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Abstract: The rapid agricultural development and mechanization of agronomic diligence has led
to a significant growth in energy consumption and CO2 emission. Agriculture has a dominant
contribution to boosting the economy of any country. In this paper, we demonstrate carbon dioxide
emissions’ association with cropped area, energy use, fertilizer offtake, gross domestic product per
capita, improved seed distribution, total food grains and water availability in Pakistan for the period
of 1987-2017. We employed Augmented Dickey-Fuller and Phillips-Perron unit root tests to examine
the variables’ stationarity. An autoregressive distributed lag (ARDL) bounds testing technique to
cointegration was applied to demonstrate the causality linkage among study variables from the
evidence of long-run and short-run analyses. The long-run evidence reveals that cropped area, energy
usage, fertilizer offtake, gross domestic product per capita and water availability have a positive
and significant association with carbon dioxide emissions, while the analysis results of improved
seed distribution and total food grains have a negative association with carbon dioxide emissions
in Pakistan. Overall, the long-run effects are stronger than the short-run dynamics, in terms of the
impact of explanatory variables on carbon dioxide emission, thus making the findings heterogeneous.
Possible initiatives should be taken by the government of Pakistan to improve the agriculture sector
and also introduce new policies to reduce the emissions of carbon dioxide.
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1. Introduction

The population of the world is growing rapidly, and demand for food is increasing with the
passage of time, which leads to an increase in the productivity of agriculture. Competitiveness between
large, regional producers and individual farms has stimulated a concentration on agricultural growth.
As a consequence, the production of livestock is concentrated in specific areas, while other areas are
concerned with crop production and lack of fertilizers. This intensification regarding farms has been
observed worldwide, and has also been discussed in regard to its ecological effect and the potential
reintegration of crops and livestock systems [1,2]. The continuing menace posed by climate change
causes carbon dioxide (CO2) emission, which has rekindled steadfast global encouragement against its
harmful derivatives. A key challenge to agriculture and food security in the world is climate change
because of its impact on production and enforcement sector, which limits global warming [3].

Furthermore, with the prospect of bringing on the failure of the largest market in the world,
climate change is considered a serious environmental threat in the 21st century. The adverse effects of
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climate change impose additional costs on developing countries in attaining their developmental goals.
They also affect the agricultural production and steady economic growth, and cause water and food
shortages, an increased loss of forestry, and huge immigration issues [4]. The latest estimates reveal
that global CO2 emissions are unstable and have grown significantly in the last century. Evidently,
it is among those factors behind the progress in economic growth. Consideration of greenhouse gas
emissions is crucial for economic planning, decision making and environmental development. CO2 is
currently considered the chief contributor to anthropogenic greenhouse gas emissions. According to
the Intergovernmental Panel on Climate Change (IPCC), CO2 accounts for about 76.7% of greenhouse
gas emissions; 56.6% is from the fossil fuels, about 17.3% is from deforestation, and 2.8% is from the
other sources [5].

In emerging economies, CO2 emission holds a huge share among pollutants in total greenhouse
gas emissions. Due to a rapidly growing population, the demand for energy, economic growth,
and agricultural production is rising and CO2 emissions are increasing with the passage of time [6–9].
With a rapidly growing population, global agricultural production has increased from the mid-20th
century. The global demand for food has doubled, creating a threat to a sustainable environment
and agriculture.

The agricultural sector is considered the major source of greenhouse gas emissions because
agricultural practices are not sustainable enough to improve productivity and enhance food
security [10–12]. It is extensively assumed that agriculture plays a dominant role in achieving
the objective of CO2 emission reduction. Similarly, the agricultural sector is hugely dependent on
climate, temperature, rainfall and floods. It affects agricultural production, the food supply, commodity
prices and other aspects that eventually decrease economic performance [13,14]. Globally, agriculture
produces 20% of CO2, methane produces 70% and nitrogen oxide produces about 90% [15].

The agricultural sector plays a key role in the upsurge of economic growth of any country
by enhancing economic development. Several studies have highlighted CO2 emissions and their
association with energy consumption, economic growth, agricultural growth, natural gas consumption,
renewable and sustainable energy, economic and population growth, forest and agriculture and
renewable waste [16–26]. In this study, we demonstrate the association between CO2 emissions and
agricultural production in Pakistan, including cropped area, energy use, fertilizer offtake, gross domestic
product (GDP) per capita, improved seed distribution, total food grains and water availability.
As agriculture is considered the backbone of Pakistan’s economy, it has a rich contribution to boosting
the economy.

The paper is organized as follows: the Related Literature section deals with our review of existing
literature. The Methodology section presents the method of the study. The Results and Discussion
section show the results of the summary statistics and correlation matrix, unit root tests, autoregressive
distributed lag (ARDL) model to cointegration, the Johansen cointegration tests and the analysis of the
long-run and short-run evidence. The Conclusion and Recommendations section relate conclusions
from the study and the resulting policy recommendations.

2. Related Literature

The contribution of the agriculture sector is 14-30% of worldwide greenhouse gas emissions,
due to rigorous use of fossil fuel energy. Agricultural use of fuel-driven agricultural equipment,
irrigation, production of livestock and use of nitrogen-rich fertilizers produce huge greenhouse gas
emissions. The Food and Agriculture Organization (FAO) believes that the agricultural sector has
enormous potential to decrease its emissions, including eradicating 80–88% of recent CO2 emissions [27].
Regarding CO2 emission, in certain cases, the activities of humans are chiefly responsible. In power
generation, economic activity involves the combustion of fuel, as does activity in the residential,
industrial and transportation sectors, which causes an upsurge in greenhouse gases. In recent times,
the environmental consequences of economic growth have been progressively reviewed. Consequently,
in the previous few decades, economic growth trends and activities have steadily changed from
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pretentious growth to eco-friendly growth [28]. CO2 emission has been influenced on several levels,
including population growth, economic growth, resource endowments, technological changes, lifestyle
and transport patterns [29]. In fact, the intensification in CO2 emission is a major threat of climate
change, which is a key concern for the developing, as well as for the developed nations. In the developed
countries, economic growth stimulates the rigorous usage of energy, which leads to environmental
degradation. In recent years, CO2 emissions are considered the key source of the greenhouse effect and
have garnered intense attention [30].

The interrelationship between CO2 emission and economic growth raises the energy demand.
Environmental degradation, consumption of energy and economic growth are considered in the
framework of the Environmental Kuznets Curve, which assumes that in low-income countries,
pollutant emissions have increased; but in high-income countries, emissions have decreased [31].
The huge escalation in greenhouse gas emissions is primarily accredited to CO2 being the chief
foundation of climate change and global warming. The prescribed economy has turned into a major
donor to CO2 emissions. Correspondingly, the informal economy has also begun to influence the
quality of the environment. By permitting polluting Small to Medium Enterprises (SMEs) to dodge
environmental regulations, growth in the casual economy may raise the level of pollution and contribute
to the degradation of the environment [32–34]. A large amount of CO2 emissions can be removed from
the soil and crop management through soil organic substance. Examples include reducing tillage and
non-tillage, changing land use from cultivated land to permanent crops and restoration of degraded
land [35].

It has been observed that CO2 emission and climate change is associated with agricultural
productivity. The agriculture sector is an imperative source of CO2 emissions and is also considered
with utmost susceptible climate change. Globally, the agriculture sector has slightly lower CO2

emissions than the thermodynamics industry. It is essential to decrease agricultural-related emission of
CO2 and extend low-carbon agriculture, which have been taken seriously for the economic development
and rising controlled environment and energy [36–38]. Approximately 25% of the world’s population
belongs to South Asian countries. Agriculture is a lifeline in these developing economies, so these
countries must be self-sufficient in producing food supplies [39].

Agricultural production, natural resources, infrastructure, human living environments and
economic and energy losses are associated with environmental degradation, which is an important
factor in world development. Energy plays a critical role in the human, social and economic progress
required for sustainable development. Estimates for 2010-2040 show that energy consumption will
increase by 56%. This upsurge in energy consumption causes CO2 emissions, which is the chief
component of total greenhouse gas emissions. Approximately 61.4% of greenhouse gases come from
the energy sector [40–42]. If the temperature increases globally, renewable energy will reduce CO2

emissions by approximately 50% by 2050. The use of renewable energy is also advantageous to farmers,
in the social, economic and environmental sense. The marvelous growth in the agricultural sector and
future growth in the Pakistani economy highlight the growing demand for energy [43–45].

Figures 1–8 indicate the trends in CO2 emissions, cropped area, energy use, fertilizer offtake,
GDP per capita, improved seed distribution, total food grains and water availability in Pakistan.
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3. Materials and Methods

3.1. Sources of Data

We used time-span data from 1987-2017 collected from the World Development Indicators 2017
database and the Government of Pakistan’s Economic Survey of Pakistan 2016-17. The variables used
in the study are explained in Table 1, below.

Table 1. Variables description and data sources.

Variables Explanation Data Sources

CO2e Carbon dioxide emission (kt) WDI

CA Cropped Area (Million Hectares) GOP

EN Energy Use (kg of oil equivalent per capita) GOP

FO Fertilizer Offtake (N/T) GOP

GDPPC GDP per capita (current USD) WDI

ISD Improved Seed Distribution (tons) GOP

TF Total Food Grains (tons) GOP

WA Water Availability (MAF) GOP

Note: GOP stands for Government of Pakistan.
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Table 1 describes the variables, including CO2 emission in Kt, cropped area per million hectares,
energy use in kg of oil equivalent per capita, fertilizer offtake in N/T, GDP per capita in current USD,
improved seed distribution in tons, total food grains in tons and water availability in MAF.

3.2. Econometric Model Specification

We will specify the following model to check the association between dependent and
independent variables:

CO2et = f (CAt, ENt, FOt, GDPPCt, ISDt, TFt, WAt) (1)

In the above Equation (1), CO2et = carbon dioxide emission in (kt); CAt = cropped area in
million hectares; ENt = energy use in kg of oil equivalent per capita; FOt = fertilizer offtake in N/T;
GDPPCt = gross domestic product per capita in current USD; ISDt = improved seed distribution in tons;
TFt = total food grains in tons and WAt = water availability in MAF. We can also write Equation (1) as;

CO2et = δ0 + δ1CAt + δ2ENt + δ3FOt + δ4GDPPCt + δ5ISDt

+δ6TFt + δ7WAt + µt
(2)

By employing the logarithm to Equation (2), the model follows a log-linear form:

lnCO2et = δ0 + δ1lnCAt + δ2lnENt + δ3lnFOt + δ4lnGDPPCt

+δ5lnISDt + δ6lnTFt + δ7lnWAt + µt
(3)

Equation (3) is the log-linear form of the variables. lnCO2et displays the natural logarithm of
CO2 emission. lnCAt displays the natural logarithm of the cropped area. lnENt displays the natural
logarithm of energy use. lnFOt shows the natural logarithm of fertilizer offtake. lnGDPPCt shows
the natural logarithm of GDP per capita. lnISDt displays the natural logarithm of improved seed
distribution. lnTFt shows the natural logarithm of total food grains. lnWAt displays the natural
logarithm of water availability. t demonstrates the dimension of time. µt indicates the error term.
The model coefficients δ1 to δ7 demonstrate long-run elasticity.

The stationarity of the variables was checked by employing the Augmented Dickey-Fuller [46]
and Phillips-Perron [47] unit root tests. The null hypothesis is the drift of the unit root, and the two
substitute hypotheses are that the series does not have a unit root with a linear time trend, and that the
series has a non-zero mean and a stable trend, with no time trend. Equation (4), below, presents the
unit root test.

∆Ut = α◦ + ∂◦T + ∂1Ut−1 +
m∑

i=1

α1∆Ut−1 + µt (4)

In Equation (4), the variable U demonstrates the unit root test. ∆ show the first difference. T is the
linear trend. t indicates the time. m represents the white noise residuals to achieve.

3.3. Specification of ARDL Model

The ARDL model was estimated by Pesaran and Shin (1998) [48] to check the analysis of long-run
and short-run relationships. It was further protracted by Pesaran et al. (2001) [49]. Narayan et al.
(2004) [50] also used this model in a study to check the variables’ associations. The order of integration
is distributed with variables at I(0) or I(1) apart from the occurrence of I(2). Here we will demonstrate
separately the long-run and short-run models, to check the variables’ associations. The long-run model
is depicted in Equation (5), below:
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∆lnCO2et = φ0 +
Q∑

i=1
φ1i∆lnCO2et−i +

W∑
i=1

φ2i∆lnCAt−i

+
E∑

i=1
φ3i∆lnENt−i +

R∑
i=1

φ4i∆lnFOt−i

+
T∑

i=1
φ5i∆lnGDPPCt−i +

Y∑
i=1

φ6i∆lnISDt−i

+
U∑

i=1
φ7i∆lnTFt−i +

I∑
i=1

φ8i∆lnWAt−i

+δ1lnCO2et−1 + δ2lnCAt−1 + δ3lnENt−1

+δ4lnFOt−1 + δ5lnGDPPCt−1 + δ6lnISDt−1

+δ7lnTFt−1 + δ8lnWAt−1 + εt

(5)

In Equation (5), φ0 indicates the constant intercept. ∆ is the difference operator. Q, W, E, R, T, Y,
U and I illustrate the order of lags. δ is the coefficient of the long-run, and εt is the error term. Pesaran
et al. (2001) demonstrated that the two values may be used for the cointegration: first for the lower
bound, where the variables are integrated at zero-order, followed by the upper limit bound value,
where variables are integrated at order one. The short-run model estimation of the study variables is
illustrated by following the error correction model (ECM) in ARDL and is specified as:

∆lnCO2et = φ0 +
A∑

i=1
φ1i∆lnCO2et−i +

S∑
i=1

φ2i∆lnCAt−i

+
D∑

i=1
φ3i∆lnENt−i +

F∑
i=1

φ4i∆lnFOt−i

+
G∑

i=1
φ5i∆lnGDPPCt−i +

H∑
i=1

φ6i∆lnISDt−i

+
J∑

i=1
φ7i∆lnTFt−i +

K∑
i=1

φ8i∆lnWAt−i + αECMt−1

+εt

(6)

Equation (6) show the analysis of the short-run among study variables by the ECM. A, S, D, F, G,
H, J and K represent the order of lags in the equation.

4. Results and Discussion

4.1. Summary Statistics and Correlation Matrix

The results of the summary statistics and correlation matrix are interpreted in Table 2. The results
show that all variables are normally distributed, which is indicated by the Jarque-Bera statistics and
probability values. The correlation analysis indicates that there is an existing positive correlation
between CO2 emission and cropped area, energy usage, fertilizer offtake, GDP per capita, improved
seed distribution and total food grains.
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Table 2. Summary statistics and correlation matrix results.

Variables LNCO2e LNCA LNEN LNFO LNGDPPC LNISD LNTF LNWA

Mean 11.62931 3.272286 6.127777 7.960351 6.509023 5.129763 10.19537 4.866836

Median 11.64469 3.124125 6.136581 7.994980 6.280138 5.186100 10.16531 4.892452

Maximum 12.13631 4.144583 6.282379 8.380340 7.344624 6.175867 10.57740 4.931520

Minimum 10.88808 3.025291 5.929937 7.450080 5.826250 4.105120 9.768298 4.697932

Std.Dev. 0.379787 0.366298 0.095564 0.303646 0.492566 0.667094 0.248322 0.065605

Skewness −0.367964 1.827603 −0.538492 −0.328698 0.367273 −0.144394 −0.046627 –1.230197

Kurtosis 1.875204 4.427214 2.289894 1.704256 1.596638 1.764649 1.735385 3.361083

Jarque-Bera 2.333727 19.88839 2.149521 2.726867 3.240772 2.078926 2.076932 7.987565

Probability 0.311342 0.000048 0.341380 0.255781 0.197822 0.353645 0.353997 0.018430

Observations 31 31 31 31 31 31 31 31

LNCO2e 1.000000

LNCA 0.287692 1.000000

LNEN 0.960217 0.195537 1.000000

LNFO 0.980246 0.233428 0.945762 1.000000

LNGDPPC 0.940177 0.365944 0.845598 0.908828 1.000000

LNISD 0.946856 0.380386 0.869403 0.945105 0.927329 1.000000

LNTF 0.976124 0.304974 0.915322 0.961370 0.962135 0.953546 1.000000

LNWA 0.875045 0.080978 0.899151 0.862026 0.715330 0.768892 0.799829 1.000000

4.2. Unit Root Test Results

Tables 3 and 4 report the results of the Augmented Dickey-Fuller and Phillips-Perron unit root tests.

Table 3. Augmented Dickey-Fuller Unit root test results.

Variable ADF Test Statistics (at Levels) ADF Test Statistics (at First Difference) (Status)

LNCO2e 0.947208 −4.057989 ** I(1)

LNCA −3.465301 * - I(0)

LNEN −1.999591 −3.345375 * I(1)

LNFO 0.626924 −5.871416 *** I(1)

LNGDPPC −1.592687 −5.045839 *** I(1)

LNISD −3.446940 * - I(0)

LNTF −4.780429 *** - I(0)

LNWA −2.294522 −8.244225 *** I(1)

Table 4. Phillips-Perron Unit root test results.

Variable P-P Test Statistics (at Levels) P-P Test Statistics (at First Difference) (Status)

LNCO2e −1.486801 −6.911246 *** I(1)

LNCA −3.465301 * - I(0)

LNEN −2.034168 −3.345375 * I(1)

LNFO −1.849628 −9.749996 *** I(1)

LNGDPPC −1.646333 −5.041999 *** I(1)

LNISD −3.429725 * - I(0)

LNTF −4.738381 *** - I(0)

LNWA −1.955929 −19.51462 *** I(1)

***, ** and *indicates the level of significance at 1%, 5% and 10%.
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None of the variables got integration in the order of I(2) by indicating the results of the Augmented
Dickey-Fuller and Phillips-Perron unit root tests; therefore an ARDL model was employed.

4.3. Cointegration Test

The cointegration test is performed when the value of the F and W statistics use the upper bound
of the designated level of significance. It is assumed that the F statistics have no cointegration null
hypothesis among the study variables. The cointegration results at 1%, 5% and 10% significance level
are illustrated in Table 5, while the results of the Johansen cointegration [51], with trace statistics and
maximum eigenvalue statistics with critical values, are interpreted in Table 6.

Table 5. Autoregressive Distributed Lag (ARDL) bounds test for cointegration results.

F-Statistic Significance
Levels Lower Bound Upper Bound Status

3.870465
10 percent 2.03 3.13

Co-integrated
5 percent 2.32 3.50

1 percent 2.96 4.26

In Table 5, the ARDL model to bounds testing results reveal and recapitulate the occurrence of
a cointegration linkage among the study variables at 1%, 5% and 10% significance levels.

Table 6. Johansen cointegration test results.

Null
Hypothesis

Trace Test
Statistic P-value Null Hypothesis Maximum

Eigenvalue P-value

r ≤ 0 232.7068 * 0.0000 r ≤ 0 77.65021 * 0.0000

r ≤ 1 155.0566 * 0.0002 r ≤ 1 48.54521 0.0278

r ≤ 2 106.5114 * 0.0074 r ≤ 2 31.58198 0.3264

r ≤ 3 74.92944 * 0.0184 r ≤ 3 33.87687 0.1492

r ≤ 4 45.33503 0.0846 r ≤ 4 27.58434 0.0798

r ≤ 5 19.38669 0.4654 r ≤ 5 21.13162 0.5728

r ≤ 6 7.639644 0.5047 r ≤ 6 14.26460 0.8568

Note: r show the cointegrating equation numbers; * denotes hypothesis rejection at the 0.05 level.

Table 6 indicates the results of the Johansen cointegration test with trace statistics
and max-eigenvalue.

4.4. Long-Run and Short-Run Evidence

The results of the long-run and short-run evidence interpreted with the residual diagnostic test
are presented in Table 7, below.
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Table 7. Long-run and short-run evidence results.

Dependent variable is lnCO2e: ARDL(1, 1, 0, 1, 1, 0, 0, 1) selected based on AIC

Panel A: long-run Analysis

Variable Coefficient Std. Error T- Ratio P-value

LNCA 0.072391 0.026865 2.694625 0.0148

LNEN 0.826146 0.241722 3.417754 0.0031

LNFO 0.607328 0.136929 4.435357 0.0003

LNGDPPC 0.211959 0.054088 3.918779 0.0010

LNISD −0.042691 0.041699 −1.023784 0.3195

LNTF −0.031709 0.158234 −0.200393 0.8434

LNWA 0.706882 0.245003 2.885204 0.0099

C −2.742992 1.074045 −2.553890 0.0199

Panel B: Short-run Analysis

∆ LNCA 0.031187 0.015035 2.074271 0.0527

∆ LNEN 0.615764 0.203512 3.025696 0.0073

∆ LNFO 0.312632 0.088522 3.531681 0.0024

∆ LNGDPPC −0.046796 0.078172 −0.598633 0.5569

∆ LNISD −0.031819 0.030053 −1.058762 0.3037

∆ LNTF −0.023634 0.116811 −0.202329 0.8419

∆ LNWA 0.206519 0.209902 0.983881 0.3382

ECM (−1) −0.745345 0.136764 −5.449872 0.0000

Panel C. Residual Diagnostic Test

R-squared 0.997706

Adjusted R-squared 0.996086

Durbin-Watson stat 2.698081

F-statistic 16.0557***

χ2 SERIAL 1.7655 (0.202)

χ2 NORMAL 0.0724 (0.964)

χ2ARCH 0.1557 (0.696)

χ2 RESET 0.7142 (0.48)

Note: ** and *** signify the probability and the significance level at 5% and 10%. χ2 SERIAL show the serial correlation,
χ2 NORMAL indicates the normality test, χ2ARCH indicates the autoregressive conditional heteroskedasticity test
and χ2 RESET represents Ramsey Reset test with their p-values.

Table 7 represents the results of the long-run and short-run evidence in Panel A and Panel B.
Focusing on the long-run evidence with elasticity in the Panel A variables, the results indicate that
cropped area, energy use, fertilizer offtake, GDP per capita and water availability have a significant
association with CO2 emission, having p-values of 0.0148, 0.0031, 0.0003, 0.0010 and 0.0099, respectively.
The long-run analysis results conclude that a 1% increase in all variables—including cropped area,
energy use, fertilizer offtake, GDP per capita and water availability has a positive correlation, with CO2

emission increases of 0.07%, 0.82%, 0.60%, 0.21% and 0.70%, respectively. In the long-run evidence,
the analysis results regarding CO2 emission and cropped area, energy use, fertilizer offtake, GDP per
capita and water availability have a positive and significant association. The analysis results also
show that improved seed distribution and total food grains have a negative linkage to CO2 emission
in Pakistan. In South Asia, Pakistan has a dominant role and is greatly affected by a number of
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influences, including temperature variations, pests, health problems, droughts and other changes the
country is likely to endure in the future. The linkage between CO2 emission and energy consumption
enhances the maximum energy consumption of about 640 kg per capita of oil equivalent. Recently,
the economic maneuver is lower than its level, but it is expected that CO2 emissions will endure and
rise progressively over a period of time until the level of threshold is extended [52].

The change in the climate in Pakistan is fundamentally caused by the emission of greenhouse
gasses. The key source of greenhouse gas emissions is the activities of humans, such as deforestation,
urbanization, industrialization, transportation, agriculture, waste, energy use and livestock [53].
Some studies emphasize the linkage of CO2 emission with agriculture policies, agriculture land
expansion and deforestation, greenhouse gas emission mitigation in agriculture, climatic variations
and congestion influence on productivity [54–58]. However, our study demonstrated the linkage of
CO2 emissions to agricultural productivity, including cropped area, energy use, fertilizer offtake, gross
domestic product per capita, improved seed distribution, total food grains and water availability in
Pakistan. Long-run evidence results showed a positive influence regarding cropped area, energy use,
fertilizer offtake, GDP per capita and water availability, but improved seed distribution and total food
grains had a negative linkage with CO2 emissions in Pakistan. Regarding improved seed distribution
and total food grains that have a negative linkage with CO2 emission, possible policy implications
should be taken by the government of Pakistan to cut CO2 emission from these sources. Conceivable
funding schemes will also be needed to boost agricultural productivity in the country, to increase
economic growth and development.

Panel B depicts the short-run analysis results and their association to the study variables; an ECM
requires the cointegration presence to incarceration the short-run dynamics and relation with its
coefficients that measures the adjustment speed. In the short-run evidence, the results indicate that
cropped area, energy use, fertilizer offtake and water availability coefficients have a significant linkage
with CO2 emissions in Pakistan, with p-values of 0.0527, 0.0073, 0.0024 and 0.3382, respectively,
which means a 1% increase in all variables has a positive association with CO2 emission increases
of 0.03%, 0.61%, 0.31% and 0.20%, respectively. Similarly, in the short-run evidence, the variables
GDP per capita, improved seed distribution and total food grains have a negative linkage with CO2

in Pakistan. There are several issues in Pakistan, including the lack of social and health services,
insufficient agricultural productivity, economic instability and development and a rapidly growing
population that affect the living standards of the Pakistani people [59]. The local climate in the country
is usually hot in the summer and cold in the winter, with low rainfall, because the country is located
in a temperate zone [60]. Agriculture, renewable energy consumption and forestry have a dominant
role in mitigating CO2 emission. However, agricultural productivity has a contrary influence on the
environment. The forest also has a huge impact in reducing CO2 emission.

The analysis results in Panel C show that the R-squared value is 0.997706, which indicates 99%
variation in the CO2 emission described in the model. The adjusted R-squared value is 0.996086.
The F statistic shows the joint significance as 1%, confirmed regarding the independent variables.
The Durbin-Watson statistic value is 2.698, which shows the non-appearance of any autocorrelation
and is not equal to the Durbin-Watson standard value, but is enough to expose any autocorrelation in
the model.

4.5. Structural Stability Test

The CUSUM test and CUSUM Square test graphs are stated in Figures 9 and 10, which specify
the level of significance at 5%; this demonstrates the stability test to stable the long-run and
short-run constraints.
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5. Conclusion and Recommendations

The key motive of this study was to check the linkage of CO2 emissions with agricultural
productivity in Pakistan, including cropped area, energy use, fertilizer offtake, GDP per capita,
improved seed distribution, total food grains and water availability. We employed Augmented
Dickey-Fuller and Phillips-Perron unit root tests to check the variables’ stationarity. An ARDL bounds
testing approach to cointegration was applied, with the evidence of long-run and short-run analysis,
to enhance the causality association among the variables.

The analysis of the long-run evidence exposed that CO2 emission has a positive and significant
association with cropped area, energy use, fertilizer offtake, GDP per capita and water availability in
Pakistan, while the analysis results show that improved seed distribution and total food grains have
a negative linkage with CO2 emissions in Pakistan. Similarly, the analysis results from the short-run
evidence exposed that cropped area, energy use, fertilizer offtake and water availability coefficients
have a positive and significant linkage with CO2 emissions in Pakistan, while the variables GDP per
capita, improved seed distribution and total food grains have a negative linkage with CO2 emission
in Pakistan.

In the light of this study, possible solutions should be implemented by the government of Pakistan
to further reduce CO2 emissions and to enhance agricultural productivity. As the country is also
facing other severe crises, including energy production and supply from different sources. It is
necessary that there should also be attention prerequisite in the agricultural sector to boost agriculture
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sector by providing the necessary facilities and funding schemes to enhance rapid economic growth
and development.
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