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Abstract: Methane, known as a flammable and explosion hazard gas, is the main component of marsh
gas, firedamp, and rock gas. Therefore, it is important to be able to detect methane concentration
safely and effectively. At present, many models have been proposed to enhance the performance
of methane predictions. However, the traditional models displayed inevitable shortcomings in
parameter optimization in our experiment, which resulted in their having poor prediction performance.
Accordingly, the improved chicken swarm algorithm optimized support vector machine (ICSO-SVM)
was proposed to predict the concentration of methane precisely. The traditional chicken swarm
optimization algorithm (CSO) easily falls into a local optimum due to its characteristics, so the ICSO
algorithm was developed. The formula for position updating of the chicks of the ICSO is not only
about the rooster of the same subgroup, but also about the roosters of other subgroups. Therefore,
the ICSO algorithm more easily avoids falling into the local extremum. In this paper, the following
work has been done. The sample data were obtained by using the methane detection system designed
by us; In order to verify the validity of the ICSO algorithm, the ICSO, CSO, genetic algorithm (GA),
and particle swarm optimization algorithm (PSO) algorithms were tested, and the four models were
applied for methane concentration prediction. The results showed that he ICSO algorithm had
the best convergence effect, relative error percentage, and average mean squared error, when the
four models were applied to predict methane concentration. The results showed that the average
mean squared error values of ICSO-SVM model were smaller than other three models, and that the
ICSO-SVM model has better stability, and the average recovery rate of the ICSO-SVM is much closer
to 100%. Therefore, the ICSO-SVM model can efficiently predict methane concentration.

Keywords: methane detection; support vector machine; chicken swarm optimization; algorithm;
concentration prediction

1. Introduction

Air pollution is a serious environmental issue that has attracted more and more attention globally
in recent years [1–3]. Methane is the main greenhouse pollutant, and also the main component of
mine gas, biogas, and various liquid fuels [4,5]. It is stipulated that the lowest limit of explosion in
air is 5.0%, the highest limit is 15.0%, and the explosive capacity is the strongest when the volume
fraction is 9.5% [6]. Methane in the atmosphere can also cause a greenhouse effect and accelerate
global warming [7,8]. It is for these reasons that methane detection is an indispensable field of
research. Traditional detection generally adopts chemical methods, which require chemical reagents.
These reagents have many disadvantages, such as danger, need to replace, and short life, and so these
methods are not conducive to online real-time detection. In addition, absorption spectroscopy is a
detection method that offers a rapid, direct, and selective technique to measure the concentration of
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methane [9], and it has become the dominant detecting method [10,11]. Methane concentrations are
obtained through infrared spectroscopy with an appropriate forecasting model.

Currently, it is urgent that an accurate and effective methane prediction model be developed,
such as least squares fit, multi-element linear regression, back propagation neural network, or support
vector machine (SVM). SVM, based on the principle of structural risk minimization, has higher
efficiency when the number of training samples is small [12,13]. The performance of SVM is highly
related to its kernel parameters and penalty factor, so choosing appropriate parameters is the key to
improving the prediction accuracy. At present, there are a lot of parameter optimization algorithms.
For example, Zhou and Lu used the genetic algorithm (GA) to select features and optimize the SVM
parameters to improve the prediction accuracy of a hospitalization expense model [14]. Wang and
Guan used the particle swarm optimization algorithm optimized support vector machine (PSO-SVM)
classifier to classify the maximum tensile shear strength of spot-welded joints; the results showed that
the PSO-SVM classifier had a good accuracy [15]. The PSO-SVM based on adaptive mutation was
used to classify the increased volume and complexity of flow cytometry (FCM) data by Wang [16].
Liu proposed a short-term wind speed forecasting method, which consists of ensemble empirical
mode decomposition (EEMD) for data preprocessing, and an SVM optimized by the cuckoo search
algorithm (CS). The experimental results indicated that the proposed model can not only improve
the forecasting accuracy, but also can be an effective tool in assisting the management of wind power
plants [17]. A new cuckoo search algorithm based on a chaotic catfish effect optimization of the SVM
was proposed by He and Xia, who applied it to oil layer recognition [18]. Dai and Niu proposed a
SVM optimization based on differential evolution and the grey wolf optimization (DE-GWO-SVM)
algorithm to predict power grid investment, which proved that the DE-GWO-SVM model had strong
generalization capacity and had a good prediction effect on power grid investment forecasting in
China [19].

The CSO algorithm, known as a novel nature-inspired algorithm, was proposed by Meng Xianbing
in 2014 [20]. CSO is a stochastic optimization method based on the search behavior of the chicken,
which simulates the hierarchy order and the behaviors of a chicken swarm. The chicken swarm is
divided into subgroups, and each subgroup consists of chicks, some hens, and a rooster. There is
competition between subgroups, that is to say, there is a global optimization result. However, in the
paper [18], it was indicated that CSO easily falls into a local optimum, and its progress and speed are
greatly influenced by initial values. To this end, an ICSO is proposed. In the ICSO algorithm, a position
update equation was added the chicks’ learning from the rooster, and learning factors of the chicks
were introduced. The convergence accuracy of ICSO is improved, and the ICSO algorithm can easily
jump out of the local optimal [21]. The ICSO algorithm has been applied variously in many fields.
In Reference [22], the ICSO algorithm was applied in tracking control of the maximum power point
of a photovoltaic system. Liang and Wang employed an ICSO algorithm to improve the efficiency
of synthetic aperture radar (SAR) image segmentation [23] and so on. However, no paper has yet
reported on the application of ICSO algorithm in gas detection.

Based on the above research, this paper proposes a prediction model for methane based on
ICSO and SVM. The methane concentration is predicted by SVM, and the ICSO is used to optimize
the penalty factor and kernel parameters of SVM. To validate the performance of ICSO-SVM model,
the parameters of SVM were also optimized by CSO, GA, and PSO. This paper is organized as follows:
Section 2 introduces the methodology, including the SVM, CSO, and ICSO algorithms, and proposes
the ICSO-SVM forecasting model. Section 3 gives a brief introduction to the evaluation criteria for
forecasting performance. The experiment device and its performance analysis are introduced in
Section 4. In Section 5, the results and the superiority of the ICSO-optimized SVM are discussed,
using comparisons with the CSO-, GA-, and PSO-optimized SVM. Finally, Section 6 summarizes
this paper.
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2. Methodology

2.1. SVM

The SVM was proposed by Vapnik in 1995 [24,25]. SVM, as a machine learning method, is
effective for small samples, nonlinear, high dimensional, etc. SVM is developed from solving linear
problems; it can construct an optimal hyperplane under the condition of linear and divisible. However,
in practical applications, most problems are nonlinear. Therefore, the nonlinear input data map to a
high-dimensional feature space. For example, given a set of array lengths n, which belong to Rd:

(x1, y1), (x2, y2), . . . , (xn, yn)xi ∈ Rd, yi ∈ {−1,+1}, i = 1, . . . , n (1)

where xi ∈ Rd are input training samples, yi are training samples, and d is dimension.
If the samples are separable, there is a classification hyperplane that separates the two types of

samples. Crosses and open circles represent two types of samples in Figure 1, respectively. The nearest
points to the classified hyperplane are named the support vector. H is a classification hyperplane.
Hyperplanes H1 and H2 are linked to two types of support vectors and are parallel to H. The distance
between H1 and H is equal to the distance between H2 and H. The distance between H1 and H2 is
called the classification interval.
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Figure 1. Optimization classification of a hyperplane under a linear condition.

A hyperplane divides the data into two categories, as follows:{
(w·xi) + b ≥ 0, yi = +1
(w·xi) + b ≤ 0, yi = −1

(2)

where w is the vector of the hyperplane, x is the input vector of the training set, and b is the constant
term of the hyperplane. A hyperplane over two types of sample support vector is defined as:{

(w·xi) + b = +1
(w·xi) + b = −1

(3)

The interval d between hyperplanes H1 and H2 can be obtained from Equation (3):

d =
2
|w|

(4)

The regression function of classification of the hyperplane is defined as:

f (x) = (w·x) + b, w ∈ Rd, b ∈ R (5)
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The optimal hyperplane has a maximum margin between two classes. The optimal hyperplane
problem is transformed into solving the quadratic optimization, and the slack variable is introduced [26].
The quadratic form can be represented as:

min 1
2‖w‖

2 + C
n∑

i=1
ξi + ξ∗i

s.t.


yi − (w·xi) − b ≤ ε+ ξi
(w·xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0


(6)

where ξi, ξ∗i are relaxation factors, C is the penalty factor, ε is the insensitivity coefficient, and s.t.
is constraint.

Due to the complexity of the calculations of the quadratic optimization, the Equation (6) is
transformed into a dual problem with Lagrange duality theory, as Equation (7) and (8)

L(w, ξi, ξ∗i ,α,α∗, C,β, β∗) = 1
2‖w‖

2 + C
n∑

i=1
ξi + ξ∗i

−

n∑
i=1

αi[(wxi) + b− yi + ε+ ξi]

−

n∑
i=1

α∗i [yi − (wxi) − b + ε+ ξ∗i ]

−

n∑
i=1

(βiξi + β∗iξ
∗

i )

(7)

where αi, αi*, βi, βi* are all Lagrange multipliers.

max
αi,α∗i
− ε

l∑
i=1

(αi + α∗i ) +
l∑

i=1
yi(αi − α

∗

i )

−
1
2

l∑
i, j=1

(αi − α
∗

i )(α j − α
∗

j)(xi·x j)

s.t.


l∑

i=1
(αi − α

∗

i ) = 0

αi,α∗i ∈ [0, C]


(8)

The expression of f (x) in Equation (5) is expressed as:

f (x) =
l∑

i=1

βi(xi·x) + b (9)

βi is non-support vector. When the data set is certain, βi = 0. The f (x) is represented by the
remaining support vectors as:

f (x) =
∑
i∈N

βi(xix) + b (10)

where N is a subset of the input data set. For a particular problem, a model for this problem can be
determined by a subset of given data. When the problem is nonlinear, Equation (10) cannot accurately
represent f (x). The nonlinear input data map to a high-dimensional feature space using nonlinear
mapping Φ(x). In order to reduce the amount of calculation involved, the inner product operation of
the high-dimensional feature space is converted into a function transport of the input space by using
the kernel function K(xi, x).

K(xi, x j) = (Φ(xi)·Φ(x j)) (11)
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The expression of f (x) of Equation (10) can be expressed as:

f (x) =
∑
i∈N

βiK(xi, x) + b (12)

Common kernel functions include the linear kernel function, polynomial kernel function, sigmoid
kernel function, and Gaussian radical kernel function. The Gaussian radical kernel function is better
for problems with less a priori information [20]. The expression of the Gaussian radical kernel function
is expressed as:

K(xi, x j) = exp

−‖xi − x j‖
2

2r2

 (13)

where r is the radius of radial basis kernel function, and g = 2r2 is the kernel parameter.
The values of g and penalty factor C heavily affect the performance of SVM. The ICSO algorithm

is intended to optimize the parameters of SVM rather than relying on random selection.

2.2. Chicken Swarm Optimization Algorithm (CSO)

The CSO algorithm is a kind of bionic random search algorithm, which imitates the foraging
behaviors of a chicken swarm. The CSO algorithm consists of several subgroups. Each subgroup
consists of a rooster, some hens, and several chicks. The roosters have the best fitness value, and the
chicks have the worst fitness value. The position of each individual (roosters, hens, and chicks)
represents a solution of the problem. The rooster has the best search ability compared to hens and
chicks in each subgroup.

The rooster is a leader of the subgroup, with its position update equation defined by the following:

xi, j(t + 1) = xi, j(t) ·
(
1 + Φ

(
0, σ2

))
(14)

σ2 =

 1, fir ≤ fkr

exp
(

fkr− fir
| fir|+ε

) (15)

where xi,j(t + 1) is the position of the rooster at the time t + 1. xi,j(t) is the position of at the time t. i is
the subgroup number, j is the rooster index, Φ(0, σ2) is the Gaussian distribution with zero mean and
standard deviation σ. fir and fkr are the fitness value of rooster, which is randomly selected (k , i). ε is
the smallest constant that is not equal to 0.

The hens follow the rooster when foraging, so their position is affected by roosters in both the
same subgroup and other subgroups. Hens’ position update equation is as follows:

xi, j(t + 1) = xi, j(t) + C1 · rand ·
(
xr1, j(t) − xi, j(t)

)
+ C2 · rand ·

(
xr2, j(t) − xi, j(t)

)
(16)

C1 = exp(( fih − fr1)/(abs( fi + ε))) (17)

C2 = exp(( fr2 − fi)) (18)

where rand is a random number over [0, 1]. fr1 is the fitness value of the r1th rooster, which belongs to
the same subgroup as the ith hen. r2 is an index of chicken (rooster or hen), which is randomly selected
and not equal to r1. C1 and C2 are the weight of the same subgroup and a different subgroup to the
hen, respectively.

The chicks follow their mothers when foraging; their position update equation is as follows:

xi, j(t + 1) = xi, j(t) + F ·
(
xm, j(t) − xi, j(t)

)
(19)

where xm,j is the position of the ith chick’s mother. F (F ∈ [0, 2]) is a following coefficient, which means
that the chick will follow its mother to go foraging.
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2.3. Improved Chicken Swarm Optimization (ICSO)

In the swarm, the chicks will follow their mother hen when foraging. The chicks have the worst
foraging, and have the smallest foraging range—that is to say, the chicks have the worst global search
ability. In the CSO algorithm, the number of hens is the largest. Therefore, the search ability of hens
has a great influence on the convergence of the CSO algorithm. From Equation (16), we can see that
the position of hens is affected by roosters in the same subgroup and other subgroups, and hens
have no self-learning ability. The roosters fall into the local optimum, which results in the hens and
chicks falling into the local optimum and affecting the convergence of the whole algorithm. In the
Improve Chicken Swarm Optimization (ICSO) algorithm, learning factors C3 and C4 are introduced to
the chicks’ position equation to solve the above problem. The chicks’ position is not just about the
rooster of same subgroup, but the roosters of other subgroups. The chicks’ position update equation is
modified as follows:

xi, j(t + 1) = xi, j(t) + F ·
(
xm, j(t) − xi, j(t)

)
+ C3 ·

(
xr3, j(t) − xi, j(t)

)
+ C4 ·

(
xr4, j(t) − xi, j(t)

)
(20)

where C3 and C4 are constants, which are learning factors by which the chicks follow roosters of the
same subgroup and other subgroups, respectively. xr3,j is position of the rooster in same subgroup as
the chicks. xr4,j is position of the rooster in other subgroups.

2.4. ICSO Optimized SVM Model

The steps of ICSO optimized SVM are as follows:

(1) Parameter setting. The population size pop: namely, the number of chickens (roosters, hens, and
chicks). The maximum number of iterations M: the chickens finish their forage after repeating
their search procedure M times. Reconstruction coefficient G: the role assignment of chickens
and the subgroup divisions will be done every G times. The numbers of roosters is denoted as
RP, hens are HP, mother hens are MP, and chicks are CP. The values of the learning factors are
denoted as C3 and C4. The penalty factor C and the kernel parameter g are set within a range.

(2) Calculate the best fitness of the individuals, and find the optimum position according to the value
of their fitness. Initialize the personal best position p best and the global best position g best.
Initialize the current iteration number t = 1.

(3) If t% G = 1, rank the fitness of chickens and sort chickens according to their fitness values in
descending order. Select the chickens with the best fitness values as roosters. Those chickens with
the worst fitness values are chicks, and the other chickens are hens. The chickens are divided into
subgroups, the number of subgroups equals to the number of roosters. The hens and chicks are
randomly assigned. The hens are assigned randomly as the chicks’ mothers, and chicks are in the
same subgroup as their mothers.

(4) Update the position of each chicken with Equations (14), (16), and (20), and recalculate the fitness
values of the chickens. Update the value of p best and g best.

(5) Repeat steps (3) and (4) until the iteration stop condition is reached, and output the optimum value.

3. Performance Evaluation Criterion

For the spectral data of methane with large variations, pretreatment should be done before training.
Experimental data were given normalized treatment as follows:

y =
x− xmin

xmax − xmin
(21)

where x is the raw data, y is the processed data, and x, y ∈ Rm. xmin = min (x). xmax = max (x). The
fluctuation range of processed data is 0–1, and yi ∈ [0, 1], i = 1, 2, . . . n.
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The mean squared error (MSE), relative error (RE), and the recovery rate (r) were used to evaluate
the predictive effect of the model. Their values can be computed as follows:

MSE =

N∑
i

(
y′i − yi

)2

N
(22)

r =
y′i
yi
× 100% (23)

RE =
y′i − yi

yi
× 100% (24)

where yi is the true concentration value, yi’ is the predicted concentration value, and N is the numbers
of the sample set.

4. Introduction of Datasets

The experiment was carried out using the methane detection system shown in Figure 2. Based on
the infrared spectrum absorption characterization of methane gas, the long optical distance differential
absorption method for methane detection was studied. The system is mainly composed of light source,
filter system, double-chamber, signal collector, and a processing part.
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Figure 2. Structural diagram of methane gas detection system. 1—super light emitting diode light
source; 2—condensing mirror; 3, 9—slit; 4, 8, 11—plane mirror; 5—collimator; 6—grating; 7—focus
lens; 10—beam splitter; 12, 16, 18, 22—gradient index lens; 13, 14, 19, 20—spherical mirror; 15, 21—air
inlet; 17, 23—air outlet.

The light source uses a super light emitting diode (SLED). The power spectrum of the SLED was
obtained using the steady-state spectrograph (AQ6317C, YOKOGAWA, Tokyo, Japan), as shown in
Figure 3. The filter system uses slits, a collimator, a grating, a focus lens, and plane mirrors to obtain
the necessary experimental monochrome. The chamber consists of two parts: reference chamber I and
test chamber II. The length of chambers is 0.9 m. Reference chamber I is filled with nitrogen, and the
test chamber II. Is filled with the target gas (methane). As shown in Figure 2, the effective optical
path can be extended to 2.7 m because the light was reflected twice in chamber. Light from the light
source is scattered in the air inlet of the chamber, therefore, a graduated refractive index (GRIN) rod
lens is placed at the inlet and outlet of the chamber. The pigtail of the GRIN rod lens is fused with
transmission optical fiber.
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Figure 3. The power spectrum of SLED.

Nitrogen was used as the diluting gas to create concentration standards of methane gas.
Concentrations of methane at 2000 ppm, 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm,
8000 ppm, 9000 ppm, 10,000 ppm, 11,000 ppm, 12,000 ppm, 13,000 ppm, 14,000 ppm, 15,000 ppm,
16,000 ppm, 17,000 ppm, 18,000 ppm, 19,000 ppm, and 20,000 ppm were prepared. For each
concentration of gas, we made three repeated measurements. The measurement results are shown
in Table 1. Table 1 reveals that the maximum measuring error was 0.045, and the average error was
0.0075. The four-concentration absorption spectra of methane are shown in Figure 4. The linear
relationship between optical power and methane concentration is shown in Figure 5. The linear
correlation coefficient is 0.9888, and the linear equation is y = −0.2344 x − 41.41.

From the experimental results, we can see that the methane detection system shown in Figure 2 can
be used to detect methane. The data sets in this paper were obtained from the above detection system.
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Table 1. Methane gas test results and relative errors.

Standard Concentration of Methane/ppm
Detectable Concentration/ppm

Average Concentrations/ppm Relative Error
1 2 3

2000 2100 2010 2150 2090 0.0450
4000 3900 4070 3870 3970 −0.0075
6000 6110 6030 5900 6010 0.0017
8000 8060 8270 8100 8140 0.0175

10,000 10,110 9770 9960 9950 −0.0050
12,000 12,120 11,970 12,010 12,030 0.0025
14,000 14,240 14,170 14,050 14,150 0.0107
16,000 16,300 16,110 16,250 16,220 0.0138
18,000 17,950 17,870 18,130 17,980 −0.0011
20,000 19,860 19,930 20,020 19,940 −0.0030

5. Results and Analysis

The Windows 7 Ultimate operating system was used to perform the experiments. The specific
version of the software used to conduct the proposed model was Matlab2014a. The details of the
hardware are as follows: Intel(R) Core (TM) i3-4160 CPU (Fourth Generation Standard Edition,
Intel Corporation, Santa Clara, CA, USA and 2014), and 4 GB RAM. The effectiveness and superiority
of our method were verified through the following aspects.

The results of the ICSO algorithm were compared with the CSO, PSO, and GA algorithms.

5.1. Parameter Setting and Analysis

In this subsection, we give all parameter settings used in this paper and focus on analyzing some
parameters used in our method.

The parameters settings and analysis of ICSO, CSO, PSO, and GA are given after experimental
verification, as follows:

First, considering that the population size pop and the iterations M were small, it was difficult to
converge to a global optimum. If their values are too large, it will take much time. We set their values
to be 100 and 100, respectively, after experimental verification, and set the cross-validation value to be
3. Other parameters of the four algorithms are listed in Table 2. The four algorithms ran independently,
and the average convergence curve obtained is shown in Figures 6–9.

As can be seen from Figures 6–9, the ICSO algorithm found the optimal fitness value after the 4th
iteration, CSO after the 9th iteration, GA after about the 10th iteration, and PSO after about the 13th
iteration. The average fitness value of the ICSO algorithm began to converge after the 21st iteration,
the CSO after about the 22th iteration, and the GA after the 9th iteration, but it did not converge to the
optimal fitness. The average fitness value of PSO stabilized at the 3rd iteration, but it has a large gap
between the average fitness curve and optimal fitness curve.
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According to the above results, the ICSO algorithm is the fastest algorithm that is convergent to a
global optimum solution to solve optimization problems. The CSO algorithm is also convergent to a
global optimum solution, but the convergence speed is slower. The GA and PSO algorithms cannot
converge to the global optimum. Comprehensive comparison shows that the convergence effect of the
ICSO algorithm is the best.

Table 2. The parameters of the four algorithms.

The Algorithms Parameters

GA 1 C ∈ [0.1, 1000], g ∈ [0.001, 100]
PSO 2 C1 = 1.5, C2 = 1.7, w = 0.7, C ∈ [0.1, 1000], g ∈ [0.001, 100]
CSO 3 RP = 0.15 * pop, HP = 0.7 * pop, MP = 0.5 * HP, CP = pop − RP −HP −MP, G = 10, C ∈ [0.1, 1000], g ∈ [0.001, 100]
ICSO 4 RP = 0.15 * pop, HP = 0.7 * pop, MP = 0.5 * HP, CP = pop − RP −HP −MP, G = 10, C ∈ [0.1, 1000], g ∈ [0.001, 100]

1 genetic algorithm; 2 particle swarm optimization algorithm; 3 chicken swarm optimization algorithm; 4 improved
chicken swarm optimization algorithm.
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Figure 9. The fitness curve of particle swarm optimization algorithm.

5.2. Prediction Results

In our experiment, there were 40 concentrations (1000 ppm–40,000 ppm) of methane. We randomly
split the dataset into 80% training and 20% test sets. In other words, 32 samples were selected for
training the classifiers, while the rest of the samples were used to test the model. The training set and
testing set were randomly selected from the whole dataset. We repeated the train–test procedure five
times with four models (ICSO-SVM, CSO-SVM, GA-SVM, and PSO-SVM), and calculated the mean
value. The predicted results of the four models are shown in Table 3.

In order to analyze the performances of four models clearly, we calculated the relative error
percentages of the four models, as shown in Figure 10.

As shown in Figure 10, the fluctuations of the ICSO-SVM and CSO-SVM relative error lines are
stable, while the GA-SVM and PSO-SVM relative error lines are volatile. The maximum relative error
percentage of the ICSO-SVM model was 4%, which is obviously lower than the other three models.
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Table 3. The predicted results of the four models.

Samples Number Ture Value/ppm ICSO-SVM/ppm CSO-SVM/ppm GA-SVM/ppm PSO-SVM/ppm

1 2000 2300 2300 2600 2800
2 7000 6900 7200 7400 7700
3 11,000 11,300 11,500 11,800 11,800
4 14,000 14,100 14,200 13,700 13,600
5 19,000 18,800 18,900 18,600 18,700
6 26,000 26,200 26,200 26,400 26,700
7 31,000 31,200 31,300 30,700 30,700
8 38,000 37,900 37,900 38,300 38,200
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To eliminate bias in the test results, we repeated this train–test procedure 50 times with different
random splits. We then averaged the recovery of each test to get the recovery rate and the mean
squared error for each model.

The recovery rate can be calculated with Equation (23), and the mean squared error with Equation
(22). The recovery rates for 50 repetitions of the four models are shown in Figures 11–14. The recovery
rates and the mean squared errors of ICSO-SVM, CSO-SVM, GA-SVM, and PSO-SVM models are
shown in Table 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 
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Table 4. The recovery rates and the mean squared errors of four models.

Models ICSO-SVM CSO-SVM GA-SVM PSO-SVM

Average recovery rate/% 101.23 103.15 113.58 125.61
Average mean squared error 1.12 × 10−5 1.23 × 10−5 3.56 × 10−5 3.22 × 10−5

It can be seen from Figures 11–14 that the recovery rate of the ICSO-SVM model remained stable
within the values of [90, 110], the CSO-SVM and GA-SVM models within [80, 120], and the PSO-SVM
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model within [75, 120]. The results of the stability study showed that the ICSO-SVM model has better
stability. From Table 4, the four models could be indexed on their average recovery rate, as follows:
ICSO-SVM > CSO-SVM > GA-SVM > PSO-SVM. The four models could also be indexed on their
average mean squared error, as follows: ICSO-SVM > CSO-SVM > PSO-SVM > GA-SVM. The results
from the experiments indicate that the ICSO-SVM has the best prediction performance.

6. Conclusions

In order to detect the concentration of methane accurately, the support vector machine optimized
by improved chicken swarm optimization (ICSO-SVM) was used in this paper. First, the data were
obtained by the methane detecting system. Next, in order to verify the validity of the ICSO-SVM
model for predicting methane, CSO-SVM, GA-SVM, and PSO-SVM were used for comparison.

This study draws the following conclusions:

(1) The mean squared error was adopted as the fitness function of the models. The experimental
results show that the ICSO algorithm more easily finds a global optimum, and can converge
more stably than the other three algorithms. The results also show that the ICSO algorithm has
satisfactory convergence, and that it is effective for the improvement of the CSO algorithm.

(2) The samples were randomly selected from the whole dataset. The train–test procedure was
repeated five times with four models. Compared with the other three optimization algorithms,
the prediction values and predicted average relative error percentage of the ICSO-SVM model are
obviously superior.

(3) From the 50 train–test repeats experiment, we can see that the recovery rate of ICSO-SVM model
shows better stability than other three models. The average recovery rates of ICSO-SVM, CSO-SVM,
GA-SVM, and PSO-SVM were 101.23, 103.15, 113.58, and 125.61, respectively. The average mean
squared errors of the four models were 1.12 × 10−5, 1.23 × 10−5, 3.56 × 10−5, and 3.22 × 10−5,
respectively. These experimental results verify the feasibility and validity of ICSO-SVM for
predicting the concentration of methane.

These are initial steps. Further research should focus on integrating the detection system
and algorithm into methane detection equipment, meaning it would be possible to detect methane
concentration and obtain a concentration value quickly. Finally, the equipment should be tested at in
civil, ambient, and industrial spaces.
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