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Abstract: This study develops a modified multi-support response spectrum (MSRS) method, in order
to efficiently and accurately calculate the response of multi-support structures under incoherent
ground motions. The modified MSRS method adopts three ancillary processes, constructing structural
displacement vectors or constructing infinite stiffness members or increasing the degrees of freedom
at structural supports. Then, the modified MSRS method is verified in a comparison with the existing
MSRS method through a model of a five-span reinforced concrete continuous rigid frame bridge.
Finally, the collective structural response spectrum, the structural power spectrum, and the simplified
structural power spectrum are deduced from the equation of the motion taking ground motion
displacements as the input, and validated through the same bridge model.

Keywords: multi-support structures; process; response spectrum; power spectrum; incoherent
ground motion

1. Introduction

In recent decades, multi-support structures, such as long-span bridges, in cities or on coasts
have been constructed with the development of infrastructures around the world [1]. Meanwhile,
destructive earthquakes have frequently occurred on earth, for instance, the Wenchuan earthquake of
China in 2008 and the Fukushima earthquake of Japan in 2011, which seriously damaged many bridges.
These disasters promoted the considerable researches on the anti-seismic capacity of structures.

Furthermore, according to analytical and experimental achievements, the anti-seismic design
codes of structures in the world were continuously improved [2,3], leading to the survival of more
structures in serious earthquakes [4–7].

At present, a concept named as resilient city is established to make civil infrastructures enable to be
quickly restored after an earthquake [8]. Actually, this resilience indicates that structures could work in
a normal/stable working state or a limited elastic-plastic working state during a strong earthquake [9].
Thus, structural analysis, even for the structures in the elastic working state, is still necessary in order to
pursue the goal of resilient structures. Meanwhile, the progress in engineering materials and structural
designs has greatly improved the structural loading capacity, which has continuously provided higher
performance products for structural engineering [10–12]. Hence, new structures could have a stronger
capacity to work in the elastic state than the past structures under the same seismic magnitude [13,14].
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This tendency is promoting the development of analytical techniques for the structural elastic working
behavior in both calculating efficiency and simulating accuracy [15].

Infrastructures, such as multi-support structures and long-span structures, are huge in scale
and complex in configuration. These structures are important in social life and expensive in cost,
so that they must satisfy of safety requirements under the severe earthquakes [16,17]. So far, response
spectrum methods have already become the basic approaches for analyzing multi-supported or
long-span structures [18–20]. The conventional spectrum methods suppose that all the structural
supports move synchronously according to the same rule. However, because the seismic response of
multi-supported structures is in fact affected by wave passage, random disturbance, damping, and the
local site, it is concluded that the motions at different supports of the structure with multi-supports
are not completely consistent, particularly, for the long-span structures with multi-supports [21–24].
Berrah and Kausel modified the spectral value of the response spectrum in consideration of the effects
caused by different seismic wave inputs at various supports, and then used the modal combination
method to calculate the structural response [25]. Actually, the multi-support excitations affect not
only the spectral value, but also the correlation coefficient of the model combination. Hence, they
modified the correlation coefficient in their following study and finally obtained the Berrah-Kausel
(B-K) method [26]. Meanwhile, Kiureghian and Neuenhofer derived out the multi-support excitation
response spectrum (MSRS) method based on the stationary random vibration theory [18]. The MSRS
method has a rigorous theoretical basis and reflects the wave passage effect, incoherence effect, and local
site effect; also, the MSRS method reflects the ground motion correlation in different supports and the
whole working relation in structural vibration modes. In the past twenty years, the MSRS method has
made great contributions to the analysis of long-span and multi-support structures under incoherent
ground motions. However, the MSRS method also exposes some shortcomings and insufficiencies
with its applications:

The displacements near to the supports of long-span and multi-support structures are not accurate
in many cases, based on a conceptual and empirical adjustment. It is not clear that these displacements
are mainly related to the structural configuration or incoherent ground motions or the analytical
method itself. For instance, the displacements at structural supports might cause a change of the
structural configuration, which could result in a leap of the structural vibration modes to an extent.
When the differences of displacements at several structural supports are great enough, this mode
leap could not be neglected in the structural response. Besides, all the elements of an ideal structural
model synchronously work under a ground motion. But, in the real situation, a structure presents two
different features: (a) the structure undergoes a relatively low-intensity ground motion in the linear
phrase of structural vibration; (b) all the parts of the structure could achieve their working states, only
when the ground motion reaches to a certain intensity. This implies that the MSRS method might
overestimate or underestimate the anti-seismic ability of the structure, even in its linear analysis.

As mentioned above, an updating concept is to make the long-span and multi-support structures
keep in a linear/elastic working state, even under a strong shock. In addition, although these structures
simply consist of a large-span beam and two piers, their response under dynamic loading is complex
and difficult to accurately calculate. Hence, the improvement on the existing analytical techniques is
expected to address the issues raised in long-span and multi-support structures.

In view of the problems mentioned above, a modified MSRS method in this study is proposed
to calculate the seismic response of long-span or multi-support structures under incoherent ground
excitations more concisely and accurately, which can provide the useful reference to the rational seismic
design of the bridge with multi-supports. Three ancillary methods are tried inclusive of making the
structural displacement vector, making infinite stiffness members at supports, and increasing the
degrees of freedom at structural supports. Furthermore, this study tries to obtain the collective structural
response spectrum and structural power spectrum from the equation of the motion taking ground
motion displacements as the input; meanwhile, it proposes the simplified structural power spectrum.
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2. The Response Spectrum Method under Coherent Ground Excitations

The differential equation of motion of a lumped mass system with n-degrees-of-freedom under a
coherent ground motion can be written as

M
..
X + C

.
X + KX = −MI

..
xg(t), (1)

where, M, C, and K are the n×n mass, damping, and stiffness matrices; X,
.
X and

..
X are the displacement,

velocity, and acceleration vectors; I is the influence vector, which represents the displacements to
the structural degrees of freedom; and

..
xg(t) as a stochastic process is the time-history of the ground

acceleration motion. Then, the solution of Equation (1), the structural displacement, X (t), is written as

X(t) =
n∑

j=1

ϕ ju j(t) = Φu(t), (2)

where u(t) = [u1(t), u2(t), · · · un(t)]
T, in which u j(t) is a random excitation corresponding to the jth

mode; Φ = [ϕ1,ϕ2, · · ·ϕn] is the mode matrix, in which ϕ j is the jth mode vector. Here, structural
damping is supposed as proportional damping. After substituting Equation (2) into Equation (1),
Equation (3) for the jth modal is obtained by using the orthogonal condition of vibration modes

..
u j(t) + 2ζ jω j

.
u j(t) +ω2

j u j(t) = β j
..
xg(t) j = 1, 2, · · ·, n, (3)

where ω j and ξ j denote the natural frequency and damping ratio corresponding to the jth mode; β j is
the jth mode participation factor, which is obtained from Equation (4)

β j = −
ϕT

j MI

ϕT
j Mϕ j

. (4)

Introduce the differential equation of motion of the standard single-degree-of-freedom system

..
δ j(t) + 2ζ jω j

.
δ j(t) +ω2

jδ j(t) =
..
xg(t) j = 1, 2, · · ·, n, (5)

where, ζ j,ω j, and
..
xg(t) are the damping ratio, natural frequency, and ground motion, respectively. Then,

u j(t) = β jδ j(t). (6)

Suppose that z(t) is a certain seismic response of the structure, such as the displacement of a node, an
internal force in the member, and so on. Thus, z(t) can be expressed using the nodal displacement, X(t)

z(t) = qTX(t), (7)

where q is the transform vector relating to the function of the geometric and physical properties of the
structure. Substituting Equations (3) and (6) into Equation (7) yields

z(t) =
n∑

j=1

b jδ j(t), (8)

where,
b j = β jqTϕ j j = 1, 2, · · · , n. (9)
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3. The MSRS Method under Incoherent Ground Excitations

3.1. The Equation of Motion

The motion equation of the n-degrees-of-freedom system with m supports under an incoherent
ground motion excitation can be written as Equation (10) [27][

M Mc

MT
c Mg

]
..
X
..
Xg

+
[

C Cc

CT
c Cg

]
.
X
.
Xg

+
[

K Kc

KT
c Kg

]{
X
Xg

}
=

{
0
F

}
, (10)

where the subscript, g represents the point connecting the structural support and ground, and the
degree of freedom to the point g is called as the support degree of freedom. Therefore, Mg, Cg and Kg

are the m×m mass, damping, and stiffness matrices associated with the support degrees of freedom; M,
C, and K are the n× n mass, damping, and stiffness matrices associated with the non-support degrees
of freedom; Mc, Cc, and Kc are the n ×m coupling matrices associated with both the support and
non-support degrees of freedom;

..
X,

.
X, and X are the vectors of the absolute acceleration, velocity, and

total displacement at the non-support degrees of freedom;
..
Xg,

.
Xg, and Xg are the vectors of acceleration,

velocity, and displacement at the support degrees of freedom; F is the vector of the reacting forces at
the support degrees of freedom.

3.2. Solution of Equation (10)

As mentioned above, z(t) denotes a structural seismic response, such as nodal displacement or
internal force in members. Decomposing the structural absolute displacement, X, into the pseudo-static
displacement, Xs, and the dynamic displacement, Xd, the structural seismic response can be written as
Equation (11)

z(t) = qTX = qT
(
Xs + Xd

)
. (11)

By using the mode decomposition method, the mean value and mean square deviation of the structural
peak response, µ|z,max| and σ|z,max|, can be calculated as Equations (12) and (13)

µ|z,max| =

[
m∑

k=1

m∑
l=1

akalρxgkxglµxgk,maxµxgl,max + 2
m∑

k=1

m∑
l=1

n∑
j=1

akb jlρxgk
”
xglj

Dl
(
ω j, ξ j

)
+

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bikb jlρ”
xgki

”
xglj
µxgk,maxDk(ωi, ξi)Dl

(
ω j, ξ j

)1/2 (12)

σ|z,max| =

 m∑
k=1

m∑
l=1

akalρxgkxglσxgk,maxσxgl,max + 2
m∑

k=1

m∑
l=1

m∑
j=1

akb jlρxgk
”
xglj
σxgk,maxσ”

xgl,max
+

m∑
k=1

m∑
l=1

m∑
i=1

m∑
j=1

bikb jlρ”
xgki

”
xglj
σ”

xgk,max
σ”

xgl,max


1
2

(13)

where,

ρxgkxgl =
1

σxgkσxgl

∫
∞

−∞

Sxgkxgl(iω)dω, (14)

ρxgk
..
xglj

=
1

σxgkσ..
xglj

∫
∞

−∞

H j(−iω)S
xgk

”
xgl
(iω)dω, (15)

ρ..
xgki

..
xglj

=
1

σ..
xgki
σ..

xglj

∫
∞

−∞

Hi(iω)H j(−iω)S”
xgk

”
xgl
(iω)dω. (16)

In Equations (12)–(16), ω j and ζ j denote the natural frequency and damping radio of the jth mode;
µxgk,max is the mean value of the ground displacement peak at the kth support; Dl(ω j, ζ j) represents
the mean displacement response spectrum of the site condition at the kth support; ρxgkxgl denotes
the cross-correlation coefficient between the ground displacements, xgk and xgl at supports, k and l;
ρxgk

..
xgl

denotes the cross-correlation coefficient between the ground displacements, xgk at support k
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and the ground acceleration,
..
xgl at support l; ρ..

xgk
..
xgl

denotes the cross-correlation coefficient between

the ground accelerations,
..
xgk and

..
xgl at supports, k and l; σxgk and σxgl represent the mean square

deviations of displacements at supports, k and l; Sxgkxgl(iω) is the cross-power spectral density function
between the ground displacements xgk at support k, and xgl at support l for the ith mode; σ..

xgki
and

σ..
xglj

are, respectively, the mean square deviations of displacements of the ground accelerations,
..
xgk

at support k and,
..
xgl at support l; Hi(iω) is the complex frequency response function for ith mode

and H j(−iω) is the conjugate one; Sxgk
..
xgl
(iω) is the cross-power spectral density function between the

ground displacements, xgk at support k and the accelerations,
..
xgl at support l; S..

xgk
..
xgl

is the cross-power

spectral density function of the accelerations between
..
xgk at support k and at the

..
xgl support; σxgk and

σ..
xgki

can be obtained by Equation (17)

σ2
xgk

=

∫
∞

−∞

Sxgkxgk(ω)dω, σ2
..
xgki

=

∫
∞

−∞

∣∣∣H(iω)
∣∣∣2S”

xgk
”
xgk

(ω)dω. (17)

And the coefficients, ak and b jk are expressed by Equation (18),

ak = qTrk, b jk = qTϕ jβ jk.k = 1, 2, · · · , m; j = 1, 2, · · · , n, (18)

where q is the transfer vector, which can transform the displacement response into other structural
responses, such as the bending moment, shear force, and so on; ϕ j is the column vector of the jth
mode; rk is the kth column in the pseudo-static influence matrix, R = −K−1Kc; β jk denotes the jth mode
participation factor under the ground motion acceleration at support k, which can be calculated by the
following formula

β jk =
−ϕT

j Mrk

ϕT
j Mϕ j

.k = 1, 2, · · ·m; j = 1, 2, · · · n. (19)

4. The Modified MSRS Method

4.1. Problems in the MSRS Method

The response, z(t), in Equation (11) is obtained by the product of the transfer vector, q and the
displacement vector, X at the non-support degrees of freedom. However, not all responses are caused
by the non-support degrees of freedom completely, in other words, the displacements at the structural
support degrees of freedom also have a certain contribution to structural response. For example,
various internal forces in components around structural supports can not be obtained by the linear
combination of the displacements at the non-support degrees of freedom only, which results in the
great deviation of internal forces obtained by Equation (11). Hence, it is necessary to investigate the
contribution of displacements at the structural support degrees of freedom to the structural response.
The following section introduces three methods to improve the expression of the support contribution
to the structural response.

4.2. Method 1: Making the Structural Displacement Vector

This method is used to make the vector, Xa, including all the translational displacements of the
structure, that is,

Xa =

{
X
Xg

}
, (20)

where Xa is called the translational displacement vector. The transform vector, qa, is also divided into
two parts corresponding to Xa

qa =

{
q
qg

}
, (21)
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where q and qg correspond to X and Xg. Hence, when qa and Xa replace q and X in Equation (11), the
new expression of the structural response, z(t), can be written as

z(t) = qa
TXa =

{
q
qg

}T{
Xs + Xd

Xg

}
= qT

(
Xs + Xd

)
+ qg

TXg. (22)

Then, Equation (23) can be yielded by substituting Xs = RXg and Xd =
n∑

j=1

m∑
k=1
ϕ jβ jkδ jk(t) into

Equation (22)

z(t) =
m∑

k=1

(
qgk + ak

)
xgk +

m∑
k=1

n∑
j=1

b jkδ jk. (23)

If
(
qgk + ak

)
in Equation (23) is written as

ck = qgk + ak = qgk + qTrk, (24)

Equation (22) can be simplified as Equation (25)

z(t) =
m∑

k=1

ckxgk +
m∑

k=1

n∑
j=1

b jkδ jk, (25)

and Equation (12) can be simplified as Equation (26)

µ|zmax | =

 m∑
k=1

m∑
l=1

ckclρxgkxglµxgk,maxµxgl,max + 2
m∑

k=1

m∑
l=1

n∑
j=1

ckbl jρxgk
”
xglj

Dl
(
ω j, ξ j

)
+

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρ”
xgki

”
xglj
µxgk,maxDk(ωi, ξi)D j

(
ω j, ξ j

)1/2 (26)

It should be noted that Equation (26) includes the effect caused by the displacements at the
structural support degrees of freedom, so that this method could be considered as the best one.

4.3. Method 2: Making the Infinite Stiffness Member at Supports

Considering the contribution of displacements at structural supports to the structural response,
this method adopts making the infinite stiffness and massless member (unit bars) at supports (Figure 1b).
The structural degrees of freedom at supports are changed into the non-support degrees of freedom.
The structural vibration characteristics and the input of ground motion remain the same as those in
the original model. This method considers the response caused by the structural support degrees of
freedom without increasing the calculation. However, this method is not applicable for the structures
with hinge supports, because the rotating displacements at both ends of the infinite stiffness member
no longer remain completely consistent.
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4.4. Method 3: Increasing the Degrees of Freedom around Structural Supports

This method is used to increase the degrees of freedom around structural supports (Figure 1c).
All or almost all contributions of the displacements at the structural supports to the structural response
could be substituted by the degrees of freedom near the supports. However, this method could result
in an obvious increase of computation.

5. The Verification of the Modified MSRS Method

Here, a five-span reinforced concrete bridge is modeled as a 2-D frame system shown in Figure 2,
which is used to verify the modified MSRS method in comparison with the original MSRS method.
The distributions of the bridge mass and stiffness are homogeneous. Each span is 60 m and the width
of the main bridge is 10 m. The girder consists of four single-box pre-stressed concrete continuous box
girders, as shown in Figure 3. The four main piers are rectangular reinforced concrete piers with the
same cross sections of 1.8 m × 2.4 m, the same heights of 18.0 m, and the same damping radios of ξ1 =

ξ2 = 0.02.
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The planar discrete model of the bridge used for calculating the structural responses is shown in
Figure 4.
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The planar discrete model of the bridge used for calculating the structural responses is shown 
in Figure 4. 
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Figure 4. The five-span continuous rigid frame bridge model (unit: m).

Figure 5 shows the first six dissymmetric or symmetric vibration modes of the bridges because of
the symmetric structure.

The following section will firstly verify the shortcoming of the Complete Quadratic Combination
(CQC) method in comparison with the MSRS method through numerically analyzing the response
of the bridge under horizontal coherent or incoherent ground motion excitations as the stationary
random process. Then, the modified MSRS method is calculated in the following process shown in
Figure 6 and compared with the MSRS method using the same calculating example.
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5.1. Comparison of the MSRS Method with the CQC Method

Figure 7a,b show the peak displacements and bending moments at the individual points along
the length of the main beam calculated by the MSRS and CQC method in the case that the site is the
Category IV and the ground movement intensity is the Level 9. The response spectrum of the case is
shown in Figure 7a and the correlation coefficient, ρi j between mode i and j for the CQC method is
calculated by Equation (27)

ρi j =
8
√
ξiξ j

(
ξi + rξ j

)
r3/2

(1− r2)2 + 4ξiξ jr(1 + r2) + 4
(
ξ2

i + ξ2
j

)
r2

, (27)

where r is calculated by Equation (28)
r =

ωi
ω j

(28)

where ωi is the frequency for mode i.
It is shown that the structural response calculated using the MSRS method is less than that

obtained from the CQC method (Figure 7), because the MSRS method considers the wave passage effect
and the CQC method does not involve this effect instead. This implies that the result calculated using
the CQC method becomes conservative. Besides, the passage effect, which leads to the different phases
of the seismic wave at individual supports, at the same time, might reduce the structural response
in some cases. It can be seen that the results calculated by the two methods are obviously different
at the middle point of the main beam. The bending moment and the biggest displacement at this
point calculated by the CQC method are zero under coherent ground motion, while the corresponding
values calculated by the MSRS method are 322 kN·m and 4.075 mm, respectively. This is because the
MSRS method includes the pseudo static effect derived from the displacement differences of individual
supports and the CQC method does not introduce this pseudo static displacement instead. This further
indicates that the MSRS method can more accurately reflect the structural response than the CQC
method does.



Appl. Sci. 2019, 9, 1744 10 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 20 

while the corresponding values calculated by the MSRS method are 322 kN∙m and 4.075 mm, 
respectively. This is because the MSRS method includes the pseudo static effect derived from the 
displacement differences of individual supports and the CQC method does not introduce this 
pseudo static displacement instead. This further indicates that the MSRS method can more 
accurately reflect the structural response than the CQC method does.  

0 50 100 150 200 250 300
0

10

20

30

40

0 2 4 6 8 10
0

1

2

3

A
cc

el
er

at
io

n 
(m

/s
-2

)

Period (s)

   Acceleration response spectrum

0.0

0.1

0.2

0.3   Displacement response spectrum 

Di
sp

la
ce

m
en

t (
m

)

 The MSRS method
 The  CQC method

Th
e p

oi
nt

 d
is

pl
ac

em
en

ts
 (m

m
) 

The distance along the beam (m)

(a) 

0 50 100 150 200 250 300
0

1

2

3

4

Th
e 

pe
ak

 m
om

en
t (

kN
3m

)

The distance along the beam (m)

 The MSRS method
 The CQC method

(b) 

Figure 7. The results calculated by the MSRS method and the Complete Quadratic Combination 
(CQC) method: (a) The peak displacements of the main beam; (b) The peak bending moments of the 
main beam. 

5.2. Comparison of the modified MSRS method with the MSRS method 

Table 1 lists the bending moments at the typical girder and pier points calculated by the existing 
MSRS method and the modified MRSR method utilizing Method 1 and 2. From Table 1, it can be 
seen that:  
1. The bending moment values and the peak bending moment at the girder points calculated by 

the two methods are almost the same; 
2. The bending moments at the points far from supports calculated by the two methods are close 

to each other;  
3. The bending moments at the points of the piers close to the supports calculated by the existing 

MSRS method are much different from those calculated by the modified MSRS method, with 
even the biggest deviation is up to several tens of times different. Clearly, the MSRS method is 
inaccurate in calculating the responses near the supports when compared with the modified 
MSRS method. Therefore, the comparison based on Table 1 validates the modified MSRS 
method. 

Table 1. The comparison of bending moments from the MSRS method and the modified MSRS 
method. 

Position Bending moment M (×103 kN∙m) 

Method The MSRS method The modified MSRS 
method 1 1 

The modified MSRS 
method 2 1 

Girder point 4 2.99 3.06 3.06 
Girder point 10 1.06 1.06 1.06 
Girder point 16 0.30 0.30 0.32 

Pier point 7 14.30 39.50 39.50 
Pier point 13 14.20 37.50 37.50 
Pier point 32 35.40 1.36 1.36 
Pier point 33 35.30 0.79 0.79 

1 The modified MSRS method 1 or 2 indicates Method 1 or 2. 

Figure 7. The results calculated by the MSRS method and the Complete Quadratic Combination
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main beam.

5.2. Comparison of the Modified MSRS Method with the MSRS Method

Table 1 lists the bending moments at the typical girder and pier points calculated by the existing
MSRS method and the modified MRSR method utilizing Method 1 and 2. From Table 1, it can be
seen that:

1. The bending moment values and the peak bending moment at the girder points calculated by the
two methods are almost the same;

2. The bending moments at the points far from supports calculated by the two methods are close to
each other;

3. The bending moments at the points of the piers close to the supports calculated by the existing
MSRS method are much different from those calculated by the modified MSRS method, with
even the biggest deviation is up to several tens of times different. Clearly, the MSRS method
is inaccurate in calculating the responses near the supports when compared with the modified
MSRS method. Therefore, the comparison based on Table 1 validates the modified MSRS method.

Table 1. The comparison of bending moments from the MSRS method and the modified MSRS method.

Position Bending Moment M (×103 kN·m)

Method The MSRS Method The Modified MSRS Method 1 1 The Modified MSRS Method 2 1

Girder point 4 2.99 3.06 3.06
Girder point 10 1.06 1.06 1.06
Girder point 16 0.30 0.30 0.32

Pier point 7 14.30 39.50 39.50
Pier point 13 14.20 37.50 37.50
Pier point 32 35.40 1.36 1.36
Pier point 33 35.30 0.79 0.79

1 The modified MSRS method 1 or 2 indicates Method 1 or 2.

6. The Spectrum Methods for Incoherent Ground Displacement Excitations

6.1. The Differential Equation of Motion for Incoherent Ground Displacement Excitations

Nowadays, the concentrated mass method has been widely applied in the dynamic analysis of
structures, with the zero values for the off-diagonal elements in the mass matrix. Thus, a differential
equation of motion can be written as
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[
M 0
0 Mg

]
..
X
..
Xg

+

[
C 0
0 Cg

]
.
X
.
Xg

+

[
K Kc

KT
c Kg

]{
X
Xg

}
=

{
0
F

}
, (29)

in which all the items are the same meanings as those in Equation (10). Usually, an orthogonal damping
coefficient matrix is manually constructed, when using the mode-superposition method to solve the
differential equation of motion. Here, the off-diagonal elements in the damping matrix are also treated
as zero. If the calculated values do not agree with the experimental values, the calculating model could
be improved by changing the mode damping ratio.

For the concentrated mass system, the mass matrix is reasonable, like that in Equation (29).
For the coherent mass system, the mass matrix in Equation (29) is also applicable when the original
model 1 in Figure 1a is modified into that for the modified MSRS method by utilizing Method 1 in
Figure 1b. Also, for the model in Figure 1b, the support degrees of freedom always maintain the
same displacements with the non-support degrees of freedom, which are connected with the supports.
Hence, it is reasonable to assume that the coupling damping coefficient is zero for the support and
non-support degrees of freedom.

6.2. The Power Spectrum Method (Solution)

The first differential equation of motion in Equation (29) is written as Equation (30)

M
..
X+C

.
X+KX + KcXg = 0. (30)

Also, the solution of Equation (30) can be supposed as the form expressed by Equation (31)

X = Φu =
n∑

j=1

ϕ j · u j, (31)

where Φ = [ϕ1,ϕ2, · · ·ϕn] is the mode matrix; ϕ j is the column vector of the jth mode; u j is the
generalized coordinate of the jth mode. Substituting Equation (31) into Equation (30) and then
multiplying ϕT

j , Equations (32) and (33) can be obtained by using the mode composition method

..
u j +

ϕT
j Cϕ j

ϕT
j Mϕ j

·
.
u j +

ϕT
j Kϕ j

ϕT
j Mϕ j

· u j =
−ϕT

j Kc

ϕT
j Mϕ j

·Xg, (32)

..
u j + 2ζ jω j

.
u j +ω2

j u j =
m∑

k=1

β jkxgk, (33)

where xgk(t) is the ground motion displacement at support k at the time t; β jk denotes the participation
factor of the jth mode at support k, as expressed by Equation (34)

{
β j1, β j2 · · · β jm

}
=
−ϕT

j Kc

ϕT
j Mϕ j

, (34)

where m is the number of supports. Hence, Equation (33) can be converted to Equation (35) using

u j =
m∑

k=1

β jkδ jk,
..
δ j + 2ζ jω j

.
δ j +ω2

jδ j = xgk, (35)

X =
n∑

j=1

u jϕ j =
n∑

j=1

m∑
k=1

β jkδ jkϕ j, (36)
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where δ jk is the generalized displacement at the kth support in the jth mode.
Now, z is supposed as a structural response and expressed by Equations (37)–(39) through the

nodal displacement vector, X
z = qTX, (37)

z =
n∑

j=1

m∑
k=1

β jkqTϕ jδ jk =
n∑

j=1

m∑
k=1

b jkδ jk, (38)

b jk = β jkqTϕ j, (39)

where qT is the vector transferring displacement response to the other response; b jk is the combination
factor. Response z is a random process, and its self-power spectral density function can be obtained
from the theory of random vibration, that is,

Szz(ω) =
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jHi(iω)H(−iω)Sxgkxgl(iω), (40)

where ωi is the natural frequency to the ith mode; i = (−1)−
1
2 is the unit imaginary number;

Hi(iω) =
[
ωi

2
−ω2 + 2iζiωiω

]−1
is the complex frequency response function of the ith mode; H j(−iω) =[

ω j
2
−ω2

− 2iζ jω jω
]−1

is the conjugation of the complex frequency response function of the jth mode;
ζi is the structural damping ratio of the ith mode; Sxgkxgl(iω) is the cross-power spectrum density
function of the earthquake displacements on the ground at points k and l, which is obtained from the
acceleration cross-power spectrum density function, S..

xgk
..
xgl
(iω). Furthermore, the variance of response

z can be calculated as

σ2
z =

∫ +∞

−∞

Szz(ω)dω =
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl j

∫ +∞

−∞

Hi(iω)H j(−iω)Sxgkxgl(iω)dω. (41)

Now, ρδkiδl j is used to express the correlation coefficient of the jth mode response, δl j under ground
displacement, xgl(t) at support l and σ2

δki
is used to express the variance of the ith mode response, δki

under ground displacement, xgk(t) at support k, then,

ρδkiδl j =
1

σδkiδl j

∫
∞

−∞

Hi(iω)H j(−iω)Sxgkxgl(iω)dω, (42)

σδki
2 =

∫
∞

−∞

∣∣∣Hi(iω)
∣∣∣2Sxgkxgk(ω)dω. (43)

Thus,

σ2
z =

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρδkiδl jσδkiσδl j . (44)

According to σ2
.
z
=

∫ +∞

−∞
ω2Szz(iω)dω, the variance of the first derivative of z(t) is given as

σ2
.
z
=

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl j

∫ +∞

−∞

ω2Hi(iω)H j(−iω)Sxgkxgl(iω)dω. (45)

Furthermore, the average frequency, ω and the average rate, γ of z(t) beyond zero are calculated by
Equations (46) and (47)

ω =
σ .

z
σz

, (46)
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γ =
ω
π

. (47)

Meanwhile, the peak response factors, pz and qz of z(t) can be calculated by Equations (48) and (49)

pz =
√

2 ln(γTd) +
0.5772√
2 ln(γTd)

, (48)

qz =
π
√

6

1√
2 ln(γTd)

, (49)

where Td is the duration of an earthquake.
Finally, the mean value and mean value square deviation of the absolute peak value, |zmax| for the

structural response, z(t) during the period, [0, Td] can be obtained as

µ|zmax | = pzσz, (50)

σ|zmax | = qzσz. (51)

Once µ|zmax | and σ|zmax | are determined, the mean and variance of the peak response of the structure can
be obtained.

6.3. The Response Spectrum Method for Incoherent Ground Displacement Excitations

By substituting Equation (45) into Equation (46), µzmax can be written as

µzmax =

 m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρδkiδl j p
2
zσδkiσδl j


1
2

. (52)

According to the definition of the response spectrum, a response spectrum value equals to average
response of a single degree-of-freedom system subjected to the same ground excitation. Hence,

Dk(ωi, ζi) = pδkiσδki . (53)

Substituting Equation (53) into Equation (52), µzmax can be written as

µzmax =

 m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρδkiδl j

p2
z

pδki pδl j

Dk(ωi, ζi)Dl
(
ω j, ζ j

)
1
2

. (54)

Because p2
z/

(
pδki pδl j

)
is near to 1, then

µzmax =

 m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρδkiδl jDk(ωi, ζi)Dl
(
ω j, ζ j

)
1
2

. (55)

Equation (55) is the expression of the mean of the structural peak response under incoherent ground
displacement excitation.

In consideration of the effect of the support degrees of freedom, the expression of the mean
response spectrum method should be modified. Therefore, a structural response, z(t) can be expressed
by the nodal displacement, Xa and qa,

z(t) = qa
TXa =

{
q
qg

}T{
X
Xg

}
= qTX + qg

TXg, (56)
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z(t) =
m∑

k=1

qgkxgk(t) +
n∑

j=1

m∑
k=1

β jkqTϕ jδ jk(t) =
m∑

k=1

qgkxgk(t) +
n∑

j=1

m∑
k=1

b jkδ jk(t), (57)

µ|z,max| =

 m∑
k=1

m∑
l=1

qgkqglρxgkxglµxgk,maxµxgl,max + 2
m∑

k=1

m∑
l=1

n∑
j=1

qgkbl jρxgk
”
xl j

Dl
(
ω j, ζ j

)
+

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1

bkibl jρ”
xgki

”
xglj
µxgk,maxDk(ωi, ζi)Dl

(
ω j, ζ j

)
1
2

(58)

where qgk is the conversion factor of xgk in the conversion vector, qT.
It should be noted that the structural response derived from Equations (57) and (58) needs to

be used to construct the structural displacement vector, Xa like the modified MSRS method utilizing
Method 1.

6.4. The Simplified Power Spectrum Method

Here, a simplification of the peak factor, pz or qz, is made through the analysis of the structural
response in the example above. The site condition of the structure is the Category IV and the seismic
intensity IX. Structural damping ratio is supposed as 0.02. Structural response mean values and
variance peak factors are calculated by Equations (44), (45), (48), and (49), as listed in Table 2. In Table 2,
the mean values are µpz = 2.752 and µqz = 0.508; the standard deviations are σpz = 0.0400 and
σqz = 0.00884; the variation coefficients are δpz = 0.015 and δqz = 0.017; the largest difference between
pz and µpz is 2.75%; the largest difference between qz and µqz is 3.22%. The calculating result indicates
that the mean values and variance peak factors change to a small extent. Therefore, for a simplification,
the peak factors to structural responses can be approximately calculated according to the seismic and
structural features.

Table 2. The structural peak response values.

Position
Peak Factor

Position
Peak Factor

pz qz pz qz

VD 1 at Point 2 2.79 0.50 BBM at the left of Point 13 2.72 0.52
VD at Point 3 2.78 0.50 BBM at the right of Point 13 2.72 0.52
VD at Point 4 2.78 0.50 BBM at Point 14 2.72 0.52
VD at Point 5 2.77 0.50 BBM at Point 15 2.73 0.51
VD at Point 6 2.76 0.51 BBM at Point 16 2.80 0.50
VD at point 8 2.75 0.51 PBM 2 at Point 7 2.76 0.51
VD at Point 9 2.78 0.50 PBM at Point 13 2.70 0.52

VD at Point 10 2.81 0.49 PBM at Point 32 2.73 0.51
VD at Point 11 2.82 0.49 PBM at Point 33 2.72 0.52
VD at Point 12 2.78 0.50 SBM 2 at Point 36 2.71 0.52
VD at Point 14 2.72 0.51 SBM at Point 37 2.70 0.52
VD at Point 15 2.73 0.51 SF 3 in Beam 1–2 2.80 0.50
VD at Point 16 2.79 0.50 SF in Beam 2–3 2.79 0.50

HD 1 at bridge deck 2.70 0.52 SF in Beam 3–4 2.69 0.52
HD at Point 32 2.70 0.52 SF in Beam 4–5 2.80 0.50
HD at Point 33 2.69 0.52 SF in Beam 5–6 2.80 0.50
HD at Point 36 2.73 0.51 SF in Beam 6–7 2.80 0.50
HD at Point 37 2.69 0.52 SF in beam 7–8 2.82 0.49

BBM 2 at Point 2 2.79 0.50 SF in Beam 8–9 2.79 0.50
BBM at Point 3 2.79 0.50 SF in beam 9–10 2.72 0.51
BBM at Point 4 2.79 0.50 SF in Beam 10–11 2.72 0.52
BBM at Point 5 2.77 0.50 SF in beam 11–12 2.75 0.51
BBM at Point 6 2.71 0.52 SF in Beam 12–13 2.78 0.50

BBM at the left of Point 7 2.79 0.50 SF in Beam 13–14 2.73 0.51
BBM at the right of Point 7 2.73 0.51 SF in Beam 14–15 2.72 0.51

BBM at Point 8 2.71 0.52 SF in Beam 15–16 2.72 0.51
BBM at Point 9 2.75 0.51 SF in Pier 7–32 2.73 0.51

BBM at Point 10 2.82 0.49 SF in Beam 13–33 2.70 0.52
BBM at Point 11 2.78 0.50 SF in Beam 32–36 2.73 0.51
BBM at Point 12 2.70 0.52 SF in Beam 33–37 2.70 0.52

1 VD and HD represent the vertical displacement and horizontal displacement, respectively; 2 BBM, PBM, and
SBM represent the beam bending moment, pier bending moment, and support bending moment, respectively; 3 SF
represents the shearing force.
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The mean value, pg and the peak variance factor, qg of ground motion displacement can be
calculated by substituting Equations (59) and (60) into Equations (48), (49), (50), and (51)

λm =

∫
∞

−∞

ωmS(ω)dω, (59)

ω =

√
λ2
√
λ0

. (60)

The calculated result for Point 9 is pg = 2.533 and qg = 0.563, respectively, near to the corresponding
values of the structural peak response factors, p and q, as listed in Table 2. But, the difference still exists
between the ground displacement factors and structural peak response factors. This difference seems
to be because pg and qg do not include structural damping and natural frequency characteristics, which
are considered in pz and qz. However, since pz and qz do not obviously change with the damping
ratios, as listed in Table 3, the difference is not caused by the damping ratio, ζ. Hence, it is not a
reasonable choice to replace the peak response factor using those deduced in the case of ground
displacement exercitation.

Table 3. The peak response factor of beam bending moment at Point 9.

ζ pz qz

0.05 2.72 0.51
0.05 2.72 0.52
0.04 2.73 0.51
0.04 2.73 0.51
0.03 2.74 0.51
0.03 2.74 0.51
0.02 2.75 0.51
0.01 2.76 0.51

The analytical results above imply a different approach for describing structural peak response
factors. This approach could be easily obtained through the generalized single-degree-of-freedom
(GSDOF) system with lumped mass under seismic displacement action. The peak response factors of
GSDOF systems corresponding to natural frequencies of the structure, pd and qd, reflect the collective
effect of the ground displacement, structural frequency, and damping characteristics. Therefore, pd and
qd should be closer to the structural peak response factors. Equation (61) (reference) is adopted for the
mth order spectral moment of the GSDOF system corresponding to the jth mode

λm, j =

∫
∞

−∞

ωmH j(iω)H j(−iω)S(ω)dω, (61)

where S(ω) is the power spectrum density function of ground displacement. For the structural model
in Figure 4, the mean value and peak variance factors of GSDOF systems, pd and qd can be calculated
by Equations (60), (61), (48), (49), (50), and (51), and the result is shown in Table 4.

Table 4. The peak factors of generalized single-degree-of-freedom (GSDOF) systems.

ω pd qd ω pd qd

ω1 = 4.81 2.71 0.51 ω6 = 8.97 2.81 0.49
ω2 = 5.61 2.75 0.50 ω7 = 18.71 2.65 0.53
ω3 = 6.11 2.77 0.50 ω8 = 18.88 2.65 0.53
ω4 = 6.92 2.79 0.49 ω9 = 20.93 2.62 0.53
ω5 = 7.98 2.81 0.49 ω10 = 23.03 2.60 0.54
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Now, µpd = 2.750 and µqd = 0.509 can be obtained by calculating the average value of the peak
response factors for the first three vibration modes. Clearly, they are very close to the mean values of
the structural peak response factors, µpz = 2.752 and µqz = 0.508. The greatest difference between µpd

and pz, or µqd and qz, is 2.8% or 3.3%; if conducting similar calculation is conducted for the first six
modes, µpd = 2.779 and µqd = 0.502. The greatest difference between µpd and pz, or µqd and qz, is 3.1%
or 3.8%. Hence, structural peak response factors can be replaced using the mean peak response factor
for the first k GSDOF systems, that is,

pz =
1
k

k∑
j=1

pd, j, (62)

pz =
1
k

k∑
j=1

pd, j, (63)

where pd,j and qd,j are calculated by Equations (59), (60), (48), (49), (50), and (51); k is the order number,
which has the biggest contribution to the structural response and is taken as 3~6 for the example in
Figure 4. pz and qz are the collective peak response factors based on the incoherent ground displacement
input. Correspondingly, the response spectrum method using pz and qz is called as the collective
response spectrum method. Now, the results above can be summarized as a few points:

1. pz and qz in Equations (62) and (63) simplify the peak response factors, pz and qz, in Equations (48)
and (49). pz and qz can calculate the peak response and the variance of the peak response in the
structural linear-elastic stage under incoherent ground motion.

2. pz and qz have three merits when compared with the peak response factors, pz and qz:
less computation, less process extent in simplifying and approximating, and without involving in
the response spectrum.

3. When compared with the existing power spectrum method introduced above, the collective
response spectrum method reduces the computational effort by about 50%.

6.5. The Validity of the Power Spectrum/Collective Response Spectrum Methods

In order to further verify the power spectrum method (Equations (49) and (51)), the simplified
power spectrum method (Equations (62) and (63)) and the collective response spectrum method
(Equations (48), (49), and (58)), the modified MSRS method (Equations (12) and (13)) is exampled to
calculate the structural response. The calculated results are listed in Tables 5 and 6. The results calculated
by the modified MSRS method are basically identical with those calculated by the MSRS method.

The MSRS method does not include the pseudo-static item, while this item is considered in
the modified MSRS method. The calculating results of the four methods are close to each other.
The pseudo-static response has little contribution to the structural response, except for the symmetrical
responses (such as the bending moment, the vertical displacement et al.) at the mid-cross section of the
intermediate span. Thus, removing the pseudo-static item might increase the computational efficiency
for the structures in this study; but, for other structures, this method might be improper and needs a
further verification.
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Table 5. The comparison of bending moments calculated by the four methods.

Structural Response
The MSRS Method The Power

Spectrum Method
The Simplified Power

Spectrum Method
The Collective

Response Spectrum Method

σ|M,max|
2 µ|M,max| σ|M,max| µ|M,max| µ|M,max| µ|M,max|

BBM 1 at Point 02 0.61 1.81 0.62 1.54 1.71 1.76
BBM at Point 03 1.00 2.97 1.01 2.51 2.78 2.91
BBM at Point 04 1.02 3.06 1.03 2.54 2.82 3.02
BBM at Point 05 0.67 2.12 0.67 1.66 1.85 2.10
BBM at Point 06 0.31 1.45 0.43 1.04 1.19 1.14

BBM at the left of Point 07 0.97 3.20 1.10 2.72 3.01 2.72
BBM at the right of Point 07 0.76 2.37 0.88 2.14 2.42 2.76

BBM at Point 08 0.61 1.84 0.69 1.66 1.90 2.21
BBM at Point 09 0.47 1.43 0.51 1.24 1.40 1.58
BBM at Point 10 0.34 1.06 0.34 0.86 0.94 0.90
BBM at Point 11 0.29 0.92 0.34 0.83 0.92 0.92
BBM at Point 12 0.48 1.44 0.59 1.41 1.62 1.83

BBM at the left of Point 13 0.80 2.38 0.93 2.25 2.57 2.90
BBM at the right of Point 13 0.58 1.77 0.75 1.80 2.05 2.19

BBM at point 14 0.43 1.31 0.55 1.32 1.50 1.60
BBM at Point 15 0.24 0.75 0.30 0.73 0.83 0.87
BBM at Point 16 0.06 0.32 0.07 0.17 0.19 0.14
PBM at Point 07 1.20 3.95 1.53 3.75 4.21 3.91
PBM at Point 13 1.28 3.75 1.59 3.80 4.37 4.90
PBM at Point 32 0.44 1.36 0.47 1.15 1.31 1.52
PBM at Point 33 0.24 0.79 0.31 0.74 0.85 0.90
PBM at Point 36 1.59 5.32 2.09 5.04 5.75 6.00
PBM at Point 37 1.77 5.30 2.23 5.35 6.14 6.82

1 BBM represents beam bending moment and PBM pier bending moment; 2 M denotes bending moment.

Table 6. The comparison of displacements calculated by the four methods.

Structural Response
(mm)

The MSRS Method The Power
Spectrum Method

The Simplified Power
Spectrum Method

The Collective Response
Spectrum Method

σ|z,max| µ|z,max| σ|z,max| µ|z,max| µ|z,max| µ|z,max|

VD 1 at Point 2 6.46 16.66 6.46 18.02 17.76 17.93
VD at Point 3 10.83 27.94 10.83 30.19 29.77 30.26
VD at Point 4 11.80 30.48 11.80 32.86 32.44 33.38
VD at Point 5 9.33 24.15 9.35 25.98 25.71 26.95
VD at Point 6 4.68 12.23 4.76 13.17 13.10 14.09
VD at Point 8 2.90 7.93 3.07 8.44 8.43 9.01
VD at Point 9 3.96 11.00 4.05 11.27 11.14 11.33
VD at Point 10 3.68 10.54 3.68 10.37 10.12 9.41
VD at Point 11 2.69 8.01 2.80 7.92 7.70 6.53
VD at Point 12 1.57 4.72 1.86 5.18 5.13 4.63

1 VD indicates vertical displacement.

7. Conclusions

This study further verifies that the MSRS method without the contribution of the structural
support degrees of freedom in the seismic response of the multi-support structure can result in a large
deviation of the structural response, particularly when near to the structural supports. Hence, three
methods are proposed to improve the MSRS method. Using a model of a five-span reinforced concrete
continuous rigid frame bridge under incoherent ground displacement excitation, it was verifies that
the modified MSRS method could reflect the seismic responses of the structure more accurately than
does the MSRS method.

The collective response spectrum method is proposed for the seismic analysis of structures under
coherent and incoherent ground displacement excitation. For the generalized response spectrum
method, the generalized peak response factors are introduced based on the fact that the structural
response peak factor mainly depends on structural characteristics rather than structural response.
The generalized response spectrum method greatly promotes computational efficiency.

In addition, it should be remarked that this study does not directly relate the response spectrum
with the power spectrum. The future work will continue to address this issue by establishing the
transformation relationship between the response and power spectrums.
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