execution time. With the increase of population size, the execution time increased lightly at first
stage, then there was a significant decline, afterwards it increased again. When the population size
becomes larger, on the one hand, the calculation speed slows down; on the other hand, the global
search ability of the algorithms becomes stronger, the optimal solution can be found in less generations.
When the population size is 100, the execution time is least. As for the iteration number, the execution
time became larger when it increases. Nevertheless, the smaller the iteration number, the less accurate
the results. In order to take both execution time and accuracy into account, the iteration number was
set as 500.

To verify the above analysis of population size and iteration number, we performed 10 runs for
each value of population size and iteration number to count the run time. Besides, the hypervolume of
each Pareto solution set was also calculated. The reference point is (41,739, 3281,867.2). The results are
shown in Tables 4 and 5.

Table 4. Run time and hypervolume under different population sizes.

Value 50 70 100 110 150 200 250

Max run time(s) 6059.25 6010 4139.3 4311.8 5395 6582.5 10,645
Min run time(s) 1221.25 1395 1663 1745.8 1942.3 2196.3 3665

Average run time(s) 3177.5 3380 2323.8 2555 3211.8 3810 6537.5
Max hypervolume 966.2 1053.6 1140 1095.1 1103.2 1150.3 1223
Min hypervolume 817 818.9 859.3 863 834.5 853.5 869.3

Average hypervolume 862 906.4 946.4 947.9 957.14 965.2 987.14
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Table 5. Run time and hypervolume under different iteration numbers.

Value 100 200 300 400 500 600 700

Max run time(s) 2691.2 2810 3237.5 3650 4039.3 4597.3 5740
Min run time(s) 720 825 971.2 1395 1663 2016.3 2412.5

Average run time(s) 1035 1255 1662.5 1887.5 2323.8 2960 3325
Max hypervolume 890.5 932.2 940.5 991.2 1040 1190.3 1290
Min hypervolume 804.2 833.9 880.4 895.4 859.3 876.8 905.7

Average hypervolume 859.1 873.7 909.8 925.6 946.4 971.7 1087.3

Hypervolume can be used to assess the overall performance of Pareto solution set. And the bigger
the hypervolume, the better the solution. With the increase of population size or iteration number,
the corresponding hypervolume became larger as well. Because it is more likely to find the global
optimal solution with larger population sizes or more iterations numbers. From Tables 4 and 5, it can
be known that there are some deviations in the execution time and solutions obtained by the same
parameters. It is because the initial population of MODE is chosen randomly.

Different crossover probabilities or mutation probabilities correspond to different optimization
paths, and different optimization paths correspond to different calculation time or optimal solution. In
order to explore the influences of crossover probability and mutation probability, we also performed
10 runs for each value of them. The results are shown in Table 6.

Table 6. Run time and hypervolume under different crossover probability and mutation probability.

Value
Crossover Probability Mutation Probability

0.2 0.3 0.4 0.5 0.4 0.5 0.6 0.7

Max run time(s) 4612.5 4139.3 4243.2 4447.5 4467.3 4139.3 4388 4513
Min run time(s) 1563 1663 1456.7 1650.2 1546.2 1663 1469.4 1865.4

Average run time(s) 2579.3 2323.8 2395.5 2417.9 2387 2323.8 2378 2479.2
Max hypervolume 992.8 1140 1185 998.3 1025.6 1140 997.3 984.2
Min hypervolume 865 879.3 876.2 841.1 855.5 859.3 843.6 846.3

Average hypervolume 928.3 946.4 943.2 922.1 941 946.4 944 924.2

It can be seen that the influences of crossover probability and mutation probability on the execution
time and solutions are lighter than the influences of population size and iteration number. Although
different crossover probability or mutation probability would lead to the different optimization path,
the optimization path is also related to the initial population, which is chosen arbitrarily in the solution
space. Thus, based on empirical values and Table 6, the crossover probability is set as 0.3 and the
mutation probability is set as 0.5.

4.3. Effectiveness of Responsive Loads

To research the effect of SLs and HLs, three types of optimization model were established. Model 1
was to optimize the problem with SLs only. Model 2 was to optimize the problem with HLs only, and
model 3 employed both SLs and HLs. A conventional model without responsive loads was also built
to make a contrast. For the multi-objective optimization problems, the optimal compromise solutions
are in Table 7, EW represents the wind energy utilization and CGL is the cost of system operation.

Table 7. Results of different optimization models.

Value Model 1 Model 2 Model 3 Conventional

EW/MWh 9(MWh) 41,172.5 39,721.4 41,743.5 39,181.7
CGL/$ 4,048,262.8 3,942,381.8 3,281,729.4 4,065,241.0
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Obviously, compared with conventional type, all the three model types not only contribute to
the increasement of wind energy utilization but also facilitate the decrease of system operation cost.
This finding is reasonable. Despite the dispatch of responsive loads incurs expenses, the increased
consumption of wind power will lead to the decrease of thermal units’ output. And the cost saved
by thermal units are more than the expenses of responsive loads. Thus, it can be concluded that the
adoption of responsive loads can bring better effect. According to Table 4, it is not difficult to find that
model 3 is the best one for it can lead to most increase of wind power utilization and most decrease of
system operation costs. In other words, the effect of combining two types of responsive load is better
than using the two types of load separately.

4.4. Influence on the Load Curve

The scheduling of extensive loads, which is related with the trend of forecasted wind power
availability, will influence the load curve of system. The results are shown in Figure 5.
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From Figure 5, it is obvious that the daily peak load is cut, and the daily valley load is increased
after optimization. It promotes the daily load curve leveling and is conducive to the system security
and stability. This kind of impact is reasonable because wind power owns anti-peak characteristics,
which means the trough periods of forecasted wind power are the peak periods of daily load and the
peak periods of forecast wind power are the trough periods of daily load. And to maximize the wind
power utilization, the scheduling of responsive loads should make the valley load increased and the
peck load decreased, leading the daily load curve consistent with the forecasted wind power curve.
Contrasting the 3 wind power curves, it is easy to find that the optimal wind power utilization is larger
than the conventional wind power utilization during 2:00 to 6:30 and 14:00 to 15:00, which verifies the
effect of responsive loads.

To sum up, the combination of HLs and SLs in the optimization model is of great significance,
for it can not only lead better effect in maximizing wind power utilization and minimizing system
operation cost, but also contribute to leveling the load curve and maintaining the system security.

4.5. Discussion

4.5.1. Influence of Risk Level ε

The availability of wind power is uncertain. Therefore, there is some risk that the system reserve
capacity cannot surmount the prediction errors of wind power. The probability of system imbalance
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caused by too little system reserve capacity is the risk level. With different risk levels, this optimization
model produces different results. To test the influence of the risk level, several levels of risk are tried in
the model with both SLs and HLs involved in the optimization. The iteration number is S×M = 5× 5.
The results are shown in Table 8.

Table 8. Results of different risk levels ε.

Risk Level ε Wind Power Utilization Cost of System Operation

0.05 41,708.7 MWh $3,281,956.1
0.1 41,723.5 MWh $3,281,900.1
0.2 41,743.5 MWh $3,281,823.3
0.4 41,756.7 MWh $3,281,729.4
0.5 41,764.2 MWh $3,281,675.3
1 41,770.2 MWh $3,281,607.5

As the risk level increases from 0.05 to 0.5, the total wind power utilization increases, and the cost
of system operation decreases. This is reasonable because a lower risk level corresponds to a more
restrictive chance constraint. Correspondingly, the generation of thermal units is decreased, which
results in a decrease in total cost. An extreme case is ε = 1, in which the chance constraint can be
neglected. In such a case, the optimal wind power utilization is larger than that at any other risk level;
furthermore, the cost of system operation is the smallest.

4.5.2. The Influence of Iteration Numbers

The SAA algorithm is a type of approximate method. The result is not the solution of the
true problem. Changes in iteration numbers result in changes in the accuracy of the results. Thus,
experiments are done to study the impact of the iteration numbers. In the experiments, SLs and HLs
are involved in the optimization, and the risk level is kept as 0.2. The results are shown below.

Tables 9 and 10 show that with S = 5 and M increasing from 5 to 10, the gap between the upper
bound and optimal value of wind power utilization decreases from 0.61% to 0.42%, and the gap of the
system operation cost decreases from 0.34% to 0.21%. With M = 5 and S increasing from 5 to 10, the
gap between the upper bound and optimal value of wind power utilization decreases from 0.61% to
0.31%, and the gap of the system operation cost decreases from 0.34% to 0.17%. The decrease in the
gaps indicates that the solution became more precise; with accumulating iterations, the proposed SAA
algorithm converges to the true values. What’s more, an increase in S can lead to a greater decrease of
the gap than an increase in M.

Table 9. Wind power utilization of different iteration numbers.

S×M ε Upper Bound Optimal Value Gap

5× 5 0.2 41,997.6 MWh 41,743.5 MWh 0.61%
5× 10 0.2 41,798.1 MWh 41,624.5 MWh 0.42%
10× 5 0.2 41,783.3 MWh 41,653.2 MWh 0.31%

Table 10. Cost of system operation of different iteration numbers.

S×M ε Upper Bound Optimal Value Gap

5× 5 0.2 $3,292,763.4 $3,281,729.4 0.34%
5× 10 0.2 $3,263,957.7 $3,257,231.5 0.21%
10× 5 0.2 $3,260,120.1 $3,254,598.7 0.17%

4.5.3. The Motivation of Extensive Load Scheduling

In this study, the compensation for the operation of interactive loads is given by the demand
response special fund of the Jiangsu power company, which is the main motivation of the schedule
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of extensive load. The focus of this study is to discuss how to increase the wind power utilization
through the refined controllable loads. As for the power market mechanism incorporating renewable
energy and interactive loads, we take it as our next researcus.

5. Conclusions

In this study, a chance-constrained multi-objective program considering the uncertain wind
power availability has been studied. SLs and HLs are innovatively adopted to optimize the problem,
and a revised SAA algorithm combined with MODE is developed toch fo solve it. The experiments
performed on the power system of Yancheng show that the combination of SLs and HLs leads to better
results in maximizing the wind power utilization and minimizing the system operation cost; and
responsive loads are also helpful in leveling the load curve. The impacts of parameters of MODE on
the execution time and hypervolume are taken into account. Additionally, the sensitivity of different
risk level and the influence of iteration scales of SAA are discussed to verify the accuracy and validity
of the proposed method.
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Nomenclature

EW Wind power utilization
CGL System operation cost
Cgen Generation cost of thermal generators
CSL Operation cost of shiftable loads
CHL Operation cost of high-energy loads
n, N Index and set of scenarios
G Thermal generation units
W Wind farms
SL Shiftable loads
HL High-energy loads
T Time horizon (e.g., 24 hours).
∆T Time span of each period t.
L Transmission lines
NW Total number of wind farms
NS Total number of shiftable loads
NH Total number of high-energy loads
NG Total number of thermal generation units
λGj Start-up and shut-down cost for thermal unit j
n j, m j, l j Operating cost factors for thermal generator j.
λSa Cost factors for shiftable load b to regulate a unit load
λHb Cost factors for high-energy load b to regulate a unit load
Pt

L Total amount of system load over time period t
Pmax

Gj Maximum output of thermal generator j.
Pmin

Gj Minimum output of thermal generator j.
Rt

L Amount of spinning reserve needed for the system over time period t.
γ Reserve capacity factor of wind power
Rup

Gj Ramp-up output limit of generator j.
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Rdown
Gj Ramp-down output limit of generator j.

Tmin
Gj,on Minimum on times for generator j.

Tmin
Gj,o f f Minimum off times for generator j.

Tmin
Sa,on Minimum on times for shiftable load a.

Tmin
Hb,on Minimum on times for high energy load b.

Pt
Samax Maximal power of shiftable load a to be shifted over time period t.

Pt
Hbmax Maximal power of high-energy load b to be regulated over time period t.

MSa Maximal regulated time of shiftable load a
MHb Maximal regulated time of high-energy load b
Pmax

Wi Maximal power of wind farm i.
Pmax

l Line flow limitation for the transmission line l.
pen fi The penalty factor of wind farm i for abandoning wind power.
Pt

wi Wind power utilization of wind farm i over time period t.
Pt

Gj Power generated by thermal unit j over time period t
ut

Gj Binary variable to indicate if thermal generator j is on over time period t.
St

Sa Binary variable to indicate if shiftable load a is shifted over time period t.
St

Hb Binary variable to indicate if high-energy load
b is regulated over time period t.
Pt

Sa Total amount of power shifted in load a over time period t.
Pt

Hb Total amount of power regulated in load b over time period t.
ζt

wi Stochastic wind power output of wind farm i over time period t.
ε Risk level
bi j Admittance of branch i j when its resistance is ignored.
θi Voltage phases of node i.
Pmax

i j Maximum transmission power between node i and j.
PG/PL Vectors of active power of generators/ loads at all nodes except the balancing node
B′ Coefficient matrix consisting of imaginary parts of the admittance matrix of the system
θ Vector consisting of the voltage phases of all nodes except the balancing node
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