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Abstract. This paper formulates sufficiency-type linear-output feedback decentralized closed-loop 
stabilization conditions if the continuous-time linear dynamic system can be stabilized under linear 
output-feedback centralized stabilization. The provided tests are simple to evaluate, while they are 
based on the quantification of the sufficiently smallness of the parametrical error norms between 
the control, output, interconnection and open-loop system dynamics matrices and the 
corresponding control gains in the decentralized case related to the centralized counterpart. The 
tolerance amounts of the various parametrical matrix errors are described by the maximum allowed 
tolerance upper-bound of a small positive real parameter that upper-bounds the various 
parametrical error norms. Such a tolerance is quantified by considering the first or second powers 
of such a small parameter. The results are seen to be directly extendable to quantify the allowed 
parametrical errors that guarantee the closed-loop linear output-feedback stabilization of a current 
system related to its nominal counterpart. Furthermore, several simulated examples are also 
discussed. 
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1. Introduction 

Control systems are very important in real world applications and, therefore, they have been 
investigated exhaustively concerning their properties of stability, stabilization, controllability control 
strategies etc.. See, for instance, [1–4] and references therein. Some extra constraints inherent to some 
systems, like solution positivity in the case of biological systems or human migrations or the needed 
behavior robustness against parametrical changes of disturbance actions add additional complexity 
to the related investigations and need the use of additional mathematical or engineering tools for the 
research development, [5–7]. A large variety of modeling  and design tools have to be invoked and 
developed in the analysis depending on the concrete systems under study and their potential 
applications as, for instance, the presence of internal and external delays, discretization, dynamics 
modeling based on fractional calculus, the existence of complex systems with interconnected 
subsystems, [8–13], hybrid coupled continuous/digital tandems, nonlinear systems and optimization 
and estimation techniques [14–19] as well as robotic and fuzzy-logic based systems, [20,21]. In 
particular, decentralized control is a useful tool for controlling dynamic systems by cutting some 
links between the dynamics coupling a set of subsystems integrated in the whole system at hand. It 
is claimed to keep the main properties related to the use of centralized control such as stability, 
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controllability, observability, etc. In summary, a centralized controller keeps all the information on 
the system and coupling links as available to the control designer while decentralized control ignores 
some of such information or even cuts on occasions some of coupling signals between the various 
subsystems integrated in the whole system at hand. It can be pointed out that the stability studies are 
often performed trough Lyapunov theory which requires to find a Lyapunov function (see [20,21] 
and some references therein). It turns out that, if the neglected couplings are strong and are not taken 
into account by the controller, the stabilization and other properties such as the controllability can 
become lost. The use of decentralized stabilization and control tools is of interest when the whole 
system has physically separated subsystems that require the implementation of local control 
actuators but the control has to be global for the whole system. An ad-hoc example provided in 
[2,3,4,19] where decentralized control is of a great design interest is the case of several coupled 
cascade hydroelectric power plants allocated in the same river but separated far away from each 
other. It has to be pointed out that the term “decentralized control” versus “centralized control” refers 
to the eventual cut of links of the shared information between tandems of integrated subsystems, or 
coupling signals between them, to be controlled rather than to the physical disposal of the controller. 
In other words, if the whole controller keeps and uses all the information on measurable outputs and 
control components design to implement the control law, such a control is considered to have a 
centralized nature even if its various sub-control stations are not jointly allocated. It is a common 
designer´s basic idea in mind for complex control designs to try to minimize the modeling designs 
and computational loads without significantly losing the system´s performance and its essential 
properties. For instance, in [8], the dynamic characteristic of a discrete-time system is given as an 
extended state space description in which state variables and output tracking error are integrated 
while they are regulated independently. The proposed robust model predictive control is much 
simpler than the traditional versions since the information of the upper and lower bounds of the time-
varying delay are used for design purposes. On the other hand, in [9], a control law might be 
synthesized for a hydropower plant with six generation units working in an alternation scheme. To 
assess the behavior of the controlled system, a model of such a nonlinear plant is controlled by a 
fractional proportional/integral/derivative control device through a linearization of its set points, the 
fractional part being relevant in the approach on the controller derivative actions. In addition, a set 
of applied complex control problems are studied, for instance, in [10–16] with the aim of giving 
different ad hoc simplification tools to deal with the appropriate control methodologies. In particular, 
a decentralized control approach is proposed in [16]. 

In this paper, the decentralized control design versus its decentralized control counterpart, 
under eventual output linear feedback, are studied from the point of view of the amount of 
information that can be lost or omitted in terms of the total or partial knowledge of the coupled 
dynamics between subsystems necessary in the decentralized case to keep the closed-loop stability. 
The study is made by using the information on the worst-case deviation, in terms of norms, between 
the respective matrices of open-loop dynamics and the respective controller gains under which the 
closed-loop stability is kept. This paper is organized as follows. The problem statement is given in 
Section 2 while the main stabilization results of the paper are provided in Section 3. The proofs of 
some of the results of Section 3, which are technically involved, but conceptually simple, are 
distributed in various technical auxiliary that are given in Appendixes A and B. It is claimed to give 
a non-complex method to test the feasibility of the implementation of decentralized control and 
conditions for its design, which be a fast and simpler stability test compared to Lyapunov stability 
theory [20,21], for instance, under a partial removal of information or physical cuts of links of 
coupling dynamics between the various subsystems or state, control and output components. Section 
4 discusses several examples and, finally, the concluding remarks end the paper.  

1.1. Notation 

 n,,,n 21 ,  
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 0:  zz RR ;  0:0  zz RR , 

 Asp  and  Adet  are the spectrum and determinant of nnA R , respectively. For  qA R , 

being in general rectangular, A  denotes any unspecified norm of A , 2A  denotes the 2  or 

spectral norm of a matrix A ,  A  denotes its spectral radius, and 

.  denotes the H -norm of 

a stable real rational transfer matrix or function, qI denotes the q th identity matrix, and 1i  

is the complex imaginary unit. 

Let nnA R  be symmetric. Then,  Amax and  Amin  are, respectively, the maximum and 
minimum eigenvalues of A . 

nn
EM
 is the set of Metzler matrices (any off-diagonal entry is non-negative) of n th order. 
nnZ   is the set of Z -matrices (any off-diagonal entry is non-positive) of n th order. 
nnM   is the set of M-matrices ( Z -matrices which are stable or critically stable ) of n th order. 

Assume that     nn
ijij BB,AA  R . Then, the notations BA  , BA and BA , are, 

respectively, equivalent to AB , AB  and AB  , meaning that ijij BA  , ijij BA  (and AB 

) and ijij BA  ; nj,i  , respectively. In particular, 0A , 0A and 0A  are reworded as A is 

non-negative, positive and strictly positive, respectively, and 0A , 0A and 0A  are reworded 
as A is non-positive, negative and strictly negative, respectively. 

2. Problem Statement 

Consider the following linear and time-invariant system under linear output-feedback 
centralized control: 

     tuBtxAtx ccccc  ;   00 cc xx   (1) 

     tuDtxCty ccccc   (2) 

   tyKtu ccc   (3) 

where   n
c tx R  is the state vector;   m

c tu R  is the centralized control vector;   p
c ty R  is the 

output; cA , cB , cC and cD  are the system, control, output and input–output interconnection 

matrices, respectively, of orders being compatible with the dimensions of the above vectors; and 

pm
cK

R  is the control matrix. If the system runs in a decentralized control context, we have: 

     tuBtxAtx ddddd   ;   00 dd xx   (4) 

     tuDtxCty ddddd   (5) 

   tyKtu ddd   (6) 
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where   n
d tx R  is the state vector;   m

d tu R  is the centralized control vector;   p
d ty R  is the 

output; dA , dB , dC and dD  are the system, control , output and input–output interconnection 

matrices, respectively, of orders being compatible with the dimensions of the above vectors; and 

pm
dK

R  is the control matrix. 

Basically, the differences between centralized and decentralized controls are as follows: 
1) In the centralized control, all control components, or more generally, all subsystems if 

subsystems are considered in the model, have a complete information on the output available 
for feedback. This means that all control components or block-control inputs are available for 
controlling each state component (or each individual substate including several state 
components in the case of a more generic decomposition structure). Basically, the matrix cK  
has a complete non-diagonal or block non-diagonal structure. In the decentralized control, 
the various input components or block-control inputs are not available for controlling each 
state component. Thus, dK  does not have a complete free design structure of its non-
diagonal part and in some cases (completely decentralized disposal) its diagonal or block 
diagonal. 

2) In a more general context, some control or output links can be cut in the decentralized case 
for the sake of computational simplicity or a more economic control design. In our case, the 
decentralized input, output and interconnection matrices dB , dC  and dD can be distinct 
from the centralized ones and, roughly speaking, to a have a “more diagonal” or “sparser” 
structure than their centralized counterparts cB , cC  and cD . If the parameterization of the 
system (or dynamics) matrix is available to the designer, then some off-diagonal block 
matrices of cA could be zeroed or simply re-disposed in a more sparse structure to construct 

dA . 
3) The only strictly necessary condition for the system to be subject to partially (or, respectively, 

fully) decentralized control is that some (or, respectively, all) of the off-diagonal entries of 
dK  are forced to be zero even if the system, control, output and interconnection matrices 

remain identical in Equations (4) and (5) with respect to Equations (1) and (2). 
Assumption 1. The system in Equations (1) and (2) is linear output-feedback stabilizable via some 
centralized control law (Equation (3)). 

Note that Assumption 1 does not hold if the open-loop system in Equations (1) and (2) has 
unstable or critically stable fixed modes that cannot be removed via linear feedback. 
Proposition 1. If Assumption 1 holds, then there exists a centralized stabilizing controller gain 

pm
cK

R  such that the matrices  ccm DKI   and  ccp KDI   are non-singular, thus the closed-

loop centralized control system is solvable and given by: 

      txCKDKIBAtx cccccmccc
1 ;   00 cc xx   (7) 

     txCKDIty ccccpc
1  (8) 

and asymptotically stable for any given n
cx R0 under the generated control law: 

     txCKDKItu cccccmc
1  (9) 

that is, the polynomial   ccccmccn CKDKIBAsIdetsp 1)(   is Hurwitz. 
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Proof: The replacement of Equation (3) into Equations (1) and (2) yields Equation (7)–(9). Since the (1) 
and (2) is linear output stabilizable, a stabilizing controller gain pm

cK
R  has to exist such that 

(7)–(9) are solvable and the closed-loop dynamics is stable.□ 
Assumption 2. The system in Equations (4) and (5) is linear output-feedback stabilizable via some 
decentralized control law (Equation (6)). 

In the same way as Proposition 1, we get the following result: 
Proposition 2. If Assumption 2 holds, then there exists a decentralized stabilizing controller gain 

pm
dK

R  such that the matrices  ddm DKI   and  ddp KDI   are non-singular, thus the 

closed-loop decentralized control system is solvable and given by: 

      txCKDKIBAtx dddddmddd
1 ;   00 dd xx   (10) 

     txCKDIty ddddpd
1  (11) 

and asymptotically stable for any given n
dx R0 under the control law: 

     txCKDKItu dddddmd
1  (12) 

that is, the polynomial   ddddmddn CKDKIBAsIdetsp 1)(   is Hurwitz. □ 

Proposition 3. Assume that cd AA  , cd BB  , cd CC  and cd DD  , and that the system in 
Equations (1) and (2) is not linear output-feedback stabilizable via some centralized control law 
(Equation (3)). Then, it is not stabilizable under any linear output-feedback decentralized control 
(Equation (6)) either.  
Proof: Obviously, if there is no completely free-design matrix cK  that stabilizes Equations (1) and 
(2), then there is no dK  with at least a forced zero off-diagonal entry that stabilizes it since dK  has 
extra design constraints related to cK .                                                           □ 

It can be pointed out that decentralized control has also been proved to be useful in applications. 
For instance, an integral-based event-triggered asymptotic stabilization of a continuous-time linear 
system is studied in [17] by considering actuator saturation and observer-based output feedback are 
considered. In the proposed scheme, the sensors and actuators are implemented in a decentralized 
manner and a type of Zeno-free decentralized integral-based event condition is designed to 
guarantee the asymptotic stability of the closed-loop systems. On the other hand, two decentralized 
fuzzy logic-based control schemes with a high-penetration non-storage wind-diesel system are 
studied in [18] for small power system with high-penetration wind farms. In addition, several 
examples concerning decentralized control are described in [4] to illustrate the theoretical design 
analysis. A typical described case is that of tandems of electrical power system with a tandem 
disposal on the same river which are not physically nearly allocated. The next section discusses some 
simple sufficiency-type conditions which ensure that, provided that the system is stabilizable under 
linear output-feedback centralized control, it is also stabilizable under decentralized control in two 
cases: (a) the system matrix remains identical but the other parameterization matrices can eventually 
vary; and (b) the system matrix can vary as well in the decentralized case with respect to the 
centralized one. A result elated to the maintenance of the stability of a matrix under an additive 
matrix perturbation is summarized through a set of sufficiency-type conditions simple to test in 
Theorem A1. Theorem A2 proves sufficiency-type for the stability of the matrix function
   tA~AtA  0  with 0A  stable and  tA~  being time-varying. Appendix B includes calculations and 

auxiliary results to quantify the tolerance to cut some dynamics links between subsystems, state 
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components or control centers or components while keeping the closed-loop stability of the whole 
coupled system. The results of Appendices A and B are used in the proofs of the main results in the 
next section. 

3. Main Results  

The first set of technical results which follow are concerned with centralized and decentralized 
control stabilizability.  
Assertion 1. A necessary and sufficient condition for the system to be linear state-stabilizable via 
some centralized control law is that   nBAsIrank ccn   for all 0sRe . 
Proof: Assume that   nnBAsIrank ccn  1  for some 0sRe . Then, there is some Laplace 

transform           0
TTT

T
TT tu,txLapsû,sx̂  such that        0

TTT
ccn sû,sx̂BAsI  for 

some 0sRe and     0







 sx̂

K

I
BAsI

c

n
ccn  for any nn

cK
R  and some   0sx̂  with 0sRe  

since       nnn,nmin
K

I
rank,BAsIrankmin

K

I
BAsIrank

c

n
ccn

c

n
ccn 





































 11  for some 

0sRe .Therefore, the closed-loop system has some unstable or critically stable solution for any 
given (centralized) control gain. This proves the necessary part. Sufficiency follows since, if 

  nBAsIrank ccn  , then   0sx̂  for all 0sRe  and some nn
cK

R  which can be found so 

that     nn,nmin
K

I
rank,BAsIrankmin

c

n
ccn 


















 .                                             □ 

Assertion 1 is a particular adapted ad-hoc test for stabilizability of the celebrated Popov–Belevitch–
Hautus rank controllability test [6]. Note that, if there exist unstable or critically stable fixed modes 
(i.e., those present in the open-loop system that cannot be removed via feedback control), then neither 
centralized nor decentralized stabilizing control laws can be synthesized. Note that the stabilizability 
rank test of Assumption 1 can only be evaluated for the critically and unstable eigenvalues of cA

instead for all the open right-hand complex plane. In all the remaining points of such a plane, the test 
always gives a full rank of the tested matrix. The parallel controllability test should always be applied 
in the same matrix to any eigenvalues of cA . 
Assertion 2. A necessary condition for the system to be linear state-stabilizable via some partially or 
totally decentralized control is that it be stabilizable via centralized control (i.e., Assertion 1 holds). 
Proof: It is obvious from Assertion 1 since any gain dK used for centralized or decentralized is sparser 
than a centralized gain counterpart so that the proof follows from Assertion 1.             □ 
Assertion 3. A necessary condition for the system to be linear output-stabilizable via some partially 
or totally decentralized control is that it be stabilizable via centralized control (i.e., that Assertion 1 
holds). 
Proof: it is obvious from Assertions 1 and 2 that, when replacing   ccccmc CKDKIK 1  and 

  ddddmd CKDKIK 1  (see Equations (9) and (12)), the second replacement happens under 
sparser parameterizations. 
□ 

Now, consider the closed-loop system matrices from Equations (7) and (10) for the case 
dc AAA  . 

  ccccmccc CKDKIBAA 1 ;   ddddmddc CKDKIBAA 1  

with its parametrical error being: 

    ddddmdccccmcdcccdc CKDKIBCKDKIBAAA
~ 11    
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A first main technical result follows: 
Theorem 1. If Assumption 1 holds, assume also that pm

cK
R is a centralized linear output-feedback 

stabilizing controller gain such that the resulting closed-loop system matrix nn
ccA

R  has a 
stability abscissa   0 cc . Then, the following properties hold: 

(i) nn
dcA

R  is a closed-loop stability matrix under a linear output-feedback stabilizing controller 

gain pm
dK

R  if any of the subsequent sufficiency-type conditions holds: 

1) The H -norm of   dcccn A
~

AsI 1  satisfies   11 



dcccn A
~

AsI , 

2)  
2

1
2

0

1 





ccndc AIsup/A

~



i

R
. 

Other alternative sufficiency-type conditions to Conditions 1 and 2 for the stability of dcA  are:  

3)   11 
dccc A
~

A , 

4) 1
2

1 
dccc A
~

A , 

5) 
2

1
2
1  ccdc A/A

~ , that is,    ccT
ccmindc

T
dcmax AAA
~

A
~

  , 

in the following particular cases: 

a) 0ccA  and ccdc AA
~  ; and 

b) nn
Eijcccc MAA 





  and  ijdcdc A

~
A
~

  fulfills
ijccijdc AA

~
 ;   nij,i  . 

(ii) Assume that Property (i) holds and that the number of inputs and outputs are identical, i.e. mp 

, and decompose both the controller gain matrices as sums of their diagonal and off-diagonal parts 

leading to codcdc KKK   and dodddd KKK  , thus    dodcodddcddc KKKKKKK
~

 . 

Then, the system is stabilizable under partially decentralized control linear output-feedback control 
in the sense that Equations (4) and (5), is asymptotically stable under a control law (Equation (6)), if 

pm
dK

R is such that, if there is at least one non-diagonal zero entry in at least one of its rows in 

the off-diagonal controller error matrix dodcodod KKK
~

 . If 0odK
~ , then the system is 

stabilizable under decentralized control. 
Proof: Property (i) is a direct translation of the results of Theorem A1 in Appendix A to the closed-
loop system matrices. Property (ii) holds if Property (i) holds with an off-diagonal controller error 
matrix between the centralized a decentralized controller gain that has at least one non-diagonal zero 
at some row (or its identically zero) so that a feedback from some crossed output to some of the inputs 
is not provided to the control law for closed-loop stabilization the stabilization. 
□ 

The following result follows for the time-varying case from Theorem 1 and Theorem A2: 
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Corollary 1. Assume that  tAdc  and then  tA
~
dc  are everywhere piecewise-continuous time-

varying. Then, Theorem 1 still holds if Condition 1 is replaced with   1
0





 

dc
tcc

cc A
~

sup
k ;  0Rt

with 1cck and 0cc  being real constants such that t
cc

tA cccc eke   ;  0Rt .    □ 
Remark 1. Theorem 1 (ii) has been stated for the case pm  . Note that the case pm   (i.e., there are 
more inputs than outputs) is irrelevant for the stabilization from the strict algebraic point of view 
since the  pm   extra inputs would be redundant. In the case that pm  , Theorem 1 (ii) might be 
directly generalized to a subsystem´s decomposition philosophy if a number mq   of subsystems 

of inputs and outputs  TTqTT u,,u,u 21 and  TTqTT y,,y,y 21 with im
iu R , ip

iy R ; ni with 

  q
i ipp 1 and   q

i imm 1 . 
Remark 2. Theorem 1 can be easily generalized to cases when some dynamics transmission links 
between state, input or output components (or subsystems, in general) can be suppressed by 
manipulation. In more general cases, it is possible to extend Theorem 1 to combinations of the 
subsequent situations with the matrix decompositions having the same sense (in the various modified 
contexts) as that of Theorem 1 (ii): 

 Case 1. Suppression of some transmission links between the coupled open-loop dynamics by 
examining the decompositions: codcdc AAA  , dodddd AAA  , and 

   dodcodddcddc AAAAAAA
~

 . 
(a) If there is at least one non-diagonal zero entry in at least one of its rows in the off-diagonal 

controller error matrix dodcodod AAA
~

  which is not a corresponding zero in codA ; and (b) if there 
is at least one non-diagonal zero entry in at least one of its rows in the off-diagonal controller error 
matrix dodcodod KKK

~
 , then the closed-loop system is stabilizable under a partial decentralized 

control even if some links of the dynamics between crossed components are cut if Theorem 1 (ii) 
holds. If only Condition a is addressed, then the system is stabilizable by centralized control when 
cutting certain transmission links between coupled dynamics in the open-loop system. This idea can 
be extended to total decentralized control for a purely diagonal open-loop system´s dynamics under 
full zeroing of the off-diagonal corresponding error dynamics. It can be also generalized to the “ad 
hoc” decompositions between subsystems. Other cases with similar interpretations in the new 
contexts are: 

 Case 2. Suppression of some crossed entries in the open-loop control matrix by examining 
the decompositions: codcdc BBB   , dodddd BBB  , and 

   dodcodddcddc BBBBBBB
~

 . 
 Case 3. Suppression of some crossed entries in the open-loop output matrix by examining 

the decompositions: codcdc CCC   , dodddd CCC  , and 
   dodcodddcddc DCCCCCC

~
 . 

 Case 4. Suppression of some crossed entries in the open-loop interconnection matrix by 
examining the decompositions: codcdc DDD  , dodddd DDD  , and 

   dodcodddcddc DDDDDDD
~

 . 
 Case 5. Any combinations of Cases 1–4. 

Problem 1: Find a stabilizing decentralized family of control gains by assuming that cd AA  , such 
that 0 dc AAA

~  and Assumption 1 holds with cK  being a stabilizing centralized controller 
gain.  

The following more general result for the eventual case 0A~  (that is dc AA  eventually), 
follows from Theorem 1, Theorem A1 and Theorem A2 and Lemmas B1, B2 and B3: 
Theorem 2. Define the following error matrices between the centralized and decentralized system 
parameterizations: 
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dc AAA
~

  ; dc BBB
~

 ; dc CCC
~

 ; dc DDD
~

 ; dc KKK
~

  (13) 

such that  A
~A

~
 ,  B

~B
~

 ,  c
~C

~
 , D

~D
~

  and  K
~K

~
 for some  0R and 

given A
~ , B

~ , C
~ , RD

~ . Assume that: 

1) Assumption 1 holds;  

2) pm
cK

R is a centralized linear output-feedback stabilizing controller gain such that the 

resulting closed-loop system matrix nn
ccA

R  has a stability abscissa   0 cc and such 

that 12 cc DK ( so that  ccm DKI   is non-singular); 

3) AAA dc  ; and 

4) Define  211  ,,,min*  , where: 

     
KD

cKcDccmKDcKcD

~~

D~K~DKI/~~D~K~






2

4 12






, 

 

 KcKDDc

ccm

~D~~~K

DKI











2

1

1 ;   









 

 
2

1
2

0

1 ccndc AIsupa~/ 


i
R

, 

where 

  11  ccdc DKa~      KcDcKcCccccccB
~D~KC~C~KCKBCK~   ,  

where the non-negative real constant C is given in Equation (B11). Then, the following properties 
hold: 

(i) If 0A~ (that is, dc AA  ), then dcA is stable and  *, 0 . 

(ii) If  A
~A

~


2
, then dcA is stable and  *´, 0  where  ´* ,,,min´ 211    and 

    









 

 
2

1
2

0

1 ccnAdc
´ AIsup~a~/ 


i

R
. 

(iii) If  tA~  is piecewise continuous and bounded, then Property (ii) holds by replacing  A
~A

~


2
 

by    A
t

~tA
~

sup 
 20

.                                                             □ 

Remark 3. Some quantified results are given in Lemmas B.2 and B.3 to modify 2 (and hence ´
2 ) in 

Theorem 2 by considering the second power of  in the calculations of the disturbed 
parameterization guaranteeing the closed-loop stability in the decentralized case. 
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Remark 4. If the corresponding parametrical error matrices of Equation (13) have some zero off-
diagonal entries (or off-diagonal block matrices in the more general case that the system is described 
by coupled subsystems), then we have at least a partial closed-loop stabilization under decentralized 
control or, eventually, cut coupled dynamic links to the light of the various Cases 1–5 described after 
Remark 2 such that closed-loop stability is preserved. 
Remark 5. Theorem 2 also applies to the case of state-feedback control by replacing the output 
matrices ndc IC,C  and fixing 0C

~ . 
Remark 6. Theorem 2 also applies directly to the cases where Equations (1)–(3) are a given nominal 
asymptotically stable closed-loop system configuration and Equations (4)–(6) are a perturbed one 
whose closed-loop asymptotic stability maintenance related to its nominal counterpart is a suited 
objective and which is not necessarily of partial of compete decentralized type. 

4. Simulation Examples 

This Section contains some numerical simulation examples to illustrate the theoretical results 

introduced in Section 3.  
Example 1. Consider the interconnected linear system with less inputs than outputs given by, [19]: 

)t(xC)t(y

)t(xC)t(y

)t(uB)t(xA)t(xA)t(x

)t(uB)t(xA)t(xA)t(x

222

111

222221212

112121111












 

with  )t(x)t(x)t(x T
12111  ,  )t(x)t(x)t(x T

22212   and matrices defined by: 



































20
01

10
01

20
01

22211211 A,AA,A , 


















1
2

2
1

21 B,B  

221 ICC   

This system can be cast into the form of Equations (1) and (2) by composing the matrices: 





























2010
0101
1020
0101

cA , 




















10
20
02
01

cB , 4ICc  , 0cD  

Note that matrix cA  is unstable with eigenvalues given by 2.36,.1.41,1.41,2.23  . A static 

feedback output controller of the form of Equation (3) can be designed for this system, which leads 
to the following gain: 














2503750010010
02001502839
....

....
Kc  

that places the closed-loop poles at  338211840 .,.,.,.   and thus stabilizes the closed-loop system. 
The static feedback gain cK  corresponds to a centralized controller as it can be readily observed. 

The question that arises now is whether a decentralized controller defined by:  











250375000
002839
..

..
Kd  

is enough to stabilize the system or not. Note that dK is a block-diagonal matrix with zero off-block-

diagonal entries. Theorem 1 enables us to guarantee the asymptotic stability of the above system 
when the decentralized controller dK  is used. Therefore, cd AA  , cd BB   and cd CC   while 

the feedback gain K
d

is restricted to the proposed particular structure. In this way, consider now 
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cccccc CKBAA  , cdccdc CKBAA   and cdccdc C)KK(BA
~

 . Condition 2 of Theorem 1 (i) 

yields: 

 
07010550

2
1

4
2

0

.
AIisup

A
~

.
cc

R

dc 





 




 

Consequently, we can conclude from Theorem 1 that the closed-loop system controlled by the 
decentralized static output gain dK  is asymptotically stable. Thus, we have been able to easily 

analyze the stability of the decentralized case from the stability property of the centralized one. Figure 
1 shows the trajectories of the closed-loop system when the gain dK  is deployed with initial 

conditions given by  431 T)t(x ,  652 T)t(x . It can be observed in Figure 1 that all the 

states converge to zero as predicted by Theorem 1.  

 

Figure 1. States evolution when the decentralized controller dK  is employed. 

Example 2. Consider the linear system with the same number of inputs and outputs composed of two 
identical pendulums THAT are coupled by a spring and subject to two distinct inputs, as displayed 
in Figure 2, [19].  

 
Figure 2. Two inverted pendulums coupled by a spring. 

The mathematical model of such interconnected system is given by: 

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-6

-4

-2

0

2

4

6

x
11

x
12

x
21

x
22
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)t(xC)t(y

)t(xC)t(y

)t(uB)t(xA)t(xA)t(x

)t(uB)t(xA)t(xA)t(x

222

111

222221212

112121111












 

with  111  T)t(x ,  222  T)t(x  and matrices defined by: 































 0

0010

2

2
2112

2

2
2211

ml

kaAA,

ml

ka

l

gAA 
, 
















2
21 1

0

ml

BB  

 0121  CC  
where g represents the gravity,   accounts for the friction, 21 mmm   are the masses of both 

pendulums, k is the spring constant and the meanings of the geometrical parameters are shown in 
Figure 2. This linear model corresponds to the linearization of the pendulum nonlinear equations 
around the up-right position equilibrium point. The following values were used in simulation, [19]: 

5021111 2 .
l

a
,

m

k
,,

ml
,

l

g
   

This system can be cast into the form of Equations (1) and (2) as: 
























150050
1000
050150
0010

..

..
Ac , 





















10
00
01
00

cB , 









0100
0001

cC , 0cD  

A static output feedback controller can be designed for this system to achieve its asymptotic 
stability. In this way, the feedback gain 











802640
650922
..

..
Kc  

places the closed-loop poles at  i..,i.. 41505150   with negative real parts. Now, we implement 

a decentralized controller with feedback gain given by: 











8020
0922
.

.
Kd  

Theorem 2 is now used to analyze the stability of the closed-loop system when this controller is 
employed. This case is of practical importance and corresponds to the situation when the local 
controller has only available for control purposes the information regarding the local output, and not 
the output of the complete system. Thus, the centralized and decentralized systems are the same and 
only the static feedback gain changes. Theorem 2 conditions are applied with 

0 DCBA
~~~~  , 6502 .KK~

dcK   while the stability condition for this special case (see 

Appendix B) reads: 

111650650 222  ccdc CBKK..  

Accordingly, the closed-loop system attained with the decentralized controller is asymptotically 
stable and all the outputs will converge to zero asymptotically. Figure 3 displays the evolution of 
both angles from initial conditions  50501 ..)t(x T  ,  501502 ..)t(x T  , where it can be 
observed that both pendulums are stabilized in the up-right position with the decentralized 
controller.  
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Figure 3. Evolution of the angles of both pendulums. 

Example 3. Consider the linear interconnected system given by: 

)t(uD)t(xC)t(y

)t(uB)t(xA)t(x

ccccc

ccccc





 with matrices defined by: 

310
100
1010
0101

200
020
0101

32010
10220
30401

I.D,.

.

C,

.

B,

..

..

..

A cccc 
























































  

This system is controlled by the static output feedback gain given by: 





















460020020
030010050
040050190

...

...

...

Kc  

which places the closed-loop poles at 1.17,2,2.1  . The decentralized system is now given by: 

0
200
020
001

3 















 dddcd D,IC,B,AA  

The decentralized system corresponds to the case when some transmission links have been 
suppressed from the original open-loop coupled dynamics, as considered in Remark 2. The following 
decentralized gain iz employed to stabilize the decentralized system in Equations (4)–(6) 
parameterized by the above matrices: 





















46000
00100
00190

.

.

.

Kd  

Theorem 2 is used to analyze the stability of the decentralized closed-loop system. To this end, 
we calculate: 

02  Adc
~AA   

1900707210 2 ...~BB. Bdc    

1900707210 2 ...~CC. Cdc    
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1900707210 2 ...~DD. Ddc    

19007072070 2 ...~KK. Kdc    

With these values, we can compute 0710240310 21 .,.,.   so that 

  07101070 21 .,,,min. *   . Since 10502  .DK cc , we are in conditions of applying 

Theorem 2 (i) and we can conclude that the decentralized closed-loop system is asymptotically stable. 
In this way, the presented results allow establishing the stability of the decentralized system by a 
simple method based on the stability and design of the centralized system. Figure 4 shows the state 
variables evolution from the initial state  155 T)t(x . As shown in Figure 4, the state variables 
converge to zero asymptotically, as concluded from Theorem 2.  

 
Figure 4. Evolution of the state space variables when the decentralized controller dK

 

is used. 

5. Concluding Remarks 

This paper is devoted to formulating sufficiency-type linear-output feedback decentralized 
closed-loop stabilization conditions if the continuous-time linear dynamic system can be stabilized 
under linear output-feedback centralized stabilization. The developed stability tests are conceptually 
simple to evaluate and they rely on the quantification in terms of worst-case norms of interconnection 
and open-loop system dynamics matrices and the corresponding control gains in the decentralized 
case compared to the centralized counterpart. The tolerances of the various parametrical matrix 
errors have been quantified by considering the first or second powers of a small parameter. Such a 
parameter is a design factor to characterize in the worst-case for the allowed tolerances to the 
perturbed parameterization norms. Simulated examples are discussed to illustrate the obtained 
results. The decentralized control design versus its decentralized control counterpart, under eventual 
output linear feedback, has been studied from the point of view of the amount of information that 
can be lost or omitted in terms of the total or partial knowledge of the coupled dynamics between 
subsystems necessary in the decentralized case to keep the closed-loop stability. A foreseen related 
future work relies on the application of the method to some applied control problems such as 
consensus protocols under decentralized control and continuous-discrete hybrid controller designs. 
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Appendix A. Auxiliary stability results on perturbed matrices under constant and time-varying perturbations 

of stability matrices 

Theorem A1. Assume that nnA R0  is a stability matrix with stability abscissa   0 c . Then, 
A
~

AA  0 is a stability matrix if any of the subsequent sufficiency-type conditions holds: 

1) The H -norm of   A
~

AsIn
1

0
  satisfies   11

0 


 A
~

AsIn , 

2) 
 

2
1

02
0

1 






AIsup/A
~

n


i
R . 

Other alternative sufficiency-type conditions to Conditions 1 and 2 for the stability of A are:  

3)   11
0  A
~

A , 

4) 
1

2
1
0  A
~

A
, 

2
1
02

1  A/A
~

, that is ,    00 AAA
~

A
~ T

min
T

max   , 

in the following particular cases: 

a) 00 A  and 0AA  ; and  

b) nn
Eij

MAA 





 00  and  ijA~A

~
  fulfils

ijij AA
~

0 ;   nij,i  . 

Proof: Note that 

         
    

1
0 0 0

1
0 0

det det det

det det ;

n n n n n

n n n

sI A sI A A sI A I sI A A

sI A I sI A A s





       

     C

 


 (A1) 

and then 

       01
00   A

~
AsIIdetAsIdetAsIdet nnnn  Then, for all  Asps , and also for all 

 0Asps  if the H -norm of   A
~

AsIn
1

0
 , which exists since 0A  is a stability matrix, satisfies 

  11
0 



 A
~

AsIn , which is guaranteed if  
2

1
02

0

1 






AIsup/A
~

n


i
R

. Then, A is a stability 

matrix if Conditions 1 or 2 holds. On the other hand, if 0A  and A are negative (implying that

0AA  ), or if they are both Metzler-stable (implying for all off-diagonal entries that 
ijij AA

~
0 ; 
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  nij,i  ), then their dominant abscissa (perhaps multiple) eigenvalue is real and negative since 

0A  being a stability matrix is claimed to guarantee that A is stable. Since 0A is a stability matrix, it is 

non-singular with eigenvalues with negative real parts. Then, by the continuity of the eigenvalues 

with respect to the matrix entries,  A~AIAA n
1
00
  is a stability matrix if 

  1
22

1
02

1
0

1
0   A

~
AA

~
AA

~
A leading to the sufficiency of Conditions 3–5 for the stability of A

if is 0A stable. The last, sufficient condition comes directly by upper-bounding Condition 4 by norm 

product and it is equivalent to      00
21

0
1
0

21
2

1
0

21
2

11 AAAA/A/A
~

A
~

A
~ T/

min
T/

max
T/

max    .       □ 

Theorem A2. Assume that nnA R0  is a stability matrix and that    tA~AtA  0 , where 
nnA

~ 
  RR0: is piecewise-continuous and bounded. Then, nnA 

  RR0:  is stable if 

  1
00

0 



 

A
~

sup
k

t
;  0Rt , where   00    is the stability abscissa of 0A  and   1000  Akk is 

a real constant satisfying ttA eke 00 0
 ;  0Rt . 

Proof: Consider the linear time-varying system: 

      txtA~Atx  0 ,   00 xx   ;  0Rt  (A2) 

where nnA
~ 

  RR0:  is piecewise-continuous and bounded [1]. Such a system is globally 

asymptotically stable if and only if nnA 
  RR0:  is a stability matrix. The state-trajectory solution 

of Equation (A2) satisfies: 

         dxA
~

exetx t tAtA
 
00 00

      ´
t

t

t

t txA
~

sup
k

xeKxsup
k

xek 



 













 
00

0
00

00

0
00

00 ;  0Rt  
(A3) 

Let  tt́t́   be defined for each  0Rt as    






 


txzxmaxzt́

t
:

0



. Then, 

           ´
t

t
´

t́t
txA

~
sup

k
x´ktxxsupxsuptx 








 






00

0
00

00
0 ; 

 0Rt  
(A4) 

Since  
 

A
~

sup
k

t


00

01 ;  0Rt , one gets: 
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        00

1

00

0

0
01 x´ekA

~
sup

k
xsupt́xtx t

t́







 














  0

1

00

0
0 1 xA

~
sup

k
kM












 
 

;  0Rt  

(A5) 

Therefore,  tx  is bounded for any  0Rt if 0x is finite. Now, assume the following cases. 

Case a: For any RsT , the sequence 
 

 


 











knTmntnT
txsup

sns

 is strictly decreasing for some finite 

positive integer  sTkk   and some positive sequence  nm  of bounded integer numbers which 

satisfies 11  nn mm  for 0n . As a result, 
 

  0














 knTmntnT
txsup

sns

 as n  for any given 

0sT . Then, one gets from Equation (A3) that   0tx , as t since  tnTx s 

  














 
xsupk

tnTs0
0

11 ;   ss Tn,nTt 1 . The result is proved for this case.  

Case b: For some RsT , a sequence 
 

 


 











0nTmntnT
txsup

sns

 can be built, with   
0nnm  as 

m satisfying  

   
 

 
 

 
 txsuptxsuptxsup

snssnmnnssnsn TmntnTTmmntnTTmntTmn 




 ; 0n  

(note that the above inequality cannot be strict as n  since it has already been proven that 

  tx ;  0Rt ). However, then one gets from Equation (A3) for some 

 
nmnnnn mmn,mnt  1 since  

 
A
~

sup
k

t


00

01 ;  0Rt : 

 
 

 
 txsuptxsup

snmnnssns TmmntnTTmntnT 


   
 

  
 

 txsupA
~

sup
K

nTxeK
TmmntnTTmmntnT

s
nTt

nmnnssnmnns

sn







  




0

0
0 10  

   
 

 txsupnTxeK
TmmntnT

s
nTt

nmnns

sn







  100
  

(A6) 

If n , nm , then     nmnn mt 1 , thus the following contradiction arises:  

 
 









txsupsuplim

snmnns TmmntnTn
0

 
  0









txsup

snmnns TmmntnT
. 
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Thus, Case b is not possible and the whole result follows from Case a.                        □ 
Note that the stability abscissa of 0A , that is,   00    is not smaller than the dominant 

eigenvalue abscissa. 

Appendix B. Calculations for solving Problem 1  

Assume that the matrix  ccm DKI   is non-singular with 12 cc DK  and dc AAA  . 

Then, one gets from Equations (10) and (13) that: 

 

    
        

        

     

1

1
0 1

11
0 1

1 11
0 1

1

2 1

d d m d d d d

c m c c c c

c m c c m m c c c c

c m m c c m c c c c

c m m c c c c

A B I K D K C

A B B I K D K C

A B B I K D I I K D K C

A B B I I K D I K D K C

A B B I I K D K C







 



 

     

        
 

       

      

  

  

  

  

 
(B1) 

provided that D~ and K~ are such that     10
1   

~
DKIDKI ccmddm exists (note that this 

always holds if mpD
~

 0  and pmK
~

 0 from Assumption 1), where: 

    ccccccdd DK
~

D
~

KK
~

D
~

KDD
~

K
~

DKDK
~

0  (B2) 

    cccc CK
~

C
~

K
~

KC
~

KC
~

CK
~~

1  (B3) 

   mccmm I
~

DKII
~


 1

0
1

2   (B4) 

and note that 

 KcKDDc
~D~~~K

~
 0  (B5) 

 KcKCCc
~C~~~K

~
 1  (B6) 

and one gets from Banach´s Perturbation Lemma [7] that 

    0
1

0
12

1

11
1

11


 ~
DKI

~
DKI

~

ccmccm
 




  (B7) 

provided that   1
00 1  ccm DKI/
~~
 . Equivalently, if 

      01 12  
ccmcKcDkD DKI/D~K~~~q   (B8) 
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since  q  is a convex parabola with zeros 01   and 02   , Equation (B8) holds, 

guaranteeing that 00 
~~

 , if   ,0 , where: 

     
KD

cKcDccmKDcKcD

~~

D~K~DKI/~~D~K~






2

4 12






 
(149

) 

Before continuing with the calculations, we give the following auxiliary result: 

Lemma B1. If  ccm DKI   is non-singular with 12 cc DK  and   1
00 1  ccm DKI/
~~
 , 

equivalently if   ,0 , with   defined in Equation (B9), then 102  
~

C
~  with a norm-

dependent real constant 
02
1


C  if  10  ,  with 

 

 KcKDDc

ccm

~D~~~K

DKI











2

1

1  (B10) 

Proof: One gets from Equation (B4) and Banach´s Perturbation Lemma [7] that, if 02 
~

C
~

  for 

some RC , then: 

      0
1

0
11

2
0

1
1

1




~
DKI

~
DKIII

~
~

C
ccmccmmm





 provided that 

01 
~

/C  . One gets that the above inequality holds if  

 

  10

1

0
0

12
11










ccm

ccm

DKI
~

DKI
C

~
/


  and, one gets from Equation (B5) that 

  12  KcKDDc
~D~~~KC

~
  (B11) 

If 1  . 

□ 

Now, rewrite the system matrices of closed-loop dynamics of Equations (7) and (10), 
equivalently Equation (B1), with dc AAA   and its incremental value as follows: 

  ccccmccc CKDKIBAA 1  (B12) 

  ddddmddc CKDKIBAA 1  (B13) 

    ddddmdccccmcdcccdc CKDKIBCKDKIBAAA
~ 11  

       1
1

2
1 

~
CKDKI

~
IB

~
BCKDKIB ccccmmcccccmc 



      1
1

2
1 

~
CKDKI

~
IBCKDKIB ccccmmcccccmc 



(B14) 
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    1
1

2 
~

CKDKI
~

IB
~

ccccmm 


  1
1
~

DKIB ccmc


    1
1

2
1

2 
~

DKI
~

BCKDKI
~

B ccmcccccmc
 

    1
11

~

DKIB
~

CKDKIB
~

ccmccccm




    1
1

2
1

2 
~

DKI
~
B
~

CKDKI
~

B
~

ccmccccm


  

Now, the following technical result follows directly from Equations (B14), (B5), (B6) and (B11), 
the norm upper-bounding values of the control, output interconnection and controller matrix errors 
and Lemma B1: 
Lemma B2. The following properties hold for any   ˆ,0  with  1 ,minˆ  calculated from 
Equations (B9) and (B10):  

(i)     221
1 11 

~
CK

~~
DKBA

~
cccccdc  

    12
1

11 
~

CK
~~DK ccBcc 


  11  ccc DKB

       KDKcDcKcKDDcccKcKCCc
~~~D~KC~D~~~KCCK~C~~~K   1

       KcKCCcccKcKDDcBcc
~C~~~KCK~D~~~KC~DK  


11

1

(B15) 

(ii) If, furthermore, 1 , then  r for any real 1r so that one gets from Equation (B15) by 

taking the upper-bound 2 for 3 that 

      1
20

2
2010

1 11   ccccccccdc DKB
~~

CK
~

DKBA
~



  ccBcc CK~DK 
1

1


    2010
12 1 

~
CK

~~DK ccBcc 


  1020
13 1 

~~~DK Bcc


   vuvu  2  

(B16) 

where 0ii
~~
   for 21,i   and it has been used that 23   , with  

      ccBccccccc CK~DK
~

CK
~

DKBu 
1

2010
1 11


    1020

1
1 

~~~DKv Bcc




  120 1  ccc DKB
~
    2010

1
1 

~
CK

~~DK ccBcc 


 

(B17) 

(iii) If the upper-bound   is used for 2 and 3 , one gets that  

  11  cccdc DKBA
~



      KcKDDcccKcKDDcKcKCCc
~D~~~KCCK~D~~~KC~C~~~K   1

       KcKCCcccKcKDDcBcc
~C~~~KCK~D~~~KC~DK  


11

1

(B18) 
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which also yields that   oa~A
~

dcdc 
 
in the case that 1 after grouping all the additive 

contributions of terms in i for 2i into an additive bounded term , which converges to zero as 

0 , where 

  11  ccdc DKa~

     KcDcKcCccccccB
~D~KC~C~KCKBCK~    

(B19) 

                                                                                                 □ 

Now, the following technical result follows directly from Lemma B2 and Theorem A1 (i): 

Lemma B3. Define   









 

 
2

1
2

0

1 ccndc AIsupa~/ 


i
R

 from Equation (B19) and assume that 

12 cc DK and that  112 ,,min   . Then, dcA  is stable if ccA is stable and  20  , . By using 

Equations (B.16) and (B.17), a better bound of the maximum allowable 2dcA is found as  30  ,  

with  1203 ,,min    and 
v

uvu

2
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20





 .  

Proof. Note from Theorem A1 (i) that the H -norm of   dcccn A
~

AsI 1  satisfies

  11 



dcccn A
~

AsI , which is guaranteed if 2  , then dcA is stable since ccA is stable. The result 

follows by taking also into account, in addition, the constraints in Equations (B9) and (B10) of Lemma 
B.1 by using   23 . If the second power of  is considered and the third one is upper-bounded 
as 23    , we examine the stability constraint  

2
12

0

1 






ccn AIsup/vu 


i
R

by building 

the convex parabola   02   uv whose negative and positive zeros are 

v

vuu
, 2
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21





 . Hence, the second part of the result.        □ 
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