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Abstract: Selective catalytic reduction of NO with methane (NO-CH4-SCR) in the presence of excess
oxygen was investigated over the synthesized MnH-ZZs-n zeolite composite catalysts with FAU
(as core) and BEA (as shell) topologies. XRD, SEM, and NH3-TPD technologies were employed
to characterize the catalysts. It is found that the topological structure of the zeolite affected the
catalytic properties and H2O/SO2 tolerances considerably. MnH-ZZs-n catalysts exhibited much
higher NO-CH4-SCR activity than the physical mixture catalysts with comparable relative mass
content of Y and Beta zeolites, particularly the ratio of Y and Beta at the range of 0.2–0.5 than the
MnH-Beta catalysts with single topology. NH3-TPD results showed that one new type of strong acidic
sites formed in H-ZZs-n and remained in MnH-ZZs-n resulted from the interaction between the
Lewis and Brönsted acid sites under a particular environment. The special zeolite-zeolite structure
with ion-exchanged Mn ions in the core-shell zeolite composite catalysts contributed to the novel
NO-CH4-SCR properties.
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1. Introduction

The combustion of coal, gasoline, and natural gas meets mankind’s demands for energy. However,
the emission of flue gas has caused severe environmental pollution, particularly NOx (among them 90%
is NO), which can not only cause acid rain and photochemical smog, but also result in the greenhouse
effect. The catalytic removal of NOx is one of the most important ways to decrease the impact of NOx
on the environment [1]. Indeed, selective catalytic reduction of NO by NH3 (NH3-SCR) has been put
into commercial operation. However, well-known disadvantages such as storage of ammonia, costly
equipment, the danger of ammonia leakage, and the possible formation of ammonium sulfates due to
the reaction of SO2 (SO3), NH3 and H2O greatly restrict the widely application of this technology [2].
Thus, many researchers have made efforts to find other new reductants to substitute for NH3. It has
been found that hydrocarbons such as C3H6 and C3H8 exhibit high activity for NO reduction over
many catalysts [3]. In particular, Armor’s group reported that NO can be selectively reduced by CH4

over Co ion-exchange ZSM-5 and ferrierite in the presence of excess oxygen [4]. This is of considerable
interest because there are plenty of CH4 and natural gas vehicles increasing worldwide, and CH4 itself
is a greenhouse gas with a stronger greenhouse effect than carbon dioxide. A thorough review on the
state of research has been reported [5,6] in which three types of catalysts, i.e., metal oxides, loaded
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metal, and zeolite loaded metal, are active for CH4-SCR. Among them, metal-zeolite catalysts have
received the greatest attention because zeolite not only has a large surface, but also acid function and
high hydrothermal stability. Zeolite-based catalysts containing different metals have been reported as
active materials for the selective catalytic reduction of NOx with methane (CH4-SCR) [4]. CO [5,7,8],
Mn [6,9–11], Pd [12] etc. incorporated into ZSM-5 have been confirmed to be active sites for CH4-SCR.
On the other hand, the zeolite structure has considerably affected the CH4-SCR reactivity. For example,
ZSM-5, ferrierite, mordenite [13], and Beta [14] loaded metals exhibited high CH4-SCR activity, while
zeolite Y loaded metals are poor for the reaction. So far, almost all research has been focused only
on the zeolites with single topology. In fact, zeolitic composites with different porous structure have
shown the special synergic effects in catalysis [15–17]. CH4-SCR reactivity of the catalysts based on
two different zeolite structures (MOR and BEA) containing Pd and Ce was reported [18]. Compared to
each individual-zeolite catalyst, the catalytic performance of the zeolite composite was significantly
improved because of the synergic effects of the zeolites. In our group, a new type of zeolite composite
ZZs-n with FAU and BEA topology was synthesized. CoH-Beta/Y exhibited not only high CH4-SCR
activity but also better SO2 and H2O tolerance than CoH-Beta. Mn-zeolite is promising for CH4-SCR
because of relatively higher tolerance to water vapor [19] than Co-zeolite with single topology. Thus, it
is of considerable interest to investigate NO-CH4-SCR over MnH-ZZs-n. It is clearly evident from the
transient studies of the NO and NO + O2 reaction that the adsorbed NO molecules must be dissociated
over the partially reduced manganese sites [20]. The Mn/TiO2 catalyst showed good phase stability
during the NOx decomposition reaction at a different temperature and exhibited a good resistance
to 10 vol% H2O and 100 ppm of SO2 [21]. In comparison, Mn/TNT showed an impressive deNOx
potential compared to other active components in titania nanotubes [22].

In this contribution, NO-CH4-SCR over MnH-ZZs-n is investigated. Effects of H2O and SO2 on
the catalytic performance of MnH-ZZs-n are reported.

2. Materials and Methods

2.1. Catalyst Preparation

Zeolite composite was synthesized in the laboratory by two-step hydrothermal crystallization with
sodium silicate aqueous solution (29.12% SiO2, [OH−] = 2.75 mol/L), colloidal silica ([SiO2] = 6.02 mol/L),
sodium aluminate aqueous solution (31.65% Al2O3, [OH−] = 9.87 mol/L), sodium hydroxide,
tetraethylammonium bromide, ammonium hydroxide aqueous solution (25% NH3), and distilled
water. The synthesis procedure was as follows: Na-Y zeolite was first synthesized in terms of the
composition of (2.0–2.5) Na2O:(4.0–6.0) SiO2:Al2O3:420H2O. The synthesis gel was autoclaved at
373 K for 24 h. Then, it was cooled down to room temperature and added to the synthesis gel of
zeolite Beta under strong stirring conditions. The synthesis gel of zeolite Beta was prepared with
tetraethylammonium bromide, NH3·H2O, colloidal silica, and sodium aluminate aqueous solution
by following the procedures established by Eapen and co-workers [23]. The pH value of the above
mixture was adjusted to 12.0–12.5 with concentrated H2SO4 acid. Finally, the resultant uniform
mixture containing zeolite Y was crystallized again at 413 K for 120–160 h in a stainless-steel autoclave.
The products were filtered, washed, and dried at 393 K for 8 h to obtain core-shell zeolite composite,
denoted as ZZs-n (n is the ratio of zeolite Y and zeolite Beta in the composites). Some samples were
further calcined at 823 K for 6 h in an air flow with a heating rate of 1 K/min. Na-Y zeolite was
synthesized according to the same method, whereas Na-Beta zeolite with a Si/Al ratio of 15 was
synthesized in the laboratory.

The calcined samples were first ion-exchanged with 0.1 mol·L−1 of aqueous solution of NH4NO3 at
a liquid to solid ratio of 20 mL/g. The solid products were then thoroughly washed with distilled water,
dried at 383 K overnight, and finally calcined at 823 K to get H-zeolites. H-zeolites were subsequently
ion-exchanged with aqueous solution of Mn(CH3COO)2. The obtained solid samples were washed
with distilled water, dried at 383 K overnight, and calcined in air flow at a ramp of 2 K·min−1 from



Appl. Sci. 2019, 9, 1773 3 of 12

room temperature (RT) to 823 K and kept for three hours to obtain MnH-ZZs-n catalysts. MnNa-ZZs-n
catalysts were acquired using the same process. The ion-exchange conditions and selected properties
of the catalysts were listed in Table 1. With a decrease of zeolite Y in the zeolite composites, the special
surface areas of the composites decreased because of a larger surface area of zeolite Y than zeolite Beta.

Table 1. Preparation catalyst and the selected physical properties.

Catalyst Si/Al
Ion-Exchange Condition a

Mn
wt. %

Mn/Al
SBET

(m2·g−1)T (K) C (mol·L−1) L/S t (h) N

MnH-Y 2.0 353 0.01 20 24 3 2.55 0.12 576
MnH-Beta 15.0 353 0.01 20 24 3 2.12 0.38 405
H-ZZs-0.5 12.2 353 — — — — 0 0 420

MnNa-ZZs-0.5 12.2 353 0.01 20 24 3 2.07 0.37 428
MnH-ZZs-1.0 10.8 353 0.01 20 24 3 2.27 0.31 379
MnH-ZZs-0.5 12.2 353 0.01 20 24 3 2.15 0.38 359
MnH-ZZs-0.3 13.1 353 0.01 20 24 3 2.16 0.38 365
MnH-ZZs-0.2 14.5 353 0.01 20 24 3 2.23 0.39 363
MnH-ZZs-0.5–1 12.2 353 0.01 20 24 2 1.82 0.32 359
MnH-ZZs-0.5–2 12.2 353 0.01 20 24 1 1.27 0.25 356
MnH-ZZs-0.5–3 12.2 353 0.008 20 24 1 0.92 0.17 354

a : T, C, L/S, t and N represent ion-exchange temperature, concentration of solution, liquid to solid ratio, ion-exchange
time and times.

2.2. Catalyst Characterization

The crystalline of the catalysts was determined by using X-ray diffraction measurement (XRD;
Rigaku D/max_2500V) with Cu-Kα radiation. The crystallinity the zeolite composite catalysts were
estimated by comparing the areas of the selected diffraction peaks of (111), (220), (311), (511) and (440)
for zeolite Y, and those of (101) and (302) for zeolite Beta based on the corresponding reference samples,
respectively. The credibility of this method has been proven by the linear increase in the intensity of
the diffraction peaks of these two types of zeolites with increasing zeolite phase contents in the mixture
of amorphous silica and zeolite. In this way, n values in the Mn-ZZs-n samples were estimated as 1.0,
0.5, 0.3, 0.2, respectively. Thus, the mechanical mixtures (designated as ZZm-n) with the corresponding
amounts of MnH-Y and MnH-Beta phases were prepared for comparison. Specific surface areas of
the catalysts were measured by physical adsorption/desportion of N2 at 77 K isotherms on NOVA
1200e. The elemental composition of the catalysts was determined by atom absorption spectrum (AAS).
The morphology of the catalyst was observed by using a field emission scanning electron microscope
(FE-SEM S-5200).

Temperature programmed desorption of ammonia (NH3-TPD) tests were performed on a chemical
BET surface apparatus (CHEMBET 3000) equipped with a thermal conductivity detector (TCD).
An 0.15 g sample was loaded into a U model quartz tube, treated at 923 K in ultra-highly purified (UHP,
99.999%) He flow for 1 h, and then cooled down to 373 K. The sample was saturated with 10% NH3/He
at 373 K and purged with UHP He flow at 373 K for 30 min. The NH3-TPD test was conducted by
heating the sample in 80 mL·min−1 UHP He flowing at a rate of 10 K·min−1. During the NH3-TPD test
course, a water trap was equipped between the sample and the TCD to avoid interference by water.

2.3. Catalytic Activity Measurements

The NO-CH4-SCR test was carried out in a fixed-bed micro-reactor system consisting of a 6 mm
I.D. quartz reactor tube, a temperature controller with K mode thermoelectric couple, four mass
flowing controllers, and a gas chromatograph (GC 9A) equipped with a TCD. The catalyst samples
were palletized, crushed, and sieved to 40~60 mesh for the catalytic tests. The 0.3 g particular catalyst
was packed into the micro-reactor and pretreated in He flow (40 mL·min−1) at a ramp of 1 K·min−1

from room temperature to 673 K and kept for 1 h. Then, the sample was cooled down to 473~573 K and
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the reaction mixture containing 2180 ppm NO, 2050 ppm CH4, 2% O2, balanced by He flowed through
the catalyst at 75 mL·min−1 (GHSV 7500 h−1 by assuming the bulk density of the catalyst 0.5 g·cm−3).

Under oxidizing conditions, sulfur compounds end up mainly as SO2; therefore, SO2 was chosen
as model sulfur compound. For reactions involving SO2, a reactor with two-inlets was used to minimize
contamination of the system by SO2 exposure. SO2/He (294 ppm) was added to the reactor via a
separate inlet. The final concentration in the feed was 78 ppm. Water vapor was added to the feed
using an H2O saturator comprised of a sealed glass bubbler with a medium-pore frit immersed in
distilled water. Helium (20 mL·min−1) flowed through the bubbler, carrying H2O vapor to the feed.
The bubbler was placed in a constant temperature tank. Different amounts of H2O vapor could be
added to the feed by adjusting temperature of the bubbler. The gas line containing H2O vapor was
heated traced to a temperature higher than the saturation temperature. An ice-cooled H2O condenser
was incorporated downstream of the reactor before effluent gas entering gas chromatograph.

The compositions of the effluent gas were analyzed by using the GC with molecular sieve-5A
column for N2, O2, CH4, CO, and Porapak Q column for CO2 and N2O. Negligible N2O was formed
in the effluent gas. NO and NO2 were quantified by using a flue gas analyzer (Kane May, UK).
The catalytic activity was evaluated based on the NO to N2 conversion CNO: CNO = 2 × ([N2]o/[NO]i)
× 100% where [N2]o and [NO]i represent concentration of outlet N2 and inlet NO, respectively. CH4

conversion CCH4 was expressed as: CCH4 = (([CH4]i-[CH4]o)/[CH4]i) × 100%, where [CH4]i and [CH4]o

represent the concentration of CH4 in inlet and outlet, respectively. The above experiments were
repeated three times, and the data were the average of these three runs.

3. Results and Discussion

3.1. XRD Patterns of the Catalysts

Figure 1 shows the XRD patterns of MnH-ZZs-n (n = 1.0, 0.5, 0.3, 0.2), in which all diffraction
peaks are assigned to the characteristics of FAU and BEA topologies, without other undetermined
crystalline phases. The crystallinities of the MnH-ZZs-n catalysts are 90~95% of the parent H-ZZs-n
samples, respectively, indicating the zeolite lattices were undisturbed after ion exchanging because of
the mild ion-exchanged conditions and the low metal loadings.
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Figure 1. XRD patterns of MnH-ZZs-n (n = 1.0, 0.5, 0.3, 0.2).

FE-SEM measurements (Figure 2) show that MnH-Y prepared by the same method as that for
synthesizing the ZZs-n composite is composed of typical octahedral crystals, MnH-Beta has an irregular
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spherical shape. As expected, the mechanical zeolite mixture consists of two types of crystals belonging
to MnH-Y and MnH-Beta without uniform distribution, and they are closed contact with each other.
For the MnH-ZZs-0.5 composite sample, due to an epitaxial growth of tetragonal BEA structure around
cubic FAU structure, the special octahedral crystals of zeolite Y are not easily observed because of the
formation of a core-shell structure, resulting in a morphology somewhat similar to MnH-Beta. But the
composite catalyst is markedly different from MnH-Y (Figure 2A) and MnH-ZZm-0.5 (Figure 2C).
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3.2. NH3-TPD Results

NH3-TPD results H-zeolites and MnH-zeolite catalysts are shown in Figure 3. The TPD curves of
the H-Y show two partially overlapping NH3 desorption peaks at low temperature (around at 498 K
and 538 K), which are attributed to desorption of NH3 from weak acidic sites and an overlapping peak
at high temperature (around at 633 K), which is attributed to the desorption of NH3 from protonic H+

sites. After ion-exchange with Mn cations, total amount of weak acidic sites in the catalyst increased
because Mn2+ cations are a Lewis acid, while the amount of protonic H+ sites decreased because they
are displaced by Mn2+ cations. The NH3-TPD profile of H-Beta shows two well-resolved peaks at about
513 K and 673 K. Similar NH3-TPD curves are reported for the H-Beta samples with comparable Si/Al
ratio [24]. The amount of protonic H+ sites in the MnH-Beta also decreased because of ion exchange.
NH3-TPD results of the physical mixture of H-Y+H-Beta and ZZm-0.3 are very close to the algebra
sum of those of the single phase (not shown).

Worthily, the desorption peak of NH3 in H-ZZs-0.3 from 843 K shifts to 873 K in MnH-ZZs-0.3,
showed an increase in the acid strength, although the amount of the strong acidic sites decreased
considerably because of the exchange of part of H+ cations with Mn2+ ions (Figure 3A(c),B(c)).
The formation of highly strong acid sites in the zeolite composite originated from the epitaxial growth
of zeolite Beta on the zeolite Y because of an interface structure different from both zeolite Beta and
Y structures. The results are supported by framework IR spectroscopies of the physical mixture of
the two zeolites and the Y@Beta zeolite composite [25]. However, there is still no effective technique
to ascertain the ion sites in the high silicon zeolite even with single topology. But then, the Brönsted
acidity of a zeolite is also influenced by the presence of Lewis acidity. This synergy between Lewis and
Brönsted acid sites resulted in an increase of the acid strength, in which the combination of Brönsted
and Lewis acids can render superacids with remarkably enhanced strength [26]. In the former research
on the CoH-Y/Beta catalysts, we concluded that CO ion exchange sites existed in H-Y/Beta zeolite
composite in an indirect method. Mn2+ cations in the zeolite composite occupied the similar sites to
Co2+ in the catalysts [25].
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Figure 3. NH3-TPD spectra of (A) H-zeolite a. H-Y, b. H-Beta, c. H-ZZs-0.3; (B) MnH-zeolite a. MnH-Y,
b. MnH-Beta, c. MnH-ZZs-0.3.

3.3. Catalytic Activity Studies

NO-CH4-SCR reaction results over the catalysts are summarized in Table 2. In the process, NO
is converted to N2 and CH4 is converted to CO2 completely. MnH-Y exhibits low NO-CH4-SCR
activity in the entire test temperature range, which is similar to that over CoH-Y. The maximal NO
to N2 conversion was 61.1% at 773 K over MnH-Beta. This is probably due to the different cation
coordination and the different acidity of these two types of zeolites [8,27,28]. The cation coordination
is influenced by the ligand, crystal field and topological structure of zeolites [28], whereas the acidity
depends on the zeolite structure. These two factors collaborate to promote NO conversion to N2

in NO-CH4-SCR [27,28]. As expected, the NO to N2 conversion over ZZm-n decreases with the
content of MnH-Beta in the zeolite mixtures, and is lower than that over MnH-Beta in the entire test
temperature range.

NO to N2 conversions over MnH-ZZs-n are higher than that over ZZm-n in the entire test
temperature range, although the relative content of BEA and FAU phase is comparable. Moreover, the
methane conversion over MnH-ZZs-n was suppressed because of the different types of Mn2+ cations
and the interaction with acid sites in zeolites. The maximal NO to N2 conversion over MnH-ZZs-n
catalysts has a maximum with the change of zeolite Y phase in the composites. The maximal NO to N2

conversions are 74.6%, 77.3%, 65.8%, and 46.8%, respectively, over MnH-ZZs-n (n = 1.0, 0.5, 0.3, 0.2).
If there is no synergic effect between two zeolites in the composites, the NO to N2 conversions

over MnH-ZZs-n catalysts, such as at T = 773 K or 823 K, should be closed to those over the physical
mixtures MnH-ZZm-n. Practically, a significant difference is indicated, particularly in the case of the
relative contents of zeolite Y in the composites between 0.2 and 0.5. In all cases, a positive synergic
effect for NO to N2 conversion is observed over the core-shell composite catalysts [18].

To understand the effect of protonic sites in the catalysts, activity tests were performed over
MnNa-ZZs-0.5 and MnH-ZZs-0.5 prepared with the same parent Na-ZZs-0.5 zeolite composite.
The results in Table 2 show that NO to N2 conversions over MnNa-ZZs-0.5 and MnH-ZZs-0.5 catalysts
are comparable at a temperature below 723 K. Increasing the reaction temperature, NO-CH4-SCR
activity over MnH-ZZs-0.5 is much higher than that over MnNa-ZZs-0.5. The maximal NO to N2

conversions are 77.3% at 823 K over MnH-ZZs-n and 55.5% over MnNa-ZZs-n at the same temperature.
It is well known that the acidic OHs in zeolites are active in adsorbing and perturbing hydrocarbon
molecules, and nitrogen oxides as well [29], the protonic sites promoted NO-CH4-SCR. Obviously the
synergistic effect between the metal and protonic sites of zeolite is reflected only at a higher temperature
in the reaction system.



Appl. Sci. 2019, 9, 1773 7 of 12

Table 2. CH4-SCR activity over MnH-ZZs-n, MnH-Y, MnH-Beta and physical mixture samples in the absence of H2O and SO2.

Sample
NO Conversion to N2 (CH4 Conversion to CO2) (%)

573 K 623 K 673 K 723 K 773 K 823 K 873 K 923 K

MnH-ZZs-1.0
3.4 ± 0.14 5.6 ± 0.23 20.5 ± 1.01 47.6 ± 2.00 69.0 ± 3.01 74.6 ± 3.56 71.8 ± 3.20 66.5 ± 3.01

(1.3 ± 0.11) (3.2 ± 0.21) (15.5 ± 0.78) (39.8 ± 1.99) (66.4 ± 3.60) (84.4 ± 5.49) (98.4 ± 6.00) (100.0 ± 0.36)

MnH-ZZs-0.5
2.8 ± 0.13 5.4 ± 0.26 21.6 ± 1.00 54.8 ± 2.61 75.5 ± 3.11 77.3 ± 3.66 72.8 ± 2.90 68.7 ± 3.00

(1.6 ± 0.11) (2.8 ± 0.18) (14.8 ± 0.74) (42.4 ± 2.10) (73.2 ± 4.06) (85.4 ± 5.25) (99.4 ± 6.01) (100.0 ± 0.50)

MnH-ZZs-0.3
2.5 ± 0.11 4.8 ± 0.22 17.5 ± 0.81 36.5 ± 1.62 57.8 ± 2.25 65.8 ± 3.29 61.6 ± 2.10 54.4 ± 2.45

(1.4 ± 0.09) (3.1 ± 0.20) (11.4 ± 0.56) (26.2 ± 1.29) (58.5 ± 0.76) (80.2 ± 5.10) (98.2 ± 5.95) (100.0 ± 0.42)

MnH-ZZs-0.2
2.1 ± 0.10 3.6 ± 0.16 10.5 ± 0.49 25.5 ± 1.05 41.8 ± 1.80 46.8 ± 2.36 47.4 ± 1.01 43.4 ± 1.98

(1.2 ± 0.08) (3.0 ± 0.19) (8.7 ± 0.43) (22.6 ± 1.10) (50.7 ± 2.82) (73.6 ± 4.66) (93.2 ± 7.50) (100.0 ± 0.36)

H-ZZs-0.5
0.9 ± 0.09 1.5 ± 0.09 3.7 ± 0.15 10.8 ± 0.45 17.3 ± 0.71 20.5 ± 1.03 22.1 ± 0.53 23.9 ± 1.01

(0.1 ± 0.01) (0.2 ± 0.02) (1.6 ± 0.10) (6.2 ± 0.70) (14.2 ± 0.80) (25.1 ± 1.93) (30.2 ± 2.51) (34.8 ± 1.50)

MnH-Y
2.5 ± 0.11 3.9 ± 0.18 4.7 ± 0.19 5.7 ± 0.25 6.4 ± 0.30 6.7 ± 0.33 10.6 ± 2.21 11.9 ± 0.53

(2.7 ± 0.19) (3.1 ± 0.20) (2.8 ± 0.13) (2.9 ± 0.32) (7.3 ± 0.45) (11.4 ± 1.71) (17.6 ± 1.47) (23.9 ± 1.00)

MnH-Beta
3.6 ± 0.15 7.0 ± 0.20 19.2 ± 0.82 47.4 ± 2.01 61.1 ± 3.00 56.3 ± 2.56 49.7 ± 2.30 -

(2.4 ± 0.17) (4.4 ± 0.27) (14.7 ± 0.70) (46.2 ± 2.15) (84.2 ± 4.10) (100.0 ± 0.60) (100.0 ± 0.34)

MnNa-ZZs-0.5
2.8 ± 0.12 4.3 ± 0.20 21.1 ± 0.76 49.9 ± 2.12 60.1 ± 2.90 55.4 ± 2.61 41.2 ± 1.98 -

(3.1 ± 0.21) (4.6 ± 0.28) (18.6 ± 0.90) (44.7 ± 2.20) (86.4 ± 0.10) (99.8 ± 5.99) (100.0 ± 0.46)

MnH-ZZm-1.0
4.0 ± 0.14 5.8 ± 0.19 16.8 ± 0.75 46.2 ± 2.00 56.8 ± 2.52 56.1 ± 2.56 56.4 ± 2.41 -

(1.3 ± 0.09) (4.6 ± 0.27) (17.5 ± 0.87) (36.4 ± 1.65) (70.8 ± 2.85) (98.5 ± 5.85) (100.0 ± 0.35)

MnH-ZZm-0.5
3.1 ± 0.14 4.9 ± 0.24 12.7 ± 0.59 35.1 ± 1.56 55.6 ± 2.45 56.6 ± 2.57 51.7 ± 2.36 -

(1.3 ± 0.09) (2.2 ± 0.14) (16.6 ± 0.82) (28.6 ± 1.39) (67.9 ± 2.80) (93.2 ± 6.56) (100.0 ± 0.42)

MnH-ZZm-0.3
2.4 ± 0.14 3.6 ± 0.22 11.7 ± 0.50 26.1 ± 1.10 43.7 ± 1.95 51.1 ± 2.42 50.4 ± 2.35 41.0 ± 1.90

(1.2 ± 0.10) (2.1 ± 0.13) (12.1 ± 0.61) (2.35 ± 0.10) (45.3 ± 2.25) (81.5 ± 5.25) (95.8 ± 5.10) (100.0 ± 0.45)

MnH-ZZm-0.2
2.4 ± 0.14 3.8 ± 0.12 5.9 ± 0.21 17.7 ± 0.71 33.2 ± 1.59 43.7 ± 2.19 49.1 ± 2.32 47.4 ± 2.10

(1.2 ± 0.09) (1.9 ± 0.12) (6.4 ± 0.32) (14.8 ± 1.35) (29.5 ± 1.60) (58.6 ± 4.20) (86.0 ± 4.98) (99.5 ± 0.14)

Reactant composition in the inlet: NO 2180 ppm, CH4 2050 ppm, O2 2%; GHSV 7500 h−1.
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Table 3 showed the effect of Mn content in the catalysts on the NO-CH4-SCR activity.
The NO-CH4-SCR activity increases considerably over the catalysts incorporated with Mn loadings.
However, MnNa-ZZs-n and MnH-ZZs-n exhibited similar activity at a temperature lower than 673 K,
indicating the ion-exchange Mn in the zeolite composites play a key role in NO-CH4-SCR. As mentioned
above, the synergic effect of metal ions and protonic sites resulted in much higher NO-CH4-SCR activity
over MnH-ZZs-n than MnNa-ZZs-n at a high reaction temperature. The transient response analysis
and in situ FT-IR studies, by exploring the surface interactions of isotopic labeled reactants, showed
that the reaction follows a Mars–van-Krevelen-like mechanism through the formation of nitrosamide
and azoxy intermediates [30]. The normalized NOx conversions with respect to a different carrier
(support) as a function of surface active sites indicating that the promoted or isolated Mn4+ and Ce3+

species located over the surface of TiO2 are responsible for the high deNOx efficiency over Mn–Ce/TiO2

(Hk) catalyst [31]. So far, there still remain questions about the reaction mechanism and the potential
intermediate species over the Mn-based catalysts [30]. It can be concluded that Mn2+ cations in the
ion-exchanged zeolites are active sites and acid sites of zeolite play a minor role in the CH4-SCR of NO
to N2 at low reaction temperature; with increase of the reaction temperature, the synergic effects of
metal ions and protonic sites are the key factors for improving the reaction [13].

As a result, the properties of the ZZs zeolite composites are completely different from the physical
mixtures of zeolites ZZm in the reaction, the introduction of the protons into zeolites increases the
conversion of NO to N2, and but decreases the conversion of CH4 to CO2 under the same reaction
conditions. The introduction of Mn2+ cations into zeolites greatly increases the conversions of NO
to N2 and CH4 to CO2. The appearance of the strong acid sites partially increases the activity of the
catalysts at a low temperature.

Table 3. Effect of the Mn content in the MnH-ZZs-n on the catalytic activity.

Sample NO Conversion to N2 (CH4 Conversion to CO2) (%)

573 K 623 K 673 K 723 K 773 K 823 K 873 K 923 K

MnNa-ZZs-0.5
2.8 ± 0.12 4.3 ± 0.20 21.1 ± 0.76 49.9 ± 2.12 60.1 ± 2.90 55.4 ± 2.61 41.2 ± 1.98 -

(3.1 ± 0.21) (4.6 ± 0.28) (18.6 ± 0.90) (44.7 ± 2.20) (86.4 ± 0.10) (99.8 ± 5.99) (100.0 ± 0.46)

MnH-ZZs-0.5
2.8 ± 0.13 5.4 ± 0.26 21.6 ± 1.00 54.8 ± 2.61 75.5 ± 3.11 77.3 ± 3.66 72.8 ± 2.90 68.7 ± 3.00

(1.6 ± 0.11) (2.8 ± 0.18) (14.8 ± 0.74) (42.4 ± 2.10) (73.2 ± 4.06) (85.4 ± 5.25) (99.4 ± 6.01) (100.0 ± 0.50)

MnH-ZZs-0.5-1
2.4 ± 0.18 4.2 ± 1.13 16.9 ± 1.13 43.4 ± 2.71 55.1 ± 3.30 59.8 ± 3.60 62.6 ± 3.21 56.9 ± 3.01

(1.2 ± 0.10) (3.6 ± 0.80) (11.6 ± 0.81) (31.9 ± 2.01) (63.3 ± 3.50) (81.4 ± 5.00) (99.8 ± 5.52) (100.0 ± 0.51)

MnH-ZZs-0.5-2
2.3 ± 0.16 4.5 ± 0.93 13.9 ± 0.95 33.2 ± 2.10 48.1 ± 2.90 53.9 ± 3.45 55.3 ± 2.95 50.6 ± 2.61

(1.3 ± 0.11) (3.5 ± 0.75) (10.7 ± 0.75) (26.5 ± 1.81) (47.6 ± 2.81) (79.7 ± 4.95) (91.2 ± 5.01) (100.0 ± 0.46)

MnH-ZZs-0.5-3
2.5 ± 0.17 3.9 ± 0.75 10.9 ± 0.80 26.6 ± 1.72 38.1 ± 2.15 43.2 ± 2.81 45.6 ± 2.60 45.2 ± 2.41

(1.1 ± 0.09) (3.3 ± 0.65) (8.3 ± 0.66) (24.7 ± 1.71) (36.2 ± 2.16) (65.7 ± 4.01) (85.4 ± 4.80) (100.0 ± 0.50)

H-ZZs-0.5
0.9 ± 0.09 1.5 ± 0.09 3.7 ± 0.15 10.8 ± 0.45 17.3 ± 0.71 20.5 ± 1.03 22.1 ± 0.53 23.9 ± 1.01

(0.1 ± 0.01) (0.2 ± 0.02) (1.6 ± 0.10) (6.2 ± 0.70) (14.2 ± 0.80) (25.1 ± 1.93) (30.2 ± 2.51) (34.8 ± 1.50)

Reactant composition in the inlet: NO 2180 ppm, CH4 2050 ppm, O2 2%; GHSV 7500 h−1.

3.4. The Effects of H2O and SO2 on NO-CH4-SCR Activity

During the combustion of the fuel, the existence of H2O and SO2 in the exhaust is inevitable.
Indeed, the existence of H2O and SO2 greatly suppressed CH4-SCR catalytic activity of the Co-zeolite
catalysts [5]. Mn-ZSM-5 exhibited better H2O tolerance than Co-ZSM-5 for CH4-SCR [11]. Thus, it is
of considerable interest to study H2O and SO2 tolerance of the MnH-ZZs-n for CH4-SCR. Figure 4
shows the NO-CH4-SCR activity over MnH-ZZs-0.5 and MnH-Beta at 773 K in the presence of H2O
or/and SO2.

As shown in Figure 4A, addition of 2.5% (v/v) water vapor, NO to N2 conversion over MnH-ZZs-0.5
decreases from 75.2% a stable level 51.2% in about 3 h, while the CH4 conversion decreases from
73.3% to 48.1%. In the same condition, NO to N2 conversion over MnH-Beta decreases from 61.1%
to 36.0% from 30 min to 200 min, and the conversion of CH4 decreases from 84.2% to 58.9%. As the
water is removed, the CH4-SCR activity almost recovers to the original extent, which indicated that the
deactivation caused by the water is reversible. The decrease in the activity in the presence of water
vapor may be due to the competence of H2O with NO for interacting with Mn2+ ions to form hydrated
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species. The adsorption of H2O on the catalysts is physical and/or weak-chemical, and there are no
strong chemical bonds formed between H2O and active sites on the surface of the catalysts. In other
words, the Mn catalysts have a good resistance to H2O [21,32]. Notably, the introducing of water
vapor did not damage the topologic structure of the zeolites to remove the framework Al and decrease
Brönsted acid sites even at high temperatures because of the special zeolite-zeolite structure with high
hydrothermal ability.
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In Figure 4B, in the dry condition, addition of 78 ppm SO2 made NO conversion to N2 over
MnH-ZZs-0.5 decreases from 75.2% to a stable level 46.4% in about 4 h and CH4 conversion drops
from 73.2% to 41.4%. In the same condition, NO to N2 conversion changes from 61.3% to a stable level
31.2% and CH4 conversion alters from 84.4% to 55.2%. As SO2 is removed, the CH4-SCR activity is
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only partially recovered, indicating that deactivation caused by SO2 is irreversible. However, for the
selective reduction of NOx to N2 with NH3 in the presence of an excess of oxygen, sulfur dioxide with
a broad temperature window indicated without sacrificing too much of the efficiency [30], on this
point, complexing ability of NH3 with metal or metal ions is much stronger than that of SO2, which
itself has a strong interaction with Mn2+ and formed chemical bond in the CH4-SCR reaction system.

In Figure 4C, as 2.5% H2O and 78 ppm SO2 are introduced at the same time, NO to N2 conversion
over MnH-ZZs-n decreases from 75.3% to 44.1% and reaches to level off in about 4 h and CH4 conversion
from 72.9% to 42.4%. In the same condition, NO to N2 conversion over MnH-Beta decreases from
61.2% to 27.2% and to level off in about 4 h, CH4 conversion from 83.9% to 52.4%. As H2O and SO2 are
removed, the CH4-SCR activity recovers only a little, which indicates that the deactivation caused by
the co-existence of H2O and SO2 is irreversible because of the presence of SO2 in the reaction system.

4. Conclusions

MnH-ZZs-n core-shell zeolite composite catalysts used in NO-CH4-SCR showed the higher
activity than the physical mixtures MnH-ZZm-n, single phase FAU, or BEA zeolite. One new type of
strong acidic site existed in H-ZZs-n and changed the NO-CH4-SCR reactivity of MnH-MMs-n. Mn2+

cations, key active centres for NO-CH4-SCR at low temperature, and protonic acid sites increased
the conversion of NO at a high temperature. The special structure properties of zeolite composite
resulted in the high reaction activity of MnH-ZZs-n in NO-CH4-SCR. The strong H2O tolerance of the
catalyst in NO-CH4-SCR resulted from the new topology structure of zeolite composite and weak SO2

tolerance from the interaction with Mn cations.
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