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Abstract: The unit commitment (UC) problem is a critical task in power system operation process.
The units realize reasonable start-up and shut-down scheduling and would bring considerable economic
savings to the grid operators. However, unit commitment is a high-dimensional mixed-integer
optimisation problem, which has long been intractable for current solvers. Competitive swarm optimizer
is a recent proposed meta-heuristic algorithm specialized in solving the high-dimensional problem.
In this paper, a novel binary competitive swarm optimizer (BCSO) is proposed for solving the
UC problem associated with lambda iteration method. To verify the effectiveness of the proposed
algorithm, comprehensive numerical studies on different sizes units ranging from 10 to 100 are
proposed, and the algorithm is compared with other counterparts. Results clearly show that BCSO
outperforms all the other counterparts and is therefore completely capable of solving the UC problem.

Keywords: unit commitment (UC); competitive swarm optimizer; binary optimization

1. Introduction

Given the continuous increase of electricity demand and unbalanced demand distribution, proper
adjustment of the unit status in order to realize rational use of the generation power resource is of
significant importance to the power system operators [1]. The normal method to solve the UC problem
is to minimize the economic cost and pollutant emissions by arranging to start-up or shut-down
the units while meeting various practical constraints including power demand balance, generation
limit, etc. [2]. Due to the remarkable complexity, constraints and binary switching effect of the system [3],
UC is widely regarded as a nonlinear, multi-constraint, large-scale and mixed-integer problem.

Many optimization algorithms have attempted to solve the UC problem. Some traditional
mathematical methods, such as the dynamic programming [4], integer programming [5], mixed-integer
programming [6], branch and bound methods [7], evolutionary programming [8] and Lagrangian
relaxation methods [9,10] have been employed. Apparent advantages and defects can be found
with these algorithms. For example, the Lagrangian relaxation methods is suitable for solving the
large-scale constrained problem; however, the algorithm may oscillate during the iteration and the
convergence speed is slow. Dynamic programming method is suitable for solving the problems
of multi-stage decision process optimization, whereas it is easy to cause dimensional disaster in
high-dimensional applications.

With development of the meta-heuristic (MA) optimization algorithms, many scholars have
applied the evolutionary based MA approaches to solve the UC problem. Generally speaking, MA
approaches construct algorithmic logic based on common phenomena in nature and life, and maintain
a single or a population of available solutions to search for the optimal solution for complex problems.
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Featured MA tools have been adopted in solving UC problem include genetic algorithms (GAs) [11,12],
simulated annealing (SA) [13], particle swarm optimization (PSO) [14] and ACO [15], as well as
teaching-learning based optimization (TLBO) [16], etc. Some popular PSO variants such as binary
particle swarm optimization (BPSO) [17,18], symmetric binary particle swarm optimization [19],
quantum-inspired particle swarm optimization (QPSO) [20], hybrid particle swarm optimization
(HPSO) [21,22] etc., have also been used. Additionally, other variants of PSO algorithm have been
applied in some engineering application, for example, the Bluetooth energy management and model
updating [23,24].

Inspired by the PSO algorithm and to further increase the refinement ability, Cheng and Jin
proposed the competitive swarm optimizer (CSO) [25] in 2015. The CSO adopts a novel learning
mechanism without the use of gbest and Pbest. It demonstrates competitions between particle pairs,
and the losers should update their velocity and position by learning from the winner. Although
the principle of CSO is fairly simple, the performance of convergence speed and optimum result is
considerably improved compared to its ancestor PSO, and this competitive mechanism has effectively
solved the large-scale optimization problem with high dimension and complexity. CSO and its variants
have been used to optimal installation of multiple distributed generation (DG) units [26], economic
dispatch [27,28] and other large-scale power system problems [29].

In this paper, a novel BCSO algorithm is proposed for solving the UC problem. The major
contributions of the paper are shown as below:

(1) To solve the problem of binary switching in the engineering application, a novel binary competitive
swarm optimization (BCSO) algorithm has been proposed based the framework of CSO algorithm.

(2) The proposed BCSO algorithm was applied to solve the UC problem with different unit number,
which provided a new method for solving large-scale optimization problems.

(3) The feasibility and practicability of the proposed algorithm and the applicability for large-scale,
mixed-integer problems was validated, through the comprehensive experimental analysis.

The rest of the paper is allocated as follows: The UC problem formulation is presented in Section 2.
The BCSO algorithm is then proposed in Section 3, followed by the detailed demonstration of the
process for BCSO solving UC problem presented in Section 4. The experimental results and numerical
analysis are given in Section 5. Finally, Section 6 concludes the paper.

2. Problem Formulation

The UC problem is occupying an outstanding position in the electric power system operation
area due to its complexity and importance. The efficient optimization of UC problem can effectively
reduce economic cost given that even 1% decrease would save millions of dollars a year. Generally,
the economic cost of units during a 24 h day horizon is modeled as the objective function for UC
problem. Meanwhile, it also needs to satisfy several equality and inequality constraints, for example,
power demand limit, spinning reserve limit, generation limit, etc. In this section, the formulation of
objective function and constraints conditions will be addressed.

2.1. Objective Function

Traditionally, the UC problem considered the duration within one hour as a single value, and it
does not consider the effect between each time period. In this paper, the economic cost is the sum of
costs of units within 24 h as shown in Formula (1) below.

TPCTn= min
T∑

t=1

n∑
j=1

[F j(P j,t)u j,t + SU j,t(1− u j,t−1)u j,t] (1)

In Formula (1), the total economic cost TPCTn is composed of two parts, namely fuel cost and
start-up cost respectively. The start-up cost is generated at the moment of the unit start. F j(P j,t) is the
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fuel cost function of the jth unit, and generation output is denoted as P j,t during the t hour. SU j,t is the
star-up cost of the jth unit during the t time, and u j,t is the status of jth unit at the t hour described by 0
or 1.

2.1.1. Fuel Cost

The fuel cost can be described by a quadratic polynomial formulation, as Formula (2) shows:

F j,t(P j,t) = a j + b jP j,t + c jP2
j,t (2)

where a j, b j and c j are the fuel cost coefficients of the jth unit.

2.1.2. Start-Up Cost

Due to the running time limit and other restrictions, the unit start-up requires an extra cost of the
fuel. The cost of start-up is therefore an indispensable part for the total economic cost. It is described
by Formula (3):

SU j,t =

{
SUH, j, i f MDT j ≤ TOFF j,t ≤MDT j + Tcold, j
SUC, j, i f TOFF j,t > MDT j + Tcold, j

}
(3)

The start-up cost of a unit may be categorized as hot start and cold start. When a unit has been
turned off for a short period of time, it is calculated as hot start. Otherwise, cold start cost may have to
be taken into account. Therefore, the start-up cost is closely related to the previous running status and
current status of the unit. In this section, SUH, j indicates the hot start-up cost of the jth unit, and the
SUC, j denotes the cold start-up cost of the jth unit. Tcold, j is the cold start hour of the jth unit. MDT j
denotes the minimum down time of jth unit, and MUT j denotes the minimum up time of jth unit.
TOFF j,t represents the continuous time of the jth unit with off status.

2.2. Constraints

Different numbers of on-line units require many factors to be considered during the different time
period. System constraints covering the unit condition limitations, interaction of each unit between
different time periods, etc. The precondition for achieving the optimal economic cost objective function
should meet the different constraint limits. The common limits are the power balance constrains,
generation limit constraint, spinning reserve constraint, etc. There are others limits, for example,
the ramping rate constraints, valve-point effect and emission constraints. In this paper, only major
constraints are considered for simplification.

2.2.1. Power Balance Constraint

In actual industrial power generation, the power demand keeps changing all the time. To meet
the power balance constraint is an important and foremost task in the scheduling. The power balance
constraint is an equality constraint, shown as the following Formula (4):

n∑
j=1

P j,tu j,t = PD,t (4)

where PD,t is the power demand at time t. In this paper, the power loss in the transmission process is
ignored. It is denoted that the generation output power of the unit jth at time t should be balanced with
the load demand of the system, which means the supply should be equaled to the demand. Otherwise,
the frequency and voltage may vibrate and lead to black out or other security problem [30,31].
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2.2.2. Generation Limit Constraint

The generation limit constraint of the unit is regarded as one of a physical constraint. This inequality
constraint limits the unit output to a certain range due to the generation capacity of the corresponding
unit. It is shown in the following formula:

u j,tP j,min ≤ P j,t ≤ u j,tP j,max (5)

where P j,min represents the minimum power generation, and P j,max denotes the maximum
power capacity.

2.2.3. Minimum Up/Down-Time Limit Constraint

As shown in the following Formula (6), the status shifting of different units are restrained by this
constraint, which is related to the MUT j and MDT j. In the unit system, the state only has two cases.
If the state of unit is 1, it means the unit is on-line, and vice versa.

u j,t =


1, i f 1 ≤ TON j,t−1 < MUT j
0, i f 1 ≤ TOFF j,t−1 < MDT j
0 or 1, otherwise

 (6)

In the Formula (6), TON j,t−1 is denoted as the continuous opening time, and TOFF j,t−1 is the close
time. If the running time of the unit jth is less than TON j,t−1, the unit should be turned on. Otherwise,
it should be turned off. If the close time of the unit jth is less than TON j,t−1, the unit should be off-line.
The running time or close time is also related to the start-up economic cost.

2.2.4. Spinning Reserve Limit Constraint

Because of that the load demand of the system is not the actual value, the existence of spinning
reserves is important to deal with unexpected extra load and to effectively achieve power balance
demand. The balance is an equal constraint shown in the following Formula (7):

n∑
j=1

P j,maxu j,t = PD,t + SRt (7)

where the SRt is the spinning reserves during the time t. Under normal conditions, the spinning
reserves accounts for a certain proportion of load demand, denoted as SRt = m ∗ PD,t. The value of m
is set as 0.1 in this paper.

The parameter settings of PD,t, MUT j, MDT j and many others are illustrated in the Table 1.
When searching for the optimal solution of the objective function, all constraints should be satisfied.
That will be described in detail in Section 4.

3. Proposed Binary Competitive Swarm Optimizer

The algorithm is inspired by particle swarm optimization whereas adopts a brand-new particle
evolutionary scheme. The particles of PSO update their speed and locations mainly based on the
Pbest and gbest, where Pbest is the best position of each particle among the evolutionary process and
gbest is the global best position along the whole iterations. However, the CSO maintains a completely
different evolutionary strategy compared with PSO. Its update method is mainly realized by the
mutual competition learning mechanism between particles, solving the large-scale function with good
optimization performance. Additionally, this method has many applications for complex economic
dispatch and unit commitment optimization problems. Inspired by the original CSO, a novel binary
CSO method is proposed in this paper for solving the UC problem.
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3.1. Competitive Swarm Optimization

In CSO algorithm, a novel pairwise competition mechanism between the particles is proposed.
The Pbest and gbest are removed, and the particles update their velocity and position by learning from the
winner, which has the better fitness compared with the opponent particle. In the algorithm, suppose a
population of particle Pt containing m particles. Each particle has two characteristics including position
and velocity. The positions of these particles are denoted by Xi(t) = (x(i,1)(t), x(i,2)(t), . . . x(i,n)(t)), and
n is the dimension of the particles. The velocity is denoted by vi(t) = (v(i,1)(t), v(i,2)(t), . . . v(i,n)(t)).
In the beginning, the position and velocity of the particles are initialized randomly and constantly
updated with the iteration. In each generation, the swarm Pt is randomly divided into m/2 couples
and the particles of each couple are a competing objects pair. In the integrated process, there will be
m/2 times competitions, where the fitness of these particle will be compared. If the fitness value of one
particle is better, it will be defined as the winner; Otherwise, the other particle is defined as the loser.
The loser should update its velocity and position through learning from the winner.

Suppose in the kth competition, the position of loser particle is described by Xl,k(t), and its velocity
is denoted by Vl,k(t), where k = 1, 2, . . . , m/2. After the competition, the velocity of loser will be
updated according to the evolutionary logic, which is shown in the following Equation (8):

Vl,k(t + 1) = R1(k, t)Vl,k(t) + R2(k, t)(Xw,k(t) −Xl,k(t)) + φR3(k, t)(X′ k(t) −Xl,k(t)) (8)

where Xw,k(t) is denoted as the position of the winner particle. R1(k, t), R2(k, t) and R3(k, t) are the
randomly produced vectors in the generation t between 0 and 1. Vl,k(t + 1) represents the velocity of
loser after the kth competition. X′ k(t) is the mean position value of the swam particle Pt. φ is the only
algorithm specific parameter in the algorithm and it controls the influence of X′ k(t) in the optimization
process. Therefore, the parameter setting is more important.

The position of the loser will be updated along with the velocity update as shown in the
following equation:

Xl,k(t + 1) = Xl,k(t) + Vl,k(t + 1) (9)

where Xl,k(t + 1) denotes the position of the winner particle after the kth competition. It is related to
the velocity of loser after the competition. After the competition, the winner particle will be directly
put into the swarm Pt+1 for the next generation, while the loser will be thrown into the swarm Pt+1

after update of velocity and position. Therefore, each particle has only one chance to take part in the
competition. The only one parameter scheme of this algorithm reduces the parameter tuning work of
the CSO. Meanwhile, the novel scheme significantly improves the algorithm performance. In essence,
the CSO is more suitable for solving large-scale optimization problems.

3.2. Proposed Binary CSO

The original CSO algorithm has been applied to many practical real-valued optimization problems.
However, there are also numerous large-scale discrete problems remaining to be solved such as UC.
In this section, a novel binary CSO in proposed. Inspired by evolutionary logic and discrete PSO
algorithm, the binary decision variables are determined by a transfer function from the updated velocity.
To improve the efficiency of the evolution, a V-shape transfer function (10) is adopted. The detailed
transfer function is defined as follows:

S(Vi, j) = 2 · |
1

(1 + e(−Vi, j))
− 0.5| (10)
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where the result of this function S(Vi, j) is a proportional value, it decides the value of Xi(t) according to
(11). The velocity Vi, j will be limited to a certain range after the initialization. In this paper, the velocity
is limited to [−4, 4].

xi, j =

{
1, i f rand < S(Vi, j)

0, otherwise

}
(11)

In Equation (11) rand is a number generated random, the range of it is [0, 1]. If the S(Vi, j) greater
than rand, the particle is 0. The novel BCSO method will be adopted in determining the binary status
of UC problem and the detailed procedure will be illustrated in the next section.

4. BCSO Application to UC

The process of handling the constraints conditions must be carried out in the unit commitment.
In this section, the constraint handling process and the proposed BCSO for UC problem will be
demonstrated. The constraints handling includes the power balance limit, generation limit and
minimum up- and down-time limit, etc.

4.1. Constraints Processing

The particle will undergo constraint checks after the initialization. According to Formula (6),
the state of particle is judged whether it has met the minimum up/down-time limit constraint. Once
violation has occurred, a corresponding technique [32] will be conducted to fix the solution and make it
meet the limit. Next, the particles are checked for the spinning reserve limit constraint according to (7).
A heuristic-based handling approach [30] is adopted to handle this. Specifically, if the accumulated
generation output power is larger than the sum of load and spinning reserve, some units should be
turned off. Otherwise, it should take measures to ensure more units are on-line. The process of power
demand balance constraint is embedded in the lambda iteration method where a tiny lambda value is
tuned. The handling of the generation limit constraint (5) is also embedded in the lambda iteration
method acting as the upper and lower boundaries.

4.2. Applied BCSO to UC

In addition to the handling of the constraints, the proposed BCSO is applied in the UC problem to
find the fitness of the objective function, determining economic optimum through the evolutionary
search for the unit start-up and shut-down. The steps of the algorithm are shown as follows:

4.2.1. Initialization

• Set the parameters of the power system such as the load demand, the fuel cost coefficients of the
unit, generation capacity and minimum up/down time, etc.;

• Initialize for the parameters of BCSO such as φ and maximum iteration time;
• Initialize and boundary check of the particles and their velocity, generate the value of the particle

according to Equations (10) and (11), then check the constraints;

4.2.2. BCSO Process

• Divide particles into m/2 couples, compute objective function of each particle in couple, determine
the loser and winner;

• Update the velocity of the loser according Equation (8) and check the boundary;
• Update the value of the loser according to Equations (10) and (11), and check the constraints to

generated the new swarm;
• If the iteration is less than the maximum value of the iteration, go back to the first step of BCSO

process. Otherwise, end the process and output the result.
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In this section, the proposed BCSO method is adopted for solving the UC problem. The experimental
results are expressed in the following section.

5. Experimental Results and Analysis

In the numerical study, the parameters of BCSO algorithm and data setting will be briefly
introduced, and the method BCSO is applied for different unit numbers, such as 10, 20 and 40 units.
All the case studies are simulated on an Intel(R) Core(TM) i7-3537U CPU @ 2.50 GHz PC and the Matlab
(R) 2017a software platform. The experimental result will be compared with different algorithms to
prove that the competitive performance of proposed BCSO algorithm for solving the UC problem.

5.1. Parameter of BCSO and Data Setting

In all the case studies, the population size is 150, and the maximum iteration is 200. The velocities
of particles are set from −4 to 4. The dimension increases along with the unit numbers increase,
where the range of dimension rise from 240 to 2400 for the binary decision viable, associated with the
same scale of real-valued variables for power output of the corresponding units. With the dimension
increases, the only algorithm parameter φ in the BCSO increases from 0.0 to 0.3. Additionally, the data
settings are listed in Table 1.

Table 1. Parameter setting for Binary Competitive Swarm Optimizer (BCSO).

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pmax (MW) 455 455 130 130 162 80 85 55 55 55
Pmin (MW) 150 150 20 20 25 20 25 10 10 10
a ($/MW h) 1000 970 700 680 450 370 480 660 665 670
b ($/MW h) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c ($/MW h) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.000793 0.00413 0.002221 0.00173

MU (h) 8 8 5 5 6 3 3 1 1 1
MD (h) 8 8 5 5 6 3 3 1 1 1

Hot Start Cost (\$) 4500 5000 550 560 900 170 260 30 30 30
Cold Start Cost (\$) 9000 10,000 1100 1120 1800 340 520 60 60 60

Initial Status (h) 1 1 0 0 0 0 0 0 0 0

5.2. The Experimental Results of BCSO

The BCSO algorithm is applied to the different trials to test the performance. To eliminate the
randomness, algorithms run 30 independent trials from different initial populations in each trial and get
the mean, best and worst values. The Table 2 shown the comparison result between BCSO and improved
binary particle swarm optimization (IBPSO), improved particle swarm optimization (IPSO), hybrid
particle swarm optimization (HPSO), quantum-inspired particle swarm optimization (QPSO), genetic
algorithm (GA), simulated annealing (SA), binary- real-code GA (brGA), discrete binary differential
evolution (DBDE), binary differential evolution (BDE), binary glowworm swarm optimization (BGSO),
binary particle swarm optimization (BPSO), best parallel particle swarm optimization (BLPSO), and
new binary particle swarm optimization (NBPSO) algorithm with the unit is 10, from it can see that
the optimum result of NBPSO and BCSO are 563,937.68 $/day, but BCSO has an advantage in the
worst cost among all the algorithms, and the stability of BCSO is proven. The experimental results of
different unit numbers used BCSO are shown in Table 3. It can be seen from the table, when the unit is
10, the optimum solution of the BCSO is 563,937.68 $/day, and the worst fuel cost is 563,937.68 $/day.
From the mean, best and worst values, the fluctuation of the optimum solutions can be compared. It can
also be seen from the result that all the corresponding values obtained by BCSO are comparatively
small. The convergence curve of BCSO for the 10-unit case is shown in Figure 1, demonstrating that
the convergence speed of BCSO is fast and can obtain the optimal solution within around 30 iterations.
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Table 2. Comparison between BCSO and other algorithms.

Methods Trials Population Iteration Best ($) Mean ($) Worst ($) STDV Time (s)

IBPSO 10 20 2000 563,777 564,155 565,312 143 27
IPSO 50 40 1000 563,954 564,162 564,579 - -
HPSO 100 20 1000 563,942.3 564,772.3 565,785.3 - -

QBPSO 50 - 1000 563,977 563,977 563,977 0.00 18
GA 20 50 500 565,852 - 570,032 - 221
SA - - 50 565,828 565,988 566,260 - 3.35

brGA 30 - 1000 563,938 564,253 564,088 18 -
DBDE 20 40 1000 563,977 564,028 564,241 103 3.6
BDE 50 20 1000 563,977 563,977 563,977 0.00 -

BGSO 50 50 - 563,938 563,952 564,226 - 3
BPSO 30 150 200 563,955.99 564,000.40 564,053.73 21.63 25.45

BLPSO 30 150 200 563,977.01 563,982.09 563,987.16 - 22.09
NBPSO 30 150 200 563,937.68 563,962.59 563,977.01 - 21.91
BCSO 30 150 200 563,937.68 563,937.68 563,937.68 0.00 11.58
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Table 3. Statistic experimental result of BCSO for different Unit numbers.

Units Best ($) Mean ($) Worst ($) Time (s)

10 563,937.68 563,937.68 563,937.68 11.58
20 1,124,389.73 1,124,477.52 1,124,524.29 20.15
40 2,246,837.71 2,247,351.83 2,247,675.59 35.02
60 3,367,348.99 3,367,466.61 3,367,535.33 49.45
80 4,491,212.46 4,491,574.93 4,491,717.60 66.91

100 5,610,281.71 5,610,624.74 5,610,986.92 85.01

There are many algorithms that have been used to solve the UC problem, for example, BPSO,
BLPSO and NBPSO [33]. The first picture in Figure 1 shows the convergence curve of the four
algorithms in the 10-unit problem, illustrating that the convergence speed of BCSO significantly
outperforms the other methods. The Table 4 shows the experimental result of BCSO compared with
the other binary PSO variants. Comparing the data in Table 4, we can find that the optimum solution
of the BCSO is the best, achieving 56,397.68 $/day. As for the 20, 40 or 60-unit tests, the BCSO method
also gets the best results among the four contestants. It can be concluded that the BCSO applied to the
UC problem can bring significant economic benefits compared with other counterparts.

Table 4. Comparisons using different methods for different Unit numbers.

Units Methods Best ($) Mean ($) Worst ($) Time (s)

10

BCSO 563,937.68 563,937.68 563,937.68 12.51
BPSO 563,955.99 564,000.40 564,053.73 21.56

BLPSO 563,777.01 563,982.09 563,987.16 21.01
NBPSO 563,937.68 563,962.59 563,977.01 21.05

20

BCSO 1,124,389.73 1,124,477.52 1,124,524.29 20.15
BPSO 1,127,588.66 1,129,897.11 1,131,708.18 32.32

BLPSO 1,126,027.27 1,126,195.45 1,126,748.06 31.32
NBPSO 1,128,147.58 1,128,157.00 1,128,218.22 33.28

40

BCSO 2,246,837.71 2,247,351.83 2,247,675.59 35.02
BPSO 2,260,669.13 2,267,206.95 2,273,667.73 51.77

BLPSO 2,254,213.53 2,254,289.66 2,254,967.89 51.72
NBPSO 2,261,696.75 2,261,696.75 2,261,696.75 53.17

60

BCSO 3,367,348.99 3,367,466.61 3,367,535.33 49.45
BPSO 387,761.20 3,395,743.16 3,404,382.46 69.09

BLPSO 3,384,093.39 3,393,103.18 3,395,468.84 66.68
NBPSO 3,395,480.43 3,395,480.43 3,395,480.43 69.39

80

BCSO 4,491,212.46 4,491,574.93 4,491,717.60 66.91
BPSO 4,524,683.47 4,538,115.06 4,547,525.84 103.94

BLPSO 4,513,521.52 4,520,667.44 4,522,452.92 98.97
NBPSO 4,530,843.70 4,530,843.70 4,530,843.70 101.33

100
BCSO 5,610,281.71 5,610,624.74 5,610,986.92 85.01
BPSO 566,545.61 5,482,671.50 5,692,414.71 112.45

BLPSO 5,655,610.14 5,655,610.14 5,655,610.14 113.54

NBPSO 5,648,702.49 5,648,702.49 5,648,702.49 121.56

The simulation result of BCSO and other algorithms is showed in Figure 1. This graph shows
different convergence curves for the iteration process on different unit numbers. It can be observed that
no matter what the number of units are, the green curve (representing the BCSO algorithm) always
converged around the 20th iteration. When the unit number is 20, 40 and 60, the convergence speed of
BLPSO algorithm was the same as that of BCSO, but the convergence speed of BLPSO is not stable, and
it becomes slower with the dimension increase. The curve of BPSO and NBPSO algorithm converged
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slowly, and the optimum solution is worse than the BCSO algorithm. Therefore, it can be concluded
that the convergence speed of BCSO algorithm is also of large advantage compared with others.

Figure 2 shows the mean values of the four contestant methods for solving different unit numbers.
In Figure 2, the blue column of BCSO is the shortest, forming the point of economic cost, and the
experimental results of the BCSO are the best. Combining the Table 4 and Figure 2, it can be proved
that the BCSO algorithm is a competitive tool in solving UC problem. From Figure 2, it can be
observed that the height difference gradually increases with the unit number increase, which means
that the difference of optimum solution between the BCSO with other algorithms is increasing with the
dimension scales increase. Thanks to the evolutionary advantage of BCSO, the proposed method is
even more competitive in solving the large scales cases.

The run time curve of four heuristic algorithms with different unit numbers is shown in Figure 3.
From Figure 3, it can be seen that the curve of BCSO (blue curve) is at the bottom, and it reflects that
the run time of BCSO is the least. Comparing the interval between different curves, we find that the
curves of BPSO, BLPSO and NBPSO have smaller intervals, for example, when the unit is 10 and
20, the three curves almost coincide, but the interval between BCSO and another algorithm is larger
and the interval increases with the unit-scales increase. For example, when the unit is 10, the run
time difference between BCSO and NBPSO is 8.54 s; when the unit increased to 100, the difference is
increased to 35.55 s. It can be concluded that the calculating time of BCSO algorithm is not affected by
high-dimensional issues. Therefore, the convergence speed and applicability of the proposed BCSO
algorithm are proved again.

From the experimental results shown above, it can be concluded that the BCSO is able to improve
the optimization accuracy and improve the economic effect. The BCSO algorithm converges quickly
and obtains competitive results. This may due to the fact that the character of the UC problem is
a high dimension and complicated problem, and the BCSO algorithm provides chances for further
exploitation in each dimension, and is therefore more suitable for solving this kind of problem.
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6. Conclusions

Unit commitment is an intractable problem in power systems which requires effective new
approaches. In this paper, a novel BCSO method is proposed in solving the mixed-integer large-scale
UC problem, minimizing the economic cost considering power demand balance limit, generation
capacity limit and spinning reserve and other constrains. The proposed BCSO is investigated on
a number of different unit systems, and compared with experimental results from state-of-the-art
evolutionary algorithms. Numerical results show that the BCSO can get better results compared to
the other algorithms, and it also converges comparatively faster. In a result, the proposed BCSO
method provides a very competitive tool to solve the UC problem. Future work may be addressed on
applying BCSO with the combination of ordinary CSO method for solving the more complicated UC
and economic load dispatch problems with the integration of stochastic renewable energy generations
and plug-in electric vehicles.
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