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Abstract: In recent years, constant developments in Internet of Things (IoT) generate large amounts
of data, which put pressure on Cloud computing’s infrastructure. The proposed Fog computing
architecture is considered the next generation of Cloud Computing for meeting the requirements
posed by the device network of IoT. One of the obstacles of Fog Computing is distribution of
computing resources to minimize completion time and operating cost. The following study introduces
a new approach to optimize task scheduling problem for Bag-of-Tasks applications in Cloud–Fog
environment in terms of execution time and operating costs. The proposed algorithm named TCaS
was tested on 11 datasets varying in size. The experimental results show an improvement of 15.11%
compared to the Bee Life Algorithm (BLA) and 11.04% compared to Modified Particle Swarm
Optimization (MPSO), while achieving balance between completing time and operating cost.

Keywords: task scheduling; edge computing; cloud computing; genetic algorithm; particle swarm
optimization; Internet of Things

1. Introduction

Recently, Internet of Things (IoT) has become one of the major revolutions in the information and
communication technology industry. With IoT, Internet connection extends beyond traditional smart
devices such as smartphones and tablets to a diverse range of devices and things (sensors, machines,
vehicles, etc.), to accomplish many different applications and services such as: health care, medical
treatment, traffic control, energy management, vehicle networks, etc. This produces a huge amount of
data that need to be stored, processed and analyzed to obtain valuable information to meet user’s goals
and needs. In addition, the number and scale of applications and services are also increasing rapidly,
which requires processing capability that even the most powerful smart devices cannot currently meet.
The Cloud environment, which is known as a large resource center that allows ubiquitous access to
share and provide resources to users flexibly through virtualization mechanism, can be a potential
platform to support IoT developments. Restrictions of existing smart devices (battery life, processing
power, storage capacity, and network resources) can be minimized by taking time-consuming and
resource-intensive tasks to a powerful computing platform such as Cloud computing while leaving
the simple tasks for the smart devices to handle.

However, when combining IoT and Cloud computing, new problems emerge. According to
Information Handling Services (IHS) Markit, the IoT market will grow from 15.4 billion devices installed

Appl. Sci. 2019, 9, 1730; doi:10.3390/app9091730 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1328-3647
https://orcid.org/0000-0003-4751-4570
https://orcid.org/0000-0001-6441-9546
http://www.mdpi.com/2076-3417/9/9/1730?type=check_update&version=1
http://dx.doi.org/10.3390/app9091730
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 1730 2 of 20

in 2015 to 30.7 billion devices in 2020 and this figure in 2025 will rise to 75.4 billion. With this dramatic
increase in number of connected devices, the Cloud architecture with traditional centralized processing
characteristics (in which computing and storage resources are gathered and placed in several data
centers) will be unable to meet the requirements of IoT applications. The main reason is due to the
long distance between the Cloud and IoT devices. Massive flow of data sent by IoT devices to the
Cloud via the Internet will result in congestion, especially at bottlenecks, while also creating burden
on network performance and bandwidth. The delay in transmission leads to degraded Quality of
Service (QoS), which has detrimental effect on the user’s experience, since one of the properties of IoT
applications is latency sensitivity. Moreover, constant connection to the Cloud is not always available for
IoT devices, simply because it is very expensive. On the other hand, thanks to advances in both hardware
and software technologies, many devices on the edge of the network (routers, gateways, workstations,
personal computers, etc.) have more and more processing, storage and communication capabilities.

Fog computing [1], first proposed by Cisco, represents a new model of Cloud computing, which
can transform a network edge into a distributed computing infrastructure capable of implementing IoT
applications. The concept of Fog Computing is to extend Cloud computing closer to the IoT devices
that produce and consume data, which in turn brings processing and storage resources closer to users.
Rather than pushing all processing operation to the Cloud, Fog Computing aims to handle part of
workloads produced by applications on devices close to the network near the users, which are called
Fog servers or Fog nodes. These devices can be deployed anywhere that has network connectivity:
factories, commercial centers, on power poles, next to railways, inside vehicles, etc. Any device
that has computing, storage and networking capabilities can be considered a Fog Node: controllers,
switches, routers, embedded servers, surveillance cameras, etc. By placing resources at the edge of
the network, the time it takes for data to reach a processing station becomes negligible, therefore the
tasks are optimized for transmission time. However, processing capability of a Fog Node is restricted,
thus small tasks or processing requests with short delay will be prioritized to be processed on Fog
Computing infrastructure, while tasks that have delay-tolerant and tasks of larger scale will still be
pushed to Cloud layers. Eventually, Fog computing complements the Cloud to form a new computing
paradigm, Cloud–Fog computing.

The Cloud–Fog computing model has numerous advantages, including reduced latency, reduced
network traffic and increased energy efficiency, however, this new model also comes with a set of
challenges. One of them is resource allocation and tasks scheduling. A highly distributed system such
as Cloud–Fog computing is an ideal platform to deploy Bag-of-Tasks (BoT) applications, which are
those parallel applications whose tasks are independent to each other. BoT applications appear in
many scenarios, including data mining, massive searches (such as key breaking), fractal calculations,
computational biology [2], computer imaging [3], video encoding/decoding, and various other IoT
applications. The main challenge is scheduling tasks in the pool of processing nodes including cloud
nodes (such as servers or virtual machines) and Fog nodes. The goal of task scheduling in Cloud–Fog
system is aimed at the benefit of users or service providers. On the users side, they are concerned about
some criteria of makespan, budget, deadline, security, and cost. On the other hand, the purpose of the
service providers is load balancing, resource utilization, and energy efficiency. To guarantee the QoS,
response time plays an important role when directly influencing the user’s experience. In addition,
the implementation cost is also an aspect that users are very interested. A task schedule, which
minimizes completion time and saves monetary cost, will satisfy Service Level Agreement (SLA)
signed with users.

In this paper, we concentrate on task scheduling problem in Cloud–Fog environment, a highly
distributed computing platform, for processing large-scale BoT applications. A Time–Cost aware
Scheduling (TCaS) algorithm is proposed to solve this problem. The major objective of the TCaS algorithm
is to achieve a good trade-off between execution time and monetary cost to complete a bag of tasks in
Cloud–Fog system. In addition, this algorithm can flexibly adapt with the requires of various users in
which someone wants to prioritize the execution time at current time and others have a desire that their
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tasks are completed with a tight budget. Our approach was experimentally evaluated and compared with
Bee Life Algorithm (BLA) [4], Modified Particle Swarm Optimization (MPSO) and Round Robin (RR)
algorithm on many datasets with various size. The results prove that the proposed algorithm achieved
better QoS and was more optimal in balance between time and cost efficiency than BLA.

The rest of the article is organized as follows. In Section 2, the related works are presented.
Section 3 specifies the mathematical model for the task scheduling problem in the Cloud–Fog
computing environment. Section 4 presents our proposed algorithm in detail. Experimental results are
given in Section 5. Finally, Section 6 concludes the article and future works are discussed.

2. Related Works

2.1. Fog Computing with IoT

The centralized Cloud architecture is facing a number of challenges from IoT applications.
For example, IoT cannot support applications that require low latency and real-time applications
such as connected vehicles [1], smart traffic lights [5], etc. Fog computing can solve these challenges.
Table 1 summarizes differences between Cloud and Fog computing.

Table 1. Comparison between Cloud computing and Fog computing.

Parameter Cloud Computing Fog Computing

Latency High Low

Response time of the system Low High

Architecture Centralized Distributed

Communication with
devices

From a distance via Internet,
Multiple hops

Directly from the edge via Various
protocols and standards,
One hop

Data processing
Far from the source of information
in long-term time

Close to the source of information in
short-term time

Computing capabilities
Higher (Cloud Computing does not
provide any reduction in data while
sending or transforming data)

Lower (Fog Computing reduces the
amount of data sent to Cloud
computing.)

Server nodes
Few nodes with scalable storage
and computing power

Very large nodes with limited
storage and computing power

Security Less secure, Undefined More secure, Can be defined

Working environment
Warehouse-size building with air
conditioning systems

Outdoor (e.g., Streets, gardens) or
indoor (e.g., Restaurants)

Location of server nodes Within the Internet At the edge of the local network

Fog computing can help address Internet of Things challenges according to Chiang and Zhang [6]

• Latency constraints: Fog Computing is often the best candidate when it comes to dealing with
strict timing requirements of many IoT systems such as data analyzing, data managing and other
latency-restrictive tasks close to end users.

• Network bandwidth constraints: Fog Computing allows data sent and received from the end users
to the Cloud to be processed hierarchically so that the trade-off between application demands
and available networking and computing resources is considered. This also optimizes data usage,
reducing the amount needed to be sent to the Cloud.

• Resource-limited devices: Resource-intensive tasks can be performed by Fog instead of
resource-limited devices when they cannot be sent to the Cloud, which reduces these devices’s
complexity, maintenance cost, and energy consumption.
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• Uninterrupted services with sporadic connectivity to the cloud: A Fog system can function
independently to maintain constant services despite having sporadic network connectivity to
the Cloud.

• IoT security challenges: A Fog system is capable of the following: (1) acting as proxies for
resource-limited devices of which security credentials and software can be managed and updated;
(2) performing numerous security protocols on behalf of the resource-limited devices, to make up
for the lack of security functionality on these devices; (3) overseeing the security status of devices
in close proximity; and (4) using gathered information and context to identify threats promptly.

This section describes articles on the convergence between IoT and Fog computing. Fog computing
is still a recent research topic, thus concrete solutions to support this computer paradigm are lacking.
In this section, we examine existing works discussing the integration of Fog computing with IoT in
different applications.

There are survey papers related to various aspects of Fog computing. For example, Shi et al. [7]
has considered the essential features of Fog computing for healthcare systems. In addition, Yi et al. [8]
contributed a survey of Fog computing by discussing various application scenarios for Fog computing
and various problems that could arise during the implementation of these systems.

Central Fog services are placed in a software-defined resource management layer in the proposed
architecture [9]. This provides a Cloud-based middleware that prevents autonomous action by Fog
colonies. Instead, Cloud-based middleware analyzes, orchestrates and monitors Fog cells. In addition,
by examining key aspects of Fog computing and how Fog complements and extends Cloud computing,
Bonomi et al. [10] investigated the integration of IoT with Fog computing. They also proposed
a hierarchically distributed Fog architecture. They provided cases for an intelligent traffic light
system and a wind farm to test the characteristics of their architecture.

Yousefpour et al. [11] proposed a framework for understanding, evaluating and modeling delays
in IoT–Fog–Cloud applications. To minimize service delay for IoT nodes, they proposed a delay
minimizing Fog nodes policy. The proposed policy uses communication between Fog and Fog to
reduce service delays by sharing the load. The policy considers not only queue lengths, but also
various types of requests that have a variety of processing times for calculation offloading. The authors
also developed an analytical model for the detailed evaluation of service delays in IoT–Fog–Cloud
scenarios and carried out extensive simulation studies to support the model and proposed policies.

Lee et al. [12] investigated the security and privacy issues resulting from integrating Fog
computing with the IoT. They argued that the adoption of the IoT with Fog produces several security
threats. In addition, they discussed existing security measures which might be useful to secure the
IoT with Fog and highlighted the need to configure a secure Fog computing environment through
different security technologies.

Furthermore, Hong et al. [13] presented a Mobile Fog (MF) that can distribute IoT applications
in a hierarchical computing architecture from the edge devices to the Cloud across several devices.
The MF uses a dynamic node discovery process to combine devices in parent–child associations where
data from child nodes are processed by parent nodes. MFs can collect and process data locally on the
end-user devices so they can supply several advantages for IoT applications.

Mahmud et al. [14] detailed a taxonomy of the Fog computing environment along with challenges
and features in Fog computing. They showed the differences among Cloud computing, Fog computing,
Edge computing, Mobile Cloud computing, and Mobile Edge computing. They studied configuration
of Fog nodes, networking devices and different Fog computing metrics.

2.2. Task Scheduling Algorithms for Fog Computing

Task scheduling problem in Cloud computing has gained attention for several years. Recently,
there are many studies related to this issue when Fog computing has been proposed. Table 2 summarizes
the main ideas, the method, the improvement criteria and limitations of past related works.
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Table 2. Summary of related works about task scheduling algorithms for Fog computing.

Article Ideas Improvement Criteria Limitation

Huynh Thi Thanh
Binh (2018) [15]

genetic algorithm
execution time,
processing cost small dataset

Bitam et al. (2017) [4] bee life algorithm execution time, memory small dataset,
only in Fog environment

Gu et al. (2017) [16]
two-phase linear
programming-based
heuristic

communication cost,
apply for cellular network

no computational offloading
capability

Deng et al. (2016) [17]
nonlinear integers,
Hungarian method

power consumption,
delay

suitable for centralized
infrastructure, not easy to
apply to Fog computing

Guo et al. (2016) [18]
Markov decision
problems

power consumption,
delay

a continuous-time queueing
system

Ningning et al. (2016)
[19]

graph partitioning,
a minimum spanning
tree

execution time
complexity when the number
of user requests increases

Queis et al. (2015) [20] heuristic
user satisfaction,
task latency,
power consumption

complexity when the number
of user requests increases

Abdi et al. (2014) [21]
particle swarm
optimization completion of task in Cloud environment

Abdi et al. [21] proposed a modified particle swarm optimization (MPSO) and compared it
with two popular heuristic approaches, namely PSO and GA, in Cloud computing environment for
efficiency of task scheduling. They focused on minimizing the completion time of tasks. They merged
the smallest job to fastest processor algorithm (SJFP) and the PSO to make the initial population better.
This MPSO algorithm gives better results than standard PSO and GA but it has only been tested in
Cloud environment.

By addressing load balancing in Fog computing, Oueis et al. [20] focused on improving the
quality of user experience (QoE). Firstly, they allocated local computing resources in small cells. Then,
for requests of each user, clusters in Fog computing are set up depending on a specific optimization
target of arrival time, delay, and so on. They produced good results with a low computer infrastructure,
but the method could be complicated if the Fog computing infrastructure is expanded to a large extent.

Ningning et al. [19] proposed a graph-based load balancing mechanism for Fog computing. Tasks
are assigned to one or more Fog nodes based on the necessary resources. A non-directed graph
represents the network of Fog nodes. This mechanism influences the running time of tasks. However,
the main disadvantage of this method is not optimal for dynamic load balancing of Fog computing
because the graph often redistributes to deal with the changes of Fog computing.

Guo et al. [18] focused on minimizing latency in edge Clouds. They proposed job allocation
problem in Cloud–Fog computing. However, they used simple model to determine power consumption
and latency. In particular, end-user devices send tasks to base stations. Base stations receive and send
tasks to the edge Cloud servers for execution. Then, the results are returned to end-users.

Deng et al. [17] solved three independent sub-problems using the existing optimization techniques
to minimize power consumption and latency when allocating jobs in the Cloud–Fog environment.
Firstly, they found the optimal correlation between power consumption and latency in Fog computing.
They used convex optimization to solve this sub-problem [22]. Secondly, they found the optimal
correlation between power consumption and latency in Cloud computing. They used nonlinear
integer method to solve this sub-problem [23]. Finally, they solved the third sub-problem by the
Hungarian [24]. In this sub-problem, transmission latency is minimized from the Fog server to the
Cloud server. This study shows that Fog computing improved performance for Cloud computing by
passing the modest computing resources, to reduce bandwidth and transmission latency. However,
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the Cloud hub is responsible for the allocation of work, thus this method is less well suited to the Fog
computing infrastructure. Thus, the overall performance can be reduced.

Gu et al. [16] studied on task distribution, base station association, and virtual machine placement
in medical cyber-physical systems supported by Fog computing. They minimized the overall cost to
guarantee QoS. However, the proposed model does not generalize into scenarios in the Cloud–Fog
computing environment because it is based on cellular network architecture. The model lacks the Cloud
entity, while Fog nodes are assumed to co-locate with the base station and do not have computation
offloading capability.

Bitam et al. [4] proposed a task scheduling strategy using Bee Life Algorithm (BLA). The article
focuses on two main objectives: execution time and memory. However, this article does not mention
the association with Cloud data center and the method is only tested on small datasets.

Huynh Thi Thanh Binh [15] proposed a task scheduling mechanism in Cloud–Fog computing
environment based on Genetic Algorithm (GA). This method aims at obtaining good trade-off between
time and cost. The proposed method overwhelms Bee Life Algorithm; however, the experiments are
limited as they tested the algorithm only on small datasets.

In most related studies, algorithms are only deployed in Cloud computing or Fog computing
environments where processing nodes have similar abilities. In the hybrid Cloud–Fog environment,
there is a significant differentiation between Cloud nodes and Fog nodes in terms of processing speed
and resource usage cost, thus tasks are not evenly distributed to processing nodes such as in Cloud
computing or Fog computing; therefore, some classical cloud based scheduling algorithms may not
be effective. The main contribution of this work is proposing TCaS algorithm—a strategy based
on an evolutionary algorithm to obtain optimal trade-off between execution time and processing
cost. Additionally, we approach the task scheduling problem in Cloud–Fog computing environment
with some other evolutionary algorithms, namely Particle Swarm Optimization (PSO) and Bee Life
Algorithm (BLA), and the simple Round Robin (RR) algorithm to demonstrate the efficiency of the
proposed algorithm.

3. Task Scheduling Problem

3.1. System Architecture

In the Fog environment, the processing takes place in a data hub on a smart device, or in a smart
router, gateway, switcher, local server, etc. Because of limited processing capacity, some Fog nodes
cooperate regionally together, simultaneously connecting to Cloud nodes known as Cloud virtual
machines to satisfy mobile user’s need. It was assumed that our system consists of f Fog nodes and c
Cloud nodes as well as a Fog broker. Fog nodes communicate directly to mobile users. All requests from
mobile users are forwarded immediately to Fog broker, who is responsible for analyzing, estimating
and then scheduling all tasks to be executed in the Cloud–Fog system. The Fog broker is close to the
Fog nodes, thus the time consumed for data communication between each other is negligible.

To guarantee the performance of system, the TCaS algorithm, which is installed on the Fog broker,
aims at finding an optimal task executing schedule achieving time and cost efficiency. The operation of
our system model is described step by step in Figure 1.

Firstly, a mobile user sends a request (Step 1), which is handled by Fog node it is connected to.
This request (or job) is immediately forwarded to the Fog broker (Step 2). To be processed in distributed
system, each job is decomposed into a set of tasks (Step 3), and then the number of instructions and
the resource usage needed are estimated (Step 4). Handling all information of tasks and nodes, the Fog
broker runs a scheduling algorithm (Step 5) to find a good task assignment. Following the output,
tasks are sent to the corresponding Cloud nodes and Fog nodes (Step 6). Each node is responsible
for processing all tasks assigned (Step 7) and then sends the results back to the Fog broker(Step 8).
Once all tasks are completed, the result of the job is combined (Step 9) by the Fog broker. Subsequently,
the response is sent to the mobile user through the Fog node that user connects with (Step 10).
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Mobile
Users

Fog Nodes Fog Broker
Cloud 
Nodes

1. Sending requests
(Jobs generation)

2. Forwarding job

4. Estimating tasks

3. Decomposing
job into tasks

5. Scheduling tasks

6’. Sending tasks6. Sending tasks

7’. Executing
tasks 

7. Executing
tasks 

8. Sending task results 8’. Sending task results

9. Combining 
results of each job10. Sending response

10. Sending response

Figure 1. The operation of Cloud–Fog system.

3.2. Problem Formulation

When requests from BoT applications are sent to the Fog layer, they are decomposed into small
and independent tasks to be processed over the Cloud–Fog computing infrastructure. Each task has
the following properties: number of instructions, memory required, size of input and output files.
Assuming that Tk indicates the kth task, at each time, there is a set of n independent tasks sent to the
system, as follows:

T = {T1, T2, T3, ..., Tn} . (1)

The Cloud–Fog computing infrastructure consists of processors, i.e., Cloud nodes and Fog nodes,
which have the same attributes such as CPU rate, CPU usage fee, memory usage fee, and bandwidth
usage fee. However, Cloud nodes are typically more powerful than the Fog nodes, but the cost of
using them is greater. The set of m processors including c Cloud nodes and f Fog nodes in the system
(N = Ncloud ∪ NFog) is expressed as:

N = {N1, N2, N3, ..., Nm} , (2)

where Ni presents the ith processing node.
Each task Tk(Tk ∈ Tasks) is assigned to the processor Ni(Ni ∈ Nodes), which is represented as Ti

k.
One processor can be assigned to process a set of one or more tasks:

NiTasks =
{

Ti
x, Ti

y, ..., Ti
z

}
(3)

The task scheduling problem in Cloud–Fog computing environment could be formulated as
searching of a set:

NodeTasks =
{

Ta
1 , Tb

2 , Tc
3 , ..., Tp

n

}
(4)

For a set of tasks NiTasks, the execution time (EXT) that node Ni needs to complete all tasks
assigned is:

EXT (Ni) = ∑
Ti

k∈NiTasks

ExeTime(Ti
k) =

∑Ti
k∈NiTasks length(Tk)

CPUrate(Ni)
(5)

where ExeTime(Ti
k) is the execution time of Tk processed in node Ni, which is calculated by:

ExeTime(Ti
k) =

length(Ti
k)

CPUrate(Ni)
(6)



Appl. Sci. 2019, 9, 1730 8 of 20

with length(Tk) the number of instructions of task Tk and CPUrate(Ni) the CPU rate of node Ni, which
is determined based on clock rate, number of cores, instruction level parallelism, etc.

Makespan is the total time for the system to complete all tasks, defined from the time when the
request is received to the time that the last task is completed, or the time when the last machine finishes.
Makespan is determined by the formula:

Makespan = Max
1≤i≤m

[EXT (Ni)] (7)

Let MinMakespan be the lower bound of Makespan, i.e., the shortest time that the system needs to
complete all tasks. Ideally, when all nodes finish all tasks assigned at the same time, MinMakespan
will be obtained and calculated by:

MinMakespan = EXT (N1) = ... = EXT (Nm)

thus,

MinMakespan =
∑1≤k≤n length(Tk)

∑1≤i≤n CPUrate(Ni)
(8)

When one task is executed in Cloud–Fog system, a monetary amount must be paid for processing
cost, memory usage cost, and bandwidth usage cost. The cost estimated when node Ni processes the
task Tk is expressed as:

Cost(Tk
i ) = cp(Tk

i ) + cm(Tk
i ) + cb(Tk

i ) (9)

In Equation (5), each cost is calculated as follows.
Processing cost is defined as:

cp(Ti
k) = c1 ∗ ExeTime(Ti

k) (10)

where c1 is the CPU usage cost per time unit in node Ni, and ExeTime(Ti
k) is defined as Equation (6).

Letting c2 be the memory usage cost per data unit in node Ni and Mem(Tk) the memory required by
task Tk, the memory usage cost is:

cm(Ti
k) = c2 ∗Mem(Ti

k) (11)

Task Tk processed in node Ni needs an amount of bandwidth Bw(Tk), which is the sum of input
and output file size. Let c3 be the bandwidth usage cost per data unit; the bandwidth usage cost is
defined as follows:

cb(Ti
k) = c3 ∗ Bw(Ti

k) (12)

Total cost for all tasks to be executed in Cloud–Fog system is calculated as follows:

TotalCost = ∑
Ti

k∈NodeTasks

Cost(Ti
k) (13)

MinTotalCost is the lowest cost needed for a set of tasks T to be completed in Cloud–Fog system,
which can be obtained when each task is assigned to the cheapest node. Provided the information
of each node, it is easy to determine which node processes task Tk with the lowest cost, known as
MinCost(Tk). Therefore, MinTotalCost is specific with one set of tasks T, and can be defined as:

MinTotalCost = ∑
Tk∈T

MinCost(Tk) = ∑
Tk∈T

Min
1≤i≤m

(Cost(Ti
k)) (14)

We can define a utility function that computes the trade-off between the Makespan and total cost
as follows:

F = α ∗ MinMakespan
Makespan

+ (1− α) ∗ MinTotalCost
TotalCost

(15)
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where α(α ∈ [0, 1]) is the balance coefficient between makespan and total cost. α = 0.5 means that time
and cost have same priority in optimizing. When α > 0.5, our mechanism focuses on minimizing the
makespan with higher priority than total cost, which is the case when a user is willing to pay more
money to obtain better performance. Inversely, when α < 0.5, the cost is more prioritized than time,
i.e., the user has a tight budget.

The objective is optimizing execution time and processing cost, which means finding a solution
such that Makespan and TotalCost are minimum and close to MinMakespan and MinTotalCost,
respectively. Consequently, the closer to 1 the utility function F is, the more optimal is the solution obtained.

The task scheduling problem in Cloud–Fog computing environment can be formulated as:
Input:

T = {T1, T2, T3, ..., Tn}: a set of independent tasks
N = {N1, N2, N3, ..., Nm}: a set of processing nodes including Cloud nodes and Fog nodes

Output:
NodeTasks =

{
Ta

1 , Tb
2 , Tc

3 , ..., Tp
n

}
: an assignment of all tasks executed into processing nodes

Objective:
Maximize the utility function F:

F = α ∗ MinMakespan
Makespan

+ (1− α) ∗ MinTotalCost
TotalCost

→ Max

4. Evolutionary Algorithms for Task Scheduling Problem

4.1. Modified Particle Swarm Optimization

In [25], Izakian proposed Particle Swarm Optimization (PSO) for grid job scheduling. For the
purpose of approaching task scheduling problem in Cloud–Fog computing environment with various
evolutionary algorithms, we remove the service layer in grid computing and maintain the general idea
of PSO to define Modified Particle Swarm Optimization (MPSO), which can adapt to our proposed
model. Details of the MPSO algorithm are given in the following.

4.1.1. Particle: Position and Velocity

The representation step plays an important role in the successful design of PSO algorithm, which
aims at finding an appropriate mapping between problem solution and PSO particle. In our method,
binary representation is used, each particle is expressed as a m× n matrix, called position matrix,
in which m is the number of available nodes including Fog nodes and Cloud nodes and n is the number
of tasks. Xk, which is the position matrix of tth particle in the swarm, has two main characteristics:

i. Xk(i, j) ∈ {0, 1} (∀i, j), i ∈ {1, 2, · · · , m} , j ∈ {1, 2, · · · , n}
ii. ∑m

i=1 Xk(i, j) = 1(∀j), j ∈ {1, 2, · · · , n}

In position matrix, each element is either 0 or 1. If Xk(i, j) = 1, then task Tj is executed in node Ni.
The second condition ensures that there is exactly one element with value 1 in each column, which
means each task is performed on only one node.

For example, a set of 10 tasks is executed in a Cloud–Fog system of the nodes; one solution of task
scheduling can be:

NodeTasks =
{

T3
1 , T1

2 , T3
3 , T2

4 , T1
5 , T2

6 , T2
7 , T3

8 , T1
9 , T3

10

}
An example of the position matrix of particle corresponding to the above solution is shown in

Figure 2.
Each particle moves to a new position based on its velocity. The velocity matrix dimensions

are exactly the same as the position matrix, i.e., m× n. Its elements are real numbers in the range
[−Vmax, Vmax]. In other words, the kth particle has velocity Vk satisfying the condition:
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Vk(i, j) ∈ [−Vmax, Vmax] (∀i, j), i ∈ {1, 2, · · · , m} , j ∈ {1, 2, · · · , n} .

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
N1 0 1 0 0 1 0 0 0 1 0
N2 0 0 0 1 0 1 1 0 0 0
N3 1 0 1 0 0 0 0 1 0 1

Figure 2. Example of the position matrix.

4.1.2. Population Initialization

Assuming that N particles form a population, first the position of each particle in the initial
population is generated randomly, which ensures that particles are distributed in many areas in the
search space. Besides, the velocity matrices of particles are initialized stochastically for the purpose of
dynamic exploration.

4.1.3. Fitness Function

Particles are evaluated through a fitness function, the fitness value represents the quality of the
solution that the particle expresses and also shows its influence in the population. In this problem,
the fitness value is calculated by the utility function F shown in Equation (15). The higher is the fitness
value, the better is the solution achieved.

4.1.4. Personal Best and Global Best

Through many movements, particles explore various locations. The personal best pBestk
determines the best position that kth particle has experienced, whereas the global best gBest indicates
the best place that any particle of the whole population has discovered from the beginning of the
algorithm. Thus, pBest and gBest are m× n binary matrices as position matrices.

The two factors pBest and gBest play important roles in the process of PSO, which help each
particle to search around its own best position and the global best position. pBest and gBest should be
updated every time step. When the kth particle moves to new position Xk, if a greater fitness value
is achieved, its personal best pBestk is replaced with Xk. If fitness value of any pBest is greater then
current gBest, gBest is replaced with that pBest.

4.1.5. Particle Updating

The velocities of particles are updated regularly based on its best experience pBest and the leader
gBest. The below equation indicates how kth particle updates its velocity.

V(t+1)
k (i, j) = w.Vt

k (i, j) + c1r1(pBestt
k(i, j)− Xt

k(i, j)) + c2r2(gBestt
k(i, j)− Xt

k(i, j)). (16)

In Equation (16), each element in velocity matrix is updated. (i, j) indicates the element in ith
rows and jth column of the matrix. c1 snf c2 are positive acceleration constants, which control the
influence of pBest and gBest on the search process, r1 and r2 follow uniform distributions in the range
of [0, 1], and w is inertia weight, which usually decreases from a large value (e.g., 0.9) in the beginning
to a small value (e.g., 0.1) in the last iteration to control the exploration and exploitation abilities of
the swarm.

The new position of kth particle is defined as follows.

X(t+1)
k (i, j) =

1, i f
(

V(t+1)
k (i, j) = max

i

{
V(t+1)

k (i, j)
})

, i ∈ {1, 2, · · · , m} ;

0, otherwise.
(17)

The new position of kth particle is updated based on its velocity. Equation (17) means that, in each
column of position matrix, the element whose corresponding element in velocity matrix has the max
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value in its column is assigned a value of 1, while others in this column are labeled 0. If a column of
velocity matrix has many elements with max value, then one will be selected randomly and 1 assigned
to its corresponding element of position matrix.

4.2. Proposed Evolutionary Algorithm

To deal with task scheduling problem in Cloud–Fog computing environment, the TCaS algorithm
is proposed based on an evolutionary algorithm—Genetic Algorithm (GA)—as follows.

4.2.1. Encoding of Chromosomes

An individual specified by a chromosome in genetic algorithm represents a solution of task
scheduling. For encoding of chromosomes, an n-dimensional array corresponding to n genes is used.
The sequence number of gene is the sequence number of task; each gene has a value of an integer k in
range [1; m] with m the number of nodes, which indicates that the corresponding task is assigned to
the node numbered k.

For the example shown in Section 4.1.1, the chromosome expresses that solution would be:

chromosome = [3, 1, 3, 2, 1, 2, 2, 3, 1, 3]

Node 1 executes the set of tasks {2, 5, 9}, the set of tasks {4, 6, 7} is assigned to be processed in
node 2, while node 3 is responsible for the set of tasks {1, 3, 8, 10}

This chromosome encoding method was chosen because of the flexibility of performing genetic
operations, such as crossover and mutation, to create new individuals exploring the solution search
space, simultaneously inheriting quality gene segments from parents. The order of tasks processed
is not considered because performing tasks in a different order on one machine does not affect the
objectives, namely makespan and total cost.

4.2.2. Population Initialization

The initial population is the set of all individuals that are used in the GA to find the optimal
solution. Assume that the size of population is N. To discover many areas in the search space as well
as to ensure the diversity of the population in the first generation, the N individuals are initialized
randomly. From the initial population, the individuals are selected, and some operations are applied
on them to form the next generation.

4.2.3. Fitness Function

The fitness function is the measure of the superiority of an individual in the population.
The individual with high fitness value represents a good quality solution. The fitness value of each
individual is estimated by the utility function F shown in Equation (15). Depending on the fitness
value, the individuals can survive or die out through each generation.

4.2.4. Genetic Operators

a. Crossover operator

With chromosome encoding as an array of integers, two-point crossover operation is used to
generate offspring inheriting good genes from parents. This operation is shown in Figure 3, where
two crossover points are randomly selected, the first parent exchanges the middle gene segment to the
second parent, and the remaining genes are unchanged, forming a new individual.

In the crossover process over the population, parental selection influences the efficiency of the
algorithm. Each individual has a crossover rate of α. Everyone in the population is considered to
be the first parent with the probability α, and then the roulette wheel technique is applied to select
the second parent in the population to participate in crossover process. With this selection technique,
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high quality individuals with a larger fitness value have higher probability of being selected as parent,
thus ensuring good gene segments are more likely preserved in the next generation.

𝑇1 𝑇2 ... 𝑇a 𝑇b 𝑇c 𝑇d 𝑇e 𝑇f … … 𝑇n

1 2 2 4 2 3 1 3 3

2 3 1 1 4 4 2 2 1

1st parent:

2nd parent:

1 2 2 1 4 4 2 3 3Offspring:

1st crossover point 2nd crossover point

Figure 3. Two-point crossover operator.

b. Selection strategy

The selection mechanism is used to select individuals to form a population for the next generation
based on the Darwin’s law of survival. Immediately after the crossover process, natural selection
is conducted. The offspring is calculated for the fitness value and is compared to the parent; if the
offspring is better than the parent, the individual is preserved to form the next-generation population.
Otherwise, this offspring is discarded and the parent is retained in the next generation.

This greedy selection maintains the diversity of the population over generations when the genes
of the lesser individuals are not eliminated so rapidly and still contribute to the exploration of new
regions on the search area; simultaneously, good gene segments are not repeated too many times in
individuals in one population.

c. Mutation operator

After crossover and natural selection process, new population is formed with N individuals. Each
individual participates in one-point mutation with the rate of γ. The location of the mutant gene is
randomly selected and replaced by a different value (see Figure 4); in this way, the task chosen is
assigned to be processed in another node.

Parent:

Offspring:

Mutation point

𝑇1 𝑇2 ... 𝑇a 𝑇b 𝑇c 𝑇d 𝑇e 𝑇f … … 𝑇n

1 2 2 4 2 3 1 3 3

1 2 2 4 1 3 1 3 3

Figure 4. One-point mutation operator.

Mutation perfects the limitations of crossover operator by finding the optimal solution when
individuals are vicious around the extremes, or escaping from the local extremes to explore the other
areas in the solution space.

According to the proposed TCaS algorithm, a set of modifications from GA was introduced. These
modifications are as follows.

• Parental selection: In the crossover process, each individual in the population is considered to be
the first parent, and the second parent was selected by the roulette wheel technique.

• Greedy selection strategy: Each crossover operation produces one offspring, which is preserved
to form the next-generation population if it is better than first parent and discarded otherwise.
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5. Performance Evaluation

In this section, we present the simulation setup and evaluation of the proposed algorithm based on
the results of conducted tests.

5.1. Experimental Settings

Cloud and Fog nodes have different processing power as well as resource usage cost. We assumed
that each node has its own processing capacity represented by processing rate (measured by MIPS
(million instructions per second)), along with CPU, memory and bandwidth usage cost. Thirteen
processing nodes constructed the Cloud–Fog system, with the characteristics shown in Table 3. In the
Fog layer, Fog nodes such as routers, gateways, workstations, or personal computers have limited
processing capacity. In Cloud layer, servers or virtual machines in high performance data centers are
responsible for handling tasks. Therefore, the processing speed of Cloud nodes is much faster than
Fog nodes. In contrast, the cost of using resources in the Cloud is more expensive than in the Fog.
These costs are calculated according to Grid Dollars (G$)—a currency unit used in the simulation to
substitute for real money.

Table 3. Characteristics of the Cloud–Fog infrastructure.

Parameter Fog Environment Cloud Environment Unit

Number of nodes 10 3 node
CPU rate [500, 1500] [3000, 5000] MIPS

CPU usage cost [0.1, 0.4] [0.7, 1.0] G$/s
Memory usage cost [0.01, 0.03] [0.02, 0.05] G$/MB

Bandwidth usage cost [0.01, 0.02] [0.05, 0.1] G$/MB

The Cloud–Fog system is responsible for executing all requests from users. Each request is
decomposed into a set of tasks, which are analyzed and the resources that they need are estimated. It was
assumed that each tack has some attributes: number of instructions, memory required, input file size,
and output file size. Depending on the workload of each request, the set of tasks may vary widely in size.
Thus, 11 datasets with from 40 to 500 tasks were created to participate in our simulation. Each task in
datasets was generated randomly with its attributes following Table 4. With randomness, the experiment
could cover various scenarios because many types of tasks were created, some of them requiring a huge
amount of processing while others needing more memory or bandwidth usage, and so on. Note that we
proposed these benchmarks (e.g., Tables 3 and 4) because of no benchmarks published in the literature in
this research area.

Table 4. Attributes of tasks.

Property Value Unit

Number of instructions [1, 100] 109 instructions
Memory required [50, 200] MB

Input file size [10, 100] MB
Output file size [10, 100] MB

The settings of the experimental environment are shown in Table 5, the simulation was developed
in Java with Eclipse editor, and using iFogSim [26]. iFogSim Was chosen because it is developed
based on CloudSim, a Cloud computing platform that has been widely used and validated in numerous
studies over the years; iFogSim supports modeling and simulation of architecture as well as services in
Cloud–Fog environment.
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Table 5. Simulation setup.

System Intel R© CoreTM i7-4710MQ, CPU 2.50GHz
Memory 8 GB

Simulator iFogSim
Operating system Windows 10 Professional

Since our proposed TCaS algorithm is based on Genetic Algorithm, we compared our method
with some other evolutionary algorithms: (1) Modified Particle Swarm Optimization (MPSO); and
(2) Bee Life Algorithm (BLA) [4]; as well as a traditional algorithm: (3) simple Round Robin (RR)
scheduling. BLA was introduced by Bitam with the following idea.

BLA is an optimization method that is inspired from the two most important behaviors of bees,
namely marriage (or reproduction) and food foraging. First, N individuals, which form the initial
population, are evaluated by a fitness function. After sorting the population, the best individual is
chosen as the queen, the next D bees are identified as drones, and the remaining bees W are workers
bee. Population is changed through each generation; the bee’s life cycle consists of two main behaviors:
reproduction and food foraging. During the reproduction stage, the queen mates with a set of drones
to produce broods by the crossover and mutation operators. The individual evaluation is conducted to
find the best bee who substitutes the precedent queen, the following D fittest bees become drones and
W new workers. Now, the food foraging stage is executed; each worker is responsible for finding the
food source and then recruiting other workers to collect the found food. Afterwards, the best worker
of every region keeps alive in the next population.

Table 6 shows the parameter settings of three evolutionary algorithms.

Table 6. BLA, TCaS and MPSO parameters.

Parameter BLA TCaS MPSO

Running times 30 30 30

queen 1

drones (D) 30Population size (N)

workers (W) 69

100 100

Crossover rate (α) 90% 90% c1 = c2 = 1.5

Mutation rate (γ) 1% 1% w = 0.9→ 0.1

Number of generations 500 500 500

In Equation (15), the balance coefficient α indicates the priority of optimization between makespan
and total cost. We first conducted simulations in the scenario where time and cost have the same level
of interest, i.e., α = 0.5.

5.2. Experimental Results

To analyze our method, several experiments were conducted in two different scenarios. In the
first situation, a bag of tasks was executed locally in a set of connected Fog nodes and, in the other,
Fog layer collaborated with a number of Cloud nodes to process requests from users.

5.2.1. Scenario 1: Task Scheduling in Fog Environment

In the first setup, we defined a Fog layer consisting of 10 Fog nodes, which connected to each
other to satisfy user requirements in a geographical area. Four algorithms were deployed to produce
schedules for bags of tasks, which included from 40 to 500 tasks to be executed in Fog environment.
The average results were obtained by running four algorithms in each dataset over 30 times with 500
generations (or iterations) and the coefficient balance α = 0.5.
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Figure 5 shows the comparison of time–cost trade-off of four algorithms. It was obvious that our
proposed algorithm, TCaS, dominated the first position in every dataset with high average fitness
value of 0.945, which was better than MPSO, BLA and RR by one average 7.97%, 8.17% and 44.08%,
respectively. Experiencing on small datasets, from 40 to 200, BLA gave better solutions than MPSO.
However, when the dataset was bigger, i.e., the problem became more complex, the fitness value BLA
reached recorded a gradual decrease with the increase in dataset size; meanwhile, MPSO maintained
its stability with its fitness value of around 0.87. Consequently, MPSO algorithm produced better
solutions than BLA by an average of 1.89% on datasets with size from 250 to 500. The simple RR
algorithm gave the worse results of the three algorithms with fitness value of around 0.65.
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Figure 5. Time–cost trade-off comparison of the four algorithms.

Table 7 presents the scheduling length and processing cost of the four algorithms. The fitness
function was contributed by two main components: makespan and total costs. Thus, with high fitness
value, TCaS algorithm demonstrated superiority on almost datasets in both time and cost aspects.
Our proposed method overtook all other algorithms in execution time; the schedule of TCaS algorithm
consumed less time than that of MPSO by 16.15% and BLA by 16.77%, and saved on average 2.32 times
over the whole 11 datasets compared to that of RR algorithm. Considering the monetary cost, TCaS
required the least cost of the four algorithms on almost all datasets, except on the smallest dataset of 40,
where BLA won. TCaS saved 0.48%, 0.53% and 2.15% of processing cost compared to BLA, MPSO and
RR algorithm, respectively.

Table 7. Makespan and total cost comparison of the four algorithms.

Number
of Tasks

Makespan (s) Total Cost (G$)

TCaS BLA MPSO RR TCaS BLA MPSO RR

40 191.44* 207.57 215.27 456.11 733.85 730.88 740.38 755.98
80 394.69 416.09 445.35 963.08 1540.23 1540.85 1553.43 1581.82

120 607.71 654.92 686.20 1495.66 2363.37 2367.59 2381.16 2418.90
160 819.97 917.67 932.33 1912.08 3176.17 3183.80 3197.01 3246.69
200 940.87 1067.49 1065.94 1905.70 3755.21 3767.37 3778.27 3835.40
250 1,270.96 1490.65 1479.84 3054.80 4988.94 5017.17 5007.59 5079.06
300 1,473.79 1765.49 1712.76 3309.14 5832.69 5877.41 5862.52 5935.94
350 1,649.04 2010.74 1911.27 3638.19 6607.52 6653.37 6632.38 6738.19
400 1,944.58 2421.98 2300.51 4347.64 7738.56 7816.04 7759.95 7875.39
450 2,235.16 2840.79 2751.29 5350.35 8845.90 8926.57 8876.30 9016.59
500 2,503.09 3174.39 3067.26 6023.74 9902.64 9995.97 9921.76 10,097.75

* The bold indicates the superiority of the corresponding algorithm throughout four algorithms.
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5.2.2. Scenario 2: Task Scheduling in Cloud–Fog Environment

In this case, we conducted experiments on the complete Cloud–Fog system, which consisted of
10 Fog nodes and three remote Cloud nodes. Unlike in Scenario 1, Fog nodes had similar values of
attributes; tasks seemed to be evenly distributed to nodes. In this case, the processing nodes were
divided into two categories. Cloud nodes were much more powerful than Fog nodes, thus were
responsible for processing more tasks. Therefore, finding an optimal solution was more difficult.

Figure 6 compares the time–cost trade-off between our proposed TCaS algorithm and the three
others as the number of tasks changed. The average results were obtained by running two algorithms
on each dataset over 30 times with 500 generations (or iterations) and the coefficient balance α = 0.5.
Compared to Scenario 1, the ranking of solution quality of the four algorithms achieved in this
case were quite similar; however, the fitness values were generally smaller. TCaS algorithm still
overwhelmed the remaining algorithms on all datasets, especially on small datasets including from
40 to 200 tasks. The result achieved by TCaS was on average better than that of MPSO by 11.04%,
BLA by 15.11% and RR by 44.17%. Observing three evolutionary algorithms, the fitness value slightly
decreased as the number of tasks increased. This can be explained as the bigger the dataset was,
the larger search the space was, thus the three algorithms could not converge in the limited iterations
or could not explore the whole large space with a small number of individuals. MPSO performed
better than BLA in this complex environment, while achieving higher fitness value than BLA on every
datasets and was better than BLA on average by 3.66%. The fitness value RR algorithm achieved
remained the lowest level of four algorithms, which was around 0.55.
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Figure 6. Time–cost trade-off comparison of the four algorithms.

Table 8 compares the four algorithms in terms of execution time and processing cost. TCaS algorithm
represented the superiority of scheduling length on every dataset; it saved on average 35.73% of
processing time compared to MPSO, 42.20% compared to BLA and 176.25% compared to RR. However,
in terms of monetary cost, our algorithm was not the best. MPSO demonstrated its cost effectiveness
when holding the first position on almost all datasets except the 40-task dataset where BLA was slightly
better. TCaS consumed 5.96% more money than MPSO, the most cost effective algorithm; however,
this number is very small compared to the execution time benefit shown by TCaS. Actually, response
time is very important in guaranteeing QoS as it directly affects a user’s experience, thus users are willing
to spend a small amount of money to experience much higher performance service.

Based on the analysis of the results of the two scenarios, TCaS, our proposed algorithm, could
reach better trade-off between makespan and total cost than the three other algorithms, together with
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showing the superiority of time optimization. MPSO demonstrated more power than BLA in complex
environments. RR algorithm with simple mechanism gave poor results.

Table 8. Makespan and total cost comparison of the four algorithms.

Number
of Tasks

Makespan (s) Total Cost (G$)

TCaS BLA MPSO RR TCaS BLA MPSO RR

40 114.37* 185.37 157.41 313.01 861.53 811.34 811.45 859.96
80 232.91 368.78 352.50 965.32 1817.90 1732.46 1689.26 1793.53

120 357.42 580.29 546.70 1267.54 2779.72 2639.79 2583.55 2687.34
160 515.38 776.68 763.41 1729.19 3694.69 3543.08 3464.33 3587.65
200 633.28 894.42 873.06 1521.44 4403.63 4247.69 4134.09 4323.92
250 816.59 1127.48 1112.33 2190.21 5485.85 5349.45 5155.44 5411.28
300 1052.92 1436.58 1375.54 2861.95 6740.36 6591.75 6405.11 6666.58
350 1241.28 1628.91 1583.82 2835.65 7666.27 7535.36 751.25 7610.78
400 1486.92 1925.29 1864.29 3139.76 8877.14 8763.91 882.87 8792.12
450 1754.18 2251.06 2168.70 3653.46 10,124.56 10,033.83 9682.45 10,026.13
500 1994.21 2512.40 2425.86 4633.48 11,299.53 11,219.18 10,823.84 11,266.31

* The bold indicates the superiority of the corresponding algorithm throughout four algorithms.

Next, we considered the convergence of the three evolutionary algorithms TCaS, BLA and
MPSO. They were performed on a dataset of 120 tasks over 500 generations with coefficient balance
α = 0.5. We observed the population every 20 generations. The fitness values of all individuals were
synthesized, as shown in Figure 7. The middle point in line indicates the average fitness value of whole
population while the bottom and top of the error bar present the fitness value of the worst and best
individual, respectively. It was observed that BLA and MPSO expressed fast convergences after 100
generations, however, the found solutions had small fitness values at 0.69 and 0.72 compared with 0.84
achieved by TCaS algorithm. In some first generations, individuals of TCaS algorithm were distributed
with a wide range of fitness value. The best solution was found in 240th generation; afterwards,
the fitness range narrowed, meaning the population gathered around the extreme. TCaS converged
after 300 generations. The mechanism of BLA that all drones perform crossover operator with only
one queen each generation made the population easily fall into local extreme. Similarly, in MPSO,
the leader had a great influence on every particle in the population, thus there was high probability
that the population fell into local extreme when the leader was stuck. Consequently, both algorithms
converged quickly with low fitness values. Meanwhile, the proposed TCaS algorithm maintained
population diversity, thus could reach more optimal solution.
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Figure 7. Convergence comparison between three evolutionary algorithms.
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Figure 8 indicates the effect of balance coefficient α in time and cost achieved by TCaS algorithm
when a set of 120 tasks was processed. In the case α = 0, monetary cost was maximized, however
makespan was too large at 1827 s because many tasks were assigned centrally to cheap nodes. When α

= 0.5, makespan was improved 5.09 times while 1.20 times of total cost was needed compared with
case α = 0. Increasing α gradually to 1, the scheduling length decreased slightly together with a small
amount of cost added. This is because execution time was more concentrated to be optimized than
cost. This experiment showed that, by adjusting the balance coefficient α, our model could flexibly
satisfy user’s requirements when they are interested in high performance execution or cost efficiency.
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Figure 8. Time and cost as the balance coefficient α changes.

6. Conclusions and Future Work

In this work, we focused on task scheduling problem for BoT applications in Cloud–Fog
computing environment. The TCaS algorithm based on an evolutionary algorithm was proposed
and it performance evaluated in various scenarios. TCaS outperformed three other methods, namely
MPSO, BLA, RR, in both Fog environment and Cloud–Fog system. In Cloud–Fog system, it was better
on average than MPSO by 11.04%, BLA by 15.11% and RR by 44.17% over 11 sets of tasks in terms
of trade-off between time and cost execution, especially obtaining much shorter scheduling length.
Moreover, the proposed algorithm could flexibly satisfy user’s requirement of high performance
processing or cost efficiency.

In the future, we will research, improve, and apply more algorithms to solve scheduling problem,
especially evolutionary algorithms. In addition, we plan to expand scheduling problem by focusing
on optimizing many other goals, such as time, transmission costs, computing resources, and energy
consumption to satisfy users. Constraints of budget, deadline, and resource limitation can be added
for greater practicality.
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