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Abstract: Aimed at the molding of polymer nanostructure parts, the interface model between long-
and short-chain polycarbonates (PC) and nickel mold inserts was established by the molecular
dynamics method. The molecular mechanism of the replication capability of polymer nanostructure
part molding was discussed by analyzing the migration and diffusion of the molecular chain,
concentration profile, filling morphology evolution, interface binding energy, and filling rate of
conventional injection molding (CIM) and rapid heat cycle molding (RHCM). The results show that
nanostructures are filled mainly during the packing stage. A short-chain PC system has a low glass
transition temperature (Tg) and viscosity, good fluidity, and a high filling rate, so the replication
capability of its nanostructures is good. A long-chain PC system has a fast cooling rate in CIM,
its molecular chain motion is blocked, the filling rate is low, and the interface binding energy is small,
and so its nanostructures have poor replication capability. However, the high temperature at the
nanostructures can be maintained for a long time in RHCM, which promotes Brownian motion in the
molecular chains. Under the action of packing pressure, molecular chains can overcome entanglement
barriers and viscous resistance. Thus, the polymer concentration profile and filling rate increase
with increasing packing pressure, which can produce more van der Waals energy. Furthermore,
the evolution process of polymer filling morphology is realized by the Brownian motion of chain
segments under packing pressure; that is, the diffusion motion of the molecular chain along the
direction of a tube composed of other chains around it. With the increase of temperature or pressure,
the migration and diffusion of the molecular chain can be promoted; thus, the replication capability
of nanostructure parts for mold cavities can be enhanced.
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1. Introduction

Injection molding technology has become one of the main methods of mass polymer material molding
due to the advantages of its short molding cycle, low-cost, and high precision [1–3]. However, with the
wide application of polymer parts with micro–nano structure features, higher molding requirements are
put forward. In CIM, the retention phenomenon and the condensation layer effect at the nanostructure
make the cavity filling insufficient [4], and the replication capability of the product is poor. Therefore, it is
particularly difficult to produce nanostructure products by the CIM method. Molding nanostructures parts
with a good replication capability is developing into a hot research topic [5–9]. Macintyre et al. made
characteristic structures smaller than 100 nm on an optical disk for the first time by using injection molding
technology, which improves storage space [10]. Pranov et al. studied the effect of injection rate, mold
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temperature, melt temperature, and other process parameters on the filling of nanostructures [11]. With
the continuous development of RHCM technology in recent years, the mold temperature can be precisely
controlled, and the mold cavity temperature can be rapidly heated to near polymer Tg until rapid cooling
during the late packing stage [12]. Hattori and Lin et al. used rapid heating technology to heat the mold
surface, and nanostructures with a higher replication rate were obtained [13,14]. However, it is difficult to
directly characterize the evolution process of the polymer molecular chain-filling morphology in the mold
cavity and the molecular mechanism of nanostructure replication capabilities under limited experimental
conditions. In recent years, molecular simulation methods have been applied to study the microscopic
mechanism, such as the fluidity of polymer molecular chains [15], the interfacial diffusion of multilayer
polymer films [16], the simulation analysis of nanoimprint lithography technology [17], polymer glass
transition [18], nanoinjection molding [19,20], and so on. Zhou et al. used PMMA as research materials,
applied molecular dynamics method to study the polymer filling into nanocavity by injection molding, and
elucidated the effects of molecular weight and cavity size on the filling behavior and final replication quality
of nanostructures [19]. Furthermore, they also applied molecular dynamics method to study the interfacial
interaction and joining properties of PP-Al hybrid structures in nanoinjection molding [20]. The molecular
simulation technique can be used not only to explain the macroscopic experimental phenomenon from the
microscopic perspective, but also visually to analyze the filling dynamic process in the nanostructures,
which is difficult to observe due to the limitation of experimental equipment at the molecular size.

In this paper, based on the molecular dynamics method, the interface model between the PC
and nickel mold insert was established by using amorphous long- and short-chain polycarbonates
as research materials. Firstly, glass transition temperatures of different PC systems were studied to
determine their mold temperature in RHCM. Then, the nanostructure molding mechanism of long and
short-chain polymer systems in CIM and RHCM was discussed, and the filling morphology evolution
in nanostructures and the reason for the high–low filling rate were analyzed to provide a theoretical
basis for further improving the replication capability of nanostructures and improving the quality of
nanostructure parts.

2. Establishment of Interface Model and Simulation Experiment

2.1. Establishment of Interface Model

Firstly, Ni crystal cell was imported and cleaved along the (1 0 0) surface, and then the constructed
crystal cell was optimized. The thickness of the Ni layer is 3.4 nm. The super cell was established by
extending the optimized structure along the direction of U and V. Then, a three-dimensional periodic
cell with a vacuum layer thickness of 0 Å was established, and its lattice parameters were a = 5.0 nm,
b = 7.5 nm, c = 3.4 nm, and α = β = γ = 90◦. After full energy optimization, a circular arc groove was
cut with a depth of 1.2 nm.

Secondly, two PC all-atomistic molecular chain models with different chain lengths (N = 5, 25) were
established. The chemical formula for PC is (C16H14O3)n. After structure optimization, two amorphous
crystal cell models with the same total number of atoms and chain numbers of 50 and 10, respectively,
were constructed with a density of 1.2 g/cm3. The crystal cell parameters were adjusted to be equal to the
Ni crystal cell a and b values, so that the interface model could be established later. Thirdly, the smart
method structure optimization [15] of PC crystal cell models was carried out at a temperature of 0 K to
find the lowest energy structure adjacent to it. The smart method structure optimization combines three
energy minimization methods: the steepest descent method, the conjugate gradient method, and the
Newton method. Then, the temperature factor was added to search for the lowest energy conformation of
the system through energy disturbance; that is, 5 cycles of annealing were conducted to cause the system
to be in an equilibrium state. Furthermore, 20 PS preheating was conducted at 500 K to bring the polymer
to a molten state. Finally, the interface models of the two PC systems and Ni layers were established,
respectively, as shown in Figure 1. In order to avoid the influence of 3d periodic boundary conditions on
the height, a vacuum layer of 2.0 nm was set above the model.
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2.2. Molecular Dynamics Simulation

In the filling stage of injection molding, the pressure decreases rapidly after the plastic melt enters
the mold cavity, and the pressure at the material flow front reaches the minimum value, thus the
pressure in the mold cavity is negligible compared with the packing pressure. Moreover, the polymer
melt cools faster at the nanostructure, and the polymer molecular chain temperature is approximately
equal to the temperature of the mold cavity. Thus, the filling process of the PC melt was simulated
with the NVT ensemble (constant-number, constant-volume, and constant-temperature), with a total of
50,000 steps [21]. In the subsequent packing stage, the polymer is under the steady pressure of the screw.
The final conformation of the filling process was taken as the initial conformation of the packing stage,
and the NPT ensemble (constant-number, constant-pressure, and constant-temperature) was used for
the simulation calculation of 120,000 steps. Meanwhile, the laws were statistically analyzed, such as
the concentration profile of polymer atoms, interface interaction energy, the migration and diffusion
of molecular chains, and so on. The calculation process was performed by Material studio software.
The COMPASS force field [22] and Velocity Verlet integral algorithm with excellent performance were
adopted in the system, and the time step was set as 1 fs. Additionally, the Nose–Hoover temperature
control method and Berendsen pressure control method were adopted.
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Figure 1. Simulation models. The blue lines indicate the simulation cell. (a) Short-chain polycarbonate
(PC) model; (b) interface model between short-chain polymer and nickel mold insert; (c) long-chain PC
model; and (d) interface model between long-chain polymer and nickel mold insert.

3. Results and Discussion

3.1. Determination of RHCM Mold Temperature

The mold temperature is to be heated to around the polymer glass transition temperature in RHCM.
The glass transition is an inherent property of amorphous polymer material, and it is also a macroscopic
reflection of the transformation of macromolecular motion forms. According to Fox and Flory’s free volume
theory [23,24], below Tg, the volume expansion of the polymer is only the expansion of the occupied
volume as the temperature increases, while above Tg, the free volume begins to expand. Therefore, Tg

can be obtained by measuring the inflection point on the polymer-specific volume–temperature curve.
Between 525 and 250 K, the NPT ensemble was used to simulate the phase-cooling of long-chain and
short-chain PC systems. The data of the PC-specific volume changing with temperature was extracted for
linear fitting to obtain two straight lines, whose intersection point was Tg.
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As can be seen from Figure 2, the glass transition temperatures of long-chain and short-chain
PC materials are significantly different. The molecular weight of the N = 25 system has exceeded
the critical molecular weight, and the Tg reaches 417 K, which is close to the experimental value [25].
However, the Tg of the N = 5 system is only about 358 K, which is because the system with low
molecular weight contains more chain ends, and the chain end has a larger free volume and stronger
activity than the chain middle, and so the glass transition of low molecular weight polymer takes
place at a lower temperature. As the molecular weight increases, the Tg increases. When the critical
molecular weight is exceeded, the chain end concentration is already very small, and Tg will not change
obviously. Thus, it can be seen that the simulation results are reliable, and the mold temperature in
RHCM is set to 415 K.
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Figure 2. Specific volume versus temperature for chain polycarbonates (PCs) of different chain lengths.

3.2. Concentration Profile

During injection molding, the position distribution of polymer atoms in the nanostructures can
be characterized by their concentration profile, which represents the ratio of the density of PC atoms
in a tiny region to its average density in the whole interface system. When the polymer density of
the system is the initial set density of 1.2 g/cm3, the relative concentrations of the long-chain and
short-chain polymer systems in their respective interface systems are 6 and 4, respectively. Figure 3
shows the concentration profile of PC atoms at the end of the filling stage. It can be seen that the
polymer cannot overcome the viscous resistance and entanglement barrier to fill the nanocavity, and
there is only a small concentration profile near the interface.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 12 
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As shown in Figure 4, the concentration profile of PC atoms at the end of the packing stage
can directly reflect the distribution degree of the polymer in the nanostructure cavity. The atomic
concentration of the long-chain PC system is the lowest in CIM—especially, it is close to zero at
the bottom of the cavity—while the atomic concentration increases apparently in RHCM. When the
pressure is set to 40 MPa, the concentration dose not reach the ideal value. However, with the increase
of the packing pressure, the concentration dramatically improves, and the concentration profile in the
whole cavity is even and almost close to the maximum value. For the short-chain system, the atomic
distribution is better and there is no obvious difference. As mentioned above, the glass transition
temperature obviously decreases, so the polymer has better fluidity. Driven by pressure, PC molecular
chains easily overcome resistance and fill the nanocavity.
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3.3. Interface Binding Energy

Interface binding energy is a measure of the interaction energy between different systems at the
interface, which can be used to measure the strong and weak interaction between PC molecular chains
and nickel mold inserts. The binding energy between the two systems is defined as the negative
number of the interaction energy:

Ebind = −Einter = −[EPC/Ni − (EPC + ENi)] (1)

where Ebind is the interface binding energy of the system, Einter is the interface interaction energy of the
system, EPC/Ni is the total energy of the system, EPC is the energy of the polymer, and ENi is the energy
of the mold insert.

Figure 5 shows the change of interface binding energy between PC molecular chains and nickel
mold inserts with time during the injection molding process. The binding energy grows slowly in the
filling stage and rapidly in the packing stage, then tends to be flat in the later packing stage. As shown
in Table 1, the interaction energy between the PC system and Ni system is equal to the nonbond
interaction energy between the two systems, which shows that interface atoms interact with each other
through nonbond interaction. Furthermore, the electrostatic force of the interface system is zero, so the
contribution of the atomic binding energy comes from the van der Waals force.

As described in the concentration profile, only a few atoms near the interface are absorbed into
the cavity under van der Waals attraction in the filling stage. Thus, the binding energy is lower. Driven
by the packing pressure in RHCM, the long-chain PC polymer fills into the cavity, and the binding
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energy is large. Especially when the packing pressure is increased, the atomic concentration at the
nanostructures increases accordingly. This means that more PC atoms are close to Ni atoms, so the van
der Waals attraction increases, and the interface binding energy increases greatly. However, the binding
energy of the long-chain PC system in CIM is very low, which indicates that the polymer has a fast
cooling rate at room temperature for the mold. Thus, the viscosity increases, and the resistance of the
filled cavity increases also. For the short-chain system with low molecular weight, the filling effect is
good and the interface binding energy is large, which is due to its low viscosity and good fluidity.
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Table 1. Energy between long-chain PC and the nickel mold insert at the end of the filling stage (kJ·mol−1).

E
CIM RHCM

PC/Ni PC Ni Einter PC/Ni PC Ni Einter

Etotal −1,801,355 7602 −1,808,100 −857 −1,775,840 19,366 −1,794,160 −1046
Enonbond −1,820,032 −11,075 −1,808,100 −857 −1,804,925 −9719 −1,794,160 −1046

EvdW −1,803,136 5821 −1,808,100 −857 −1,788,213 6993 −1,794,160 −1046
Eelectrostatic −16,897 −16,897 0 0 −16,712 −16,712 0 0

3.4. Replication Capability of Nanostructures

In order to analyze the replication capability of nanostructures, the filling rate is introduced; that
is, the ratio of the polymer density in the nanocavity to the initial set density of the PC system. It can
be seen from Figure 6 that the filling rate of the short-chain polymer system rises sharply during the
packing stage and tends to balance rapidly, with the filling rate exceeding 95%. This further indicates
that the short-chain polymer can easily overcome resistance under the action of pressure and fill the
cavity quickly, with a high filling rate and good replication capability.
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Under different molding conditions, the filling rate of the long-chain PC in the nanostructures
fluctuates greatly. Moreover, the filling rate grows slowly in CIM, which shows that the polymer cools
quickly during the filling process at a low temperature of the mold and molecular chain motion ability
is low. Therefore, the filling effect is poor with low replication capability. Under the RHCM process, the
filling rate grows rapidly, but the difference is obvious at the pressure of 40 MPa and 80 MPa. In order
to more intuitively analyze the replication capability of nanostructures under different pressures, it can
be further characterized by its molding morphology [26]. Figure 7 shows the filling morphological
evolution process of the polymer in the nanostructures at different pressures during the packing stage,
which can directly reflect the filling situation of the polymer in the nanocavity. PC molecular chains
are driven by pressure to overcome the entanglement resistance and fill the cavity. Especially at a
pressure of 80 MPa, the long molecular chains are closely arranged and there is almost no void in the
cavity. Furthermore, the filling rate reaches 94%, with a good replication capability of nanostructures.
Although the long molecular chains have filled the cavity at a pressure of 40 MPa, there are still
obvious voids between the molecular chains and the filling rate can only reach 70%. This shows that
the packing pressure plays an important role in filling the nanostructures and is the main driving force
of filling the nanostructures. The high packing pressure can obviously improve the filling effect of the
nanostructures, improving the molding replication capability of the products. It is worth noting that
the morphological evolution of the filling process of the short-chains at a pressure of 40 MPa is faster
than that of the long-chains, which further indicates that the short-chains overcome more easily the
viscous resistance due to their lower viscosity, and the filling effect is better.
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3.5. Molecular Chain Motion

The migration and movement behavior of molecular chains in the polymer system can be
characterized by mean square displacement (MSD), namely, the average of the squared displacement
of all the atoms within a period of time [27], which can be expressed by the following formula.

MSD = 〈
∣∣∣ri(t) − ri(0)

∣∣∣2〉 (2)

where ri(t) and ri(0) represent the position of the ith atom at time t and the initial time, respectively [28].
The change trend of the long-chain PC system’s MSD with time in the packing stage is shown

in Figure 8. It is observed that the MSD increases slowly in CIM. According to the free volume
theory, the free volume of the polymer decreases at low temperature [29,30]. Meanwhile, there is
insufficient transition energy for the molecular chains. Thus, the molecular chains have difficulty
overcoming the entanglement barrier and do not migrate in a wide range, whereas the MSD increases
rapidly under the RHCM process. This indicates that the free volume and system energy rise with
temperature increasing. Under a certain pressure, molecular chain segments cross the high potential
energy region, overcome the viscous flow activation energy, and jump to the adjacent “holes”. That is
to say, the entirety of the chain motion of the macromolecule is realized by the successive transition
and segmental displacement of chain segments. Furthermore, the motion morphology of molecular
chains can be described by the Reptation model [31,32]; that is, the molecular chain is restricted to
move within a virtual tube composed of adjacent chains, and its motion is limited by the topology of
other chains around it [33]. Its Reptation is realized by the Brownian motion of the chain segment.
When a molecular chain wriggles along one end of a tube, a new section of tube is formed; meanwhile,
a section of tube at the other end disappears. Thus, the chain moves completely to a new position,
forming a new entanglement and completing the diffusion motion.

D =
1
6

lim
t→∞

d
dt
〈

∣∣∣ri(t) − ri(0)
∣∣∣2〉 (3)
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The slope of the MSD curve becomes larger when the pressure of RHCM increases. According
to the Einstein equation shown in Formula (3) [34,35], the diffusion coefficient D is proportional to
the slope of the MSD curve, which shows that increasing pressure can accelerate the migration and
diffusion of polymer molecular chains and make the polymer flow better. As mentioned above, its
filling rate is higher, and the replication capability of nanostructures is greatly improved. Therefore,
the filling process of the polymer can be understood as a diffusion motion of the molecular chain
along the direction of a tube under the combined action of Brownian motion and packing pressure.
With the increase of temperature or pressure, the migration and diffusion of the molecular chain can be
promoted, and the replication capability of nanostructure parts for mold cavities can be improved.
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4. Conclusions

(1) The Tg of the amorphous PC long-chain simulation system is 417 K, which is basically consistent
with the experimental result. Moreover, the Tg of the short-chain system is greatly reduced. Thus,
the Tg results of the two simulation systems conform to Flory free volume theory, indicating that
the simulation results are reliable.

(2) In the filling stage, it is difficult for PC molecular chains to overcome the resistance, and only a
few atoms fill a short distance into the nanostructures. The filling is mainly in the packing stage.
Since the mold temperature is low in CIM, the long-chain PC system at the nanostructures cools
rapidly and the viscosity increases. Thus, the molecular chain motion is blocked, the migration
motion becomes weak, and it is difficult to cross the high potential energy region. The result is
that the filling effect is poor, with low replication capability. However, for the short-chain system,
the glass transition temperature and viscosity are lower, and it is easy to overcome resistance
under a certain pressure, with a high filling rate and good replication capability.

(3) The high temperature of the mold in RHCM can enable the polymer to maintain a high temperature
for a long time, and the Brownian motion of the molecular chains is active. Under the packing
pressure, molecular chains can overcome the restriction of the entanglement barrier and viscous
flow activation energy, and realize the transition of position, with a good filling effect.

(4) The evolution process of the polymer filling morphology can be regarded as the diffusion motion
of the molecular chain along the direction of a tube composed of other chains around it, which is
realized by the Brownian motion of chain segments under the packing pressure. Temperature
and pressure play a key role in this process. In RHCM, increasing the pressure can promote the
migration and diffusion of the molecular chains and enhance the filling degree of the polymer
to the nanostructure. Consequently, the replication capability of nanostructure parts for mold
cavities can be enhanced, and the molding precision of nanostructure parts is guaranteed.
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