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Featured Application: This work uses small single-atom doped gold clusters as model systems
for understanding fundamental physical aspects of Ag-Au, Pt-Au, and Pd-Au alloy nanoparticles.
Understanding their intrinsic properties is highly desirable in view of better designed bimetallic
nanoparticles in catalytic and optical applications with properties that are tuned to meet the
requirements of each specific application.

Abstract: The stability patterns of single silver, platinum, and palladium atom doped gold cluster
cations, MAuN−1

+ (M = Ag, Pt, Pd; N = 3–6), are investigated by a combination of photofragmentation
experiments and density functional theory calculations. The mass spectra of the photofragmented
clusters reveal an odd-even pattern in the abundances of AgAuN−1

+, with local maxima for clusters
containing an even number of valence electrons, similarly to pure AuN

+. The odd-even pattern,
however, disappears upon Pt and Pd doping. Computed dissociation energies agree well with the
experimental findings for the different doped clusters. The effect of Ag, Pt, and Pd doping is discussed
on the basis of an analysis of the density of states of the N = 3–5 clusters. Whereas Ag delocalizes its
5s valence electron in all sizes, this process is size-specific for Pt and Pd.

Keywords: metal cluster stability; doping; electronic structure; photofragmentation

1. Introduction

Small metal clusters in the gas phase, produced under conditions where cluster-cluster and
cluster-environment interactions are absent, are ideal model systems for a fundamental understanding
of the different physical and chemical properties of matter. In a gas phase experiment, clusters are
produced and characterized as a function of size, composition, and charge state with atomic precision,
and their inherent small size allows for direct comparison with detailed quantum chemical calculations.
Many examples in the literature can be found in which small clusters are used to elucidate intrinsic
properties of matter, such as the stability of alloy complexes [1,2], the reactivity and catalytic properties
of metals [3,4], the optical responses of matter [5,6], and the magnetic coupling of different elements
and their evolution from the atom to the bulk [7,8]. In particular, small gold clusters have been
intensively studied over the past few decades due to their fascinating properties. For example, at the
nanoscale gold becomes reactive towards different molecules [9–12], whereas in bulk it is one of
the noblest elements [13]. Moreover, small gold clusters possess unique optical properties [6,14]
that are different from those of silver clusters, even though both elements have a similar electronic
configuration. The structures of small gold clusters are also remarkable; for instance, Au20 is known to
adopt a highly symmetric pyramidal geometry [15], and smaller gold clusters remain planar up to
surprisingly large sizes. The size at which clusters adopt three dimensional structures in their lowest
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energy configuration depends on the charge state. Whereas cationic clusters are planar up to N = 7,
according to ion mobility experiments [16], anions become three-dimensional at size N = 12 [17–19].

The size-dependent stability of small gold clusters is also of interest. In those small metal clusters,
each atom delocalizes its 6s valence electron over the entire cluster volume. Electron confinement by
the small size of the system results in the development of electronic shells with similar nodal character
and degeneracy as those in single atoms [20]. Because of the different nature of the confining potential,
however, electronic shells in clusters follow a different order, with no restrictions between quantum
numbers [21]. The order of the so-called superatomic electronic shells depends on the exact shape
of the confining potential, but in spherically symmetric potentials it follows the pattern: 1S, 1P, 1D,
2S, 1F, 2P, . . . [22,23]. The filling of these shells explains the famous stability pattern of Na clusters,
with intensity maxima at clusters composed of 2, 8, 10, 40, . . . atoms [24]. When a cluster has the
precise number of atoms, or in this context of delocalized electrons, that close an electronic shell,
stability is enhanced with a concomitantly larger energy separation between the highest occupied
and lowest unoccupied molecular orbitals (the highest occupied molecular orbital (HOMO)-lowest
unoccupied molecular orbital (LUMO) gap) [15]. Such patterns in stability, related to the cluster’s
electronic shell structure, have been observed mass-spectrometrically in numerous occasions for Au
clusters, with a very pronounced size-by-size dependence, since the low-symmetric structures of the
clusters lift all but the spin’s degeneracy [25–27].

The size-dependency of cluster properties can be greatly altered by the introduction of dopant atoms.
This holds for their reactivities [28–30], stabilities [2,31,32], optical properties [14,33], and magnetism [34].
The changes in their properties can be related to an interplay between cluster geometry and electronic
structure, both being affected by doping. In the case of gold, the transition at which clusters adopt
three-dimensional structures can be largely altered by doping; according to theoretical calculations,
for example, a single Pd dopant atom reduces the size at which cationic Au clusters adopt three-dimensional
geometries to the smallest possible size of PdAu3

+ [35]. The electronic structure of a cluster can also be
drastically influenced by doping. This is especially the case if the dopant atom has a different number
of valence electrons, thus altering the number of itinerant electrons available for filling the superatomic
electronic shells [32], or when the dopant atom has a different electronegativity than the host element,
inducing significant inter-cluster electron charge transfers [4]. The combination of these effects makes
it difficult, a priori, to predict the influence of doping on the stability, even at the very smallest sizes,
and requests for a combination of dedicated experiments with theoretical calculations. In this work we
combine photofragmentation experiments with density functional theory calculations in order to investigate
the effect of doping on the relative stability of small AuN

+ (N ≤ 6) clusters. Three dopant atoms have been
selected, with electronic configurations slightly different from Au ([Xe] 4f 14 5d10 6s1): Ag ([Kr] 4d10 5s1),
Pt ([Xe] 4f 14 5d9 6s1), and Pd ([Kr] 4d10).

2. Methods

2.1. Photofragmentation Experiments

Gas phase clusters were produced by laser ablation and inert gas condensation using an
experimental setup detailed elsewhere [36]. For the production of M (M = Ag, Pt, Pd) doped gold
clusters, two independent nanosecond pulsed Nd:YAG lasers (2nd harmonic, 532 nm; Spectra-Physics,
Santa Clara, CA, USA) were focused on a gold and an M target, right after a short pulse of He carrier
gas (backing pressure of 7 bar) was introduced in the source. By collisions with the carrier gas and
subsequent expansion into a vacuum, the ablated plasma condensated and formed a distribution of
clusters of various sizes and compositions. This distribution can be tuned by production conditions,
including the relative energy of the ablation lasers, their relative firing time, and the pressure
of the He gas [37]. In order to obtain information about the relative stability of the clusters,
irrespective of the production conditions of the source, the initially charged clusters were electrostatically
deflected from the molecular beam and neutral species were excited by a focused excimer F2 laser
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(157 nm). This excitation induces a fast ionization process followed by extensive fragmentation [25].
The abundances of the photofragmented species were then analyzed by time-of-flight mass spectrometry,
allowing for the identification of relative stability patterns. This approach has been used in the past to
investigate the relative stability of several clusters of different sizes and compositions [27,35,38,39].

For Ag and Pd doping, there was no mass overlap between different species and the different
clusters can be easily distinguished in the mass spectra. This is shown in Figure 1, where fractions of
typical mass spectra of photofragmented AgAuN−1

+ and PdAuN−1
+ clusters are presented in panels (a)

and (b), respectively. Continuous lines connect the MAuN−1
+ species to visualize the size-dependent

abundances. This situation is different for the case of Pt doping. Platinum has a distinct isotopic
pattern (192 u (0.008%), 194 u (0.329%), 195 u (0.338%), 196 u (0.253%), and 198 u (0.072%)) and the
Au atom mass resides in between (197 u). In addition, the strong binding energy of the Pt2 dimer
(4.63 eV compared to 3.15 eV of Au2 in our calculations) makes it difficult to find production conditions
under which only pure AuN

+ and singly doped PtAuN−1
+ clusters are formed. Thus, pure PtN

+

clusters were also produced, as well as mixed PtxAuN−x
+ (x = 0–N) species. A part of a typical

mass spectrum of the PtxAuN−x
+ clusters is presented in Figure 1c. For this reason, a deconvolution

process needed to be performed to quantify the intensity of each cluster composition. An example
is presented in Figure 1c. Each PtxAuN−x

+ (x = 0–N) intensity profile was assumed to be composed
of a set of Gaussian functions matching the natural isotopic distribution of the cluster. The width
of a single Gaussian function was determined by recording a mass spectrum of photofragmented
pure AuN

+ clusters (with a single isotope for each size) under the same experimental conditions,
in order to account for the mass-dependent resolution of the mass spectrometer. Therefore, the center
and the width of each Gaussian function was fixed, while the total intensities of each PtxAuN−x

+

composition were used as fitting parameters. The analysis was restricted to the size range for which
this deconvolution could be applied satisfactorily (N ≤ 6). As a corroboration of the procedure,
the extracted abundances of photofragmented pure AuN

+ and PtN
+ clusters were compared with

results from previous measurements [35,40], showing an almost identical result.
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2.2. Theoretical Calculations

Density functional theory calculations were performed with the ORCA 4.0.1 software package [41].
The lowest energy structures of the clusters were adopted as follows. For the Ag doped clusters,
the lowest-energy isomers calculated in Reference [42] were assumed. Experimental characterization
of the structures of mixed Au-Ag clusters have been performed up to size N = 5 using ion mobility
experiments [43], photodissociation spectroscopy measurements [14], and far-infrared multiphoton
dissociation studies [44,45]. The structures assigned in these studies agree with those in Reference [42].
For the case of Pt doping, we are not aware of any experimental investigation characterizing the
structure of these clusters, nor of a theoretical study searching systematically for low-lying isomers
of the cationic species. A search for low-energy structures was performed by manually constructing
different initial geometries. Finally, with regards to Pd doping, a thorough theoretical investigation
of the AuN

+ and PdAuN−1
+ (N = 2–20) clusters was presented in our previous work [35]. We adopt

the structures found there. All geometries were optimized with the LC-BLYP exchange-correlation
functional and the extensive Def2-TZVPP basis set [46]. Long-range corrections in Generalized
Gradient Approximation (GGA) functionals have been shown to perform well in Pd and Ag doped
Au clusters [14,33,35]. In addition, other DFT functionals have been tested, including the GGA PBE,
meta-GGA TPSS, and the hybrid B3LYP. For each cluster those other functionals yielded a similar
energetic ordering of the considered isomers as the LC-BLYP functional. Additionally, the even
larger Def2-QZVPP basis set was checked, showing no significant difference. For these optimizations,
the effective core potential Def2-ECP was used, replacing 60 core electrons for Au and Pt, and 28 core
electrons for Ag and Pd. For the Ag and Pd doped clusters only the lowest possible spin configurations
were calculated, as previous studies showed these have the lowest energy. For the Pt doped clusters,
different spin configurations were computed for each cluster size. Also, in this case the lowest possible
spin states were found to be the lowest in energy. Vibrational frequencies were calculated for all
the structures at the same level of theory to corroborate that the geometries corresponded to true
minima on the potential energy surface and not to transition states. Relativistic effects are known to be
important for heavy atoms, such as Au and Pt [47]. The cluster sizes investigated here are small enough
to allow the implicit inclusion of relativistic effects by performing single point calculations on the
optimized structures using the relativistic Hamiltonian within the zero-order regular approximation
(ZORA) [48] and the all-electron ZORA-def2-TZVPP basis set [49].

The size-to-size stability of the clusters was analyzed computationally by the dissociation energies
DN, defined as

DN = E
(
AN−m

+
)
+ E(Am) − E

(
AN

+
)
, (1)

where E(AN
+), E(AN−m

+), and E(Am) correspond to the total energy of the corresponding cationic
clusters and of the emitted neutral fragment. Many theoretical studies make use of another computed
quantity when analyzing the relative stability of clusters, namely the second energy difference
∆2EN [35,40,50,51]. This quantity compares the total energy of size N with that of N + 1 plus
N − 1. Interpretation of experimental data using computed ∆2EN values, however, requires that the
fragmentation channel is always the same, irrespective of the cluster size, or that at least one channel
dominates the decay, for example the neutral monomer emission. Recent attempts have even tried to
combine DN and ∆2EN, in order to find a better stability descriptor, by defining a second dissociation
energy difference, but this definition requires an invariant fragmentation channel with size [52].
Since here we focus on doped species, the favored channel may be size dependent. Simply comparing
the dissociation energies of all possible fragmentation channels is a more solid description of stability
and was therefore used in this work.
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3. Results

3.1. Abundances of Photofragmented Clusters

The results of the photofragmentation experiments are summarized in Figure 2, which shows
the cluster abundances (IN) for (a) AuN

+, (b) AgAuN−1
+, (c) PtAuN−1

+, and (d) PdAuN−1
+ clusters,

in the size range of N = 2–6. The values of IN were calculated by integrating the peak area of each
corresponding cluster size in the mass spectra. In panel (a) the well-known odd-even oscillation
in the abundances of AuN

+ is seen, with local maxima for clusters composed of an odd number of
atoms [25,27,35]. As discussed, this pattern can be understood by the delocalization of each Au 6s
valence electron over the cluster volume, which, due to quantum confinement, develops energy shells.
The cluster has an enhanced stability if all shells are completely filled. Since these clusters are positively
charged, an odd number of atoms corresponds to an even number of electrons, required to close
the electronic shells due to spin degeneracy [20]. We point out, however, that this simplified model
assumes a negligible influence of the Au 5d electrons on the relative stability pattern.
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and (d) PdAuN−1
+ clusters; these represent the relative stability of the different sizes. The values were

calculated by integrating the area of the corresponding signal in the mass spectra.

Upon Ag doping, as presented in Figure 2b, the odd-even oscillation in the abundances of pure
gold clusters was not significantly modified. Local maxima in IN are found for AgAu2

+ and AgAu4
+,

with an amplitude of the abundance oscillation similar to that for pure AuN
+. The simple explanation

for this is that the silver atom, with an electronic [Kr] 4d10 5s1 configuration, delocalizes its valence
electron for each cluster size. This observation is not surprising, since pure Ag clusters possess a very
similar odd-even stability pattern as pure Au clusters [32], although it is slightly more pronounced due
to the less influential d-states of the clusters in their electronic structure [28].

The effect of Pt doping on the AuN
+ abundances is shown in Figure 2c. As seen, the odd-even

staggering is to some extent preserved upon Pt doping up to N = 4, with an intensity maximum at
PtAu2

+. This pattern, however, changes at N = 5, because PtAu4
+ is not a local intensity maximum.

Since the electronic configuration of the platinum atom is [Xe] 4f 14 5d9 6s1, the observed stability
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pattern suggests the delocalization of the Pt 6s valence electron in the N = 2–4 size range, giving a total
of two delocalized electrons in the PtAu2

+ cluster. This assumption is not trivial in view of the open
d-shell configuration of Pt. An understanding of the modified pattern in the N = 4–6 size range upon
Pt doping requires further analysis.

Finally, the abundances of the PdAuN−1
+ clusters are shown in Figure 2d. The stability pattern is

very similar to that seen for the Pt doped case, with a relative intensity maximum at N = 3 but not
at N = 5. For the Pt doped clusters, this pattern in the abundances suggests that Pd delocalizes one
electron in PdAu2

+, even though this atom has a ground state electronic configuration with a full d-shell
and no valence s electrons ([Kr] 4d10). Photoelectron spectroscopy experiments on anionic PdAuN

−

clusters below N = 6 have shown that Pd can promote one of its 4d electrons to the 5s shell, which then
participates in the bonding with Au [53]. In addition, in our previous work on the photofragmentation
of larger Pd doped Au cluster cations, we demonstrated similar behavior in PdAu6

+ [35]. The Pd dopant
delocalizes one of its 4d electrons, giving to the cluster a total of six itinerant electrons, a pronounced
magic number in 2D systems [54]. Therefore, it is possible that Pd is delocalizing an electron in PdAu2

+

in order to fill the cluster’s 1S electronic shell. This assumption, however, requires a detailed analysis
of the electronic structure for confirmation. Similarly, further analysis is needed to understand the
observation that PdAu4

+ (as PtAu4
+) does not seem to possess any particular stability. These matters

are discussed later in the text.

3.2. Theoretical Results

The computed lowest energy structures of AuN
+ and MAuN−1

+ (N = 2–7, M = Ag, Pt, and Pd)
clusters are shown in Figure 3. The lowest energy structures of cationic AuN

+ clusters are planar up to
N = 7 (although Au7

+ has a slight out-of-plain distortion), according to ion mobility experiments [16].
In many DFT studies, however, it is predicted that the 2D to 3D transition takes place at N = 8,
although the planar and 3D isomers of Au8

+ are close in energy [35,55]. The source for this discrepancy
can be related to the lack of implicit relativistic effects in most DFT studies on gold clusters, although
that question goes beyond the scope of this study. In the N ≤ 7 size range, theory and experimental
results agree that all AuN

+ clusters are two-dimensional. Upon Ag doping, the 2D-3D transition
size is modified. AgAu4

+ adopts a 3D twisted X-structure, indicating a decrease of the transition
size to N = 5, but AgAu5

+ is again a two-dimensional cluster. Pure AgN
+ clusters are known

to become three-dimensional at N = 5, as determined recently by far-infrared multiple photon
dissociation spectroscopy measurements in conjunction with DFT calculations [56]. Upon Pt doping,
calculations predict the 2D-3D transition at the lowest possible size, i.e., at N = 4, with PtAu3

+

adopting a tetrahedral geometry. Combined far-infrared multiphoton dissociation spectroscopy and
DFT calculations have determined that pure PtN

+ clusters become three-dimensional at N = 4 as
well [57], showing the strong tendency of platinum to form 3D structures. For N > 4, all cationic Pt
doped gold clusters adopt 3D configurations, except for N = 7, which maintains the Au7

+ structure
substituting the central Au atom by the Pt dopant (however with a larger out-of-plane distortion).
Finally, the case of Pd doping is similar to that of Pt, with 3D geometries from the lowest possible sizes
of N = 4 onward. For most sizes, except N = 5 and 7, the structures of PdAuN−1

+ and PtAuN−1
+ are

similar. At N = 5, both clusters adopt a 3D twisted X-structure, but the Pt dopant takes the central
position of the cluster, whereas the Pd atom is at a side. At N = 7 the Pd dopant sits on top of an Au6

triangular structure which is similar to AgAu6
+. The structures of pure PdN

+ clusters have not been
characterized experimentally. Nevertheless, DFT calculations predict 3D structures from the tetrameric
cluster onward, showing also the strong tendency of palladium to adopt 3D configurations [58].
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The computed lowest-energy dissociation channels and the corresponding dissociation energies
of AuN

+ and MAuN−1
+ (N = 2–7, M = Ag, Pt, Pd) are listed in Table 1. As is known for AuN

+,
the preferred dissociation channel oscillates between neutral monomer and neutral dimer evaporation,
with even(odd)-N clusters preferentially emitting a neutral monomer(dimer) fragment [35,59].
This demonstrates the higher relative stability of Au3

+ and Au5
+ since they are in the investigated size

range of the preferred daughter clusters. This observation agrees with the interpretation of stability
patterns based on valence electron delocalization and electronic shell closing; Au3

+ has two itinerant
electrons, closing the 1S shell, whereas Au5

+ has four delocalized electrons, closing the 1S shell and
the 1Px subshell. The odd-even trend has also been found in experimentally determined dissociation
energies of larger AuN

+ clusters [39]. In Reference [39], DN values were determined for N = 7–27.
This range only overlaps with that for Au7

+ in our work and our computed dissociation energy of
3.20 eV lies within the experimental range of 3.1–3.6 eV. This, however, is only the case after taking into
account relativistic effects in the computations. Otherwise, the computed DN is only 2.90 eV. We also
note that a high DN value was found for Au3

+. As mentioned, this cluster has two delocalized electrons,
closing the first superatomic shell 1S (more details are given later). Overall, the calculated channels of
AuN

+ agree well with the abundances after photofragmentation, showing higher intensities for Au3
+

and Au5
+.
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Table 1. Lowest-energy dissociation channels and corresponding dissociation energies (DN) of AuN
+

and MAuN−1
+ (N = 3–7, M = Ag, Pt, Pd) calculated by density functional theory.

Dissociation Channel DN/eV

Au3
+

→ Au1
+ + Au2 4.14

Au4
+

→ Au3
+ + Au1 2.25

Au5
+

→ Au3
+ + Au2 2.58

Au6
+

→ Au5
+ + Au1 2.71

Au7
+

→ Au5
+ + Au2 3.20

AgAu2
+

→ Au1
+ + AgAu1 4.69

AgAu3
+

→ AgAu2
+ + Au1 2.18

AgAu4
+

→ AgAu2
+ + Au2 2.44

AgAu5
+

→ AgAu4
+ + Au1 2.51

AgAu6
+

→ AgAu4
+ + Au2 3.41

PtAu2
+

→ Pt1
+ + Au2 3.97

PtAu3
+

→ PtAu2
+ + Au1 3.36

PtAu4
+

→ PtAu3
+ + Au1 2.69

→ PtAu2
+ + Au2 2.89

→ Au3
+ + PtAu1 2.91

PtAu5
+

→ PtAu3
+ + Au2 2.62

PtAu6
+

→ PtAu4
+ + Au2 3.61

→ PtAu5
+ + Au1 3.67

PdAu2
+

→ Pd1
+ + Au2 2.83

PdAu3
+

→ PdAu2
+ + Au1 3.19

PdAu4
+

→ PdAu3
+ + Au1 2.51

→ PdAu2
+ + Au2 2.54

PdAu5
+

→ PdAu3
+ + Au2 2.46

PdAu6
+

→ PdAu4
+ + Au2 3.32

→ PdAu5
+ + Au1 3.37

Following M heteroatom doping the dissociation patterns can become more complicated,
since besides Au1 and Au2 evaporation channels, M and MAu1 emissions can compete. The dissociation
energies corresponding to the M and MAu1 emission channels were computed and with only a few
exceptions their energies are significantly higher than those of Au1 and Au2 evaporation. For the
AgAuN−1

+ clusters, a similar pattern to that of AuN
+ was found; clusters composed of even(odd)

numbers of atoms emit a neutral monomer(dimer) gold fragment, thereby preferentially forming
AgAu4

+ and AgAu2
+. These two clusters have closed electronic shells with two and four itinerant

electrons, respectively, under the assumption that Ag is delocalizing its 5s valence electron. Also, in this
case the three-atom cluster, AgAu2

+, has the highest dissociation energy, 4.69 eV, which is actually even
higher than that of Au3

+. The cases of PtAuN−1
+ and PdAuN−1

+ are similar but very different from
pure AuN

+. The clusters MAu4
+ and MAu2

+ are not the main products of fragmentation, but instead
there is competition to form different daughter clusters in the N = 3–6 size range, with some preference
for MAu2

+. This result is consistent with the experimental observation that there is no special feature
in the abundances (N = 4–6 size range) of PtAuN−1

+ and PdAuN−1
+. The underlying reason for this is

discussed in the next section.

4. Discussion

The electronic structure of the clusters composed of N = 3–5 atoms was analyzed for the different
pure and doped clusters via calculations of total density of states (DOS) in order to understand their
relative stability. Figure 4 presents this analysis for the clusters composed of three atoms. In the
left panel, the DOS of Au3

+ is shown, which is projected into atomic d-(black) and sp-states (red).
Due to the very small size of the cluster, the DOS is composed of molecular-like states with a strong
d-character below the HOMO state. Within this dense region of occupied d-states, one state has a higher
sp-character (although with an overall low intensity). A plot of the molecular orbital (MO) of this state
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shows a wavefunction that is delocalized over the entire cluster, with a nodal character resembling that
of the 1S eigenstate of a particle confined in a 2-dimensional potential well [21]. This doubly occupied
MO is the only one of delocalized character below the HOMO, showing that Au3

+ has two itinerant
electrons as anticipated. Each of the three Au atoms delocalizes its 6s electron, of which one is removed
during ionization. The DOS also reveals the presence of two, almost degenerate, unoccupied MOs
resembling the 1Px and 1Py cluster orbitals, which are higher in energy.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 13 
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Figure 4. Total density of states of the clusters composed of N = 3 atoms. Projections into atomic
states are presented in black for Au(d), in red for Au(sp), in blue for M(d), and in green for M(sp).
The molecular orbitals of delocalized character extending over the entire cluster volume are plotted and
labeled based on their nodal character (1S and 1Px,y). The highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) states are labeled as well. In the case that the cluster
is open-shell, both α and β orbitals are plotted.

The second panel of Figure 4 presents the case of AgAu2
+, in which the DOS is also projected

into the d-(blue) and the sp-states (green) of the silver dopant. The DOS of this cluster is very similar
to that of Au3

+, with the region close to the HOMO state having a higher Au than Ag character.
This is a consequence of the relativistic nature of gold, which reduces the s-d energy separation [28].
As the figure reveals, this cluster also has only one doubly occupied MO of delocalized character
(1S symmetry). Therefore, as expected, Ag is delocalizing its 5s electron. The PtAu2

+ and PdAu2
+

cases, which are presented in the right panels, are different. In both cases the DOS near the HOMO
state is dominated by the d-states of the dopant atom, and, as for Au3

+ and AgAu2
+, only one MO of

delocalized character is found to be doubly occupied. This indicates that PtAu2
+ and PdAu2

+ are also
clusters with closed electronic shells, which is not trivial considering the electronic configuration of
these dopant atoms. Therefore, at N = 3 the Pt dopant delocalizes its 6s electron ([Xe] 4f 14 5d9 6s1),
whereas the Pd dopant ([Kr] 4d10) promotes one of its 4d electrons to an electronic configuration of [Kr]
4d9 5s1, which then delocalizes over the entire cluster. This leaves both dopant atoms with an open
atomic d-shell.

In Figure 5, a similar DOS analysis is presented for N = 4. Au4
+ and AgAu3

+ have very similar
DOS. In both cases the HOMO corresponds to a singly occupied MO of delocalized character (α-state)
with the 1Px symmetry. In addition, there is a doubly occupied MO resembling the 1S eigenstate.
The lowest unoccupied molecular orbital (LUMO) of the clusters is now the β-state of 1Px symmetry.
Therefore, Au4

+ and AgAu3
+ have three itinerant electrons. The DOS of PtAu3

+ and PdAu3
+ is

remarkable; both clusters have only the 1S-type delocalized MOs below the HOMO, implying that
there are in total only two delocalized electrons. As shown in the figure, the 1Px and 1Py MOs are
empty. For N = 4, neither Pt nor Pd contributes to the electron delocalization, contrary to the N = 3
case. PtAu3

+ and PdAu3
+ are clusters with closed electronic shells, as PtAu2

+ and PdAu2
+ are.
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Figure 5. Total density of states of the clusters composed of N = 4 atoms. Projections into atomic
states are presented in black for Au(d), in red for Au(sp), in blue for M(d), and in green for M(sp).
The molecular orbitals of delocalized character extending over the entire cluster volume are plotted
and labeled based on their nodal character (1S and 1Px,y). The HOMO-LUMO gap is labeled. In the
case that the cluster is open-shell, both α and β orbitals are plotted.

The final analyzed case (size N = 5) is presented in Figure 6. As expected, Au5
+ and AgAu4

+

are clusters with closed electronic shells, since each atom delocalizes one valence electron. In both
cases there are two doubly occupied MOs of delocalized character which resemble the 1S and 1Px

eigenstates. This is similar to the cases of PtAu4
+ and PdAu4

+, which also have two doubly occupied
MOs of delocalized character. For N = 5, Pt and Pd delocalize one electron in order to close the 1Px

electronic shell of the clusters, thereby gaining stability. This analysis shows an a priori unexpected
behavior of the Pt and Pd dopants on the Au clusters in the N = 3–5 size range. The dopant atoms
delocalize one electron at N = 3 and N = 5, but none at N = 4, allowing all the doped clusters to have
closed electronic shells.
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5. Conclusions

In this work, the relative stability of small cationic Ag, Pt, and Pd doped AuN
+ (N = 2–7) clusters

were investigated using a combination of photofragmentation experiments and density functional
theory calculations. Mass spectra revealed a pronounced odd-even pattern in the abundances of AuN

+

and AgAuN−1
+, which can be rationalized by considering the delocalization of the s-valence electron

of each atom in the cluster, including the Ag dopant. Clusters composed of an odd number of atoms
possess an even number of delocalized electrons, closing superatomic electronic shells and gaining
stability. Dissociation energies calculated for these clusters agree well with this picture, since the
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preferred fragmentation channels always produce the more stable fragments: Au3
+, Au5

+, AgAu2
+,

and AgAu4
+. The Pt and Pd doped clusters, however, behave very differently. Experimentally,

PtAu2
+ and PdAu2

+ correspond to intensity maxima, but PtAu4
+ and PdAu4

+ do not. The calculated
dissociation energies of these clusters reveal a competition between channels that produce fragments
of different sizes, especially in the N = 4–6 size range, explaining the smeared out odd-even pattern in
their size-to-size dependent abundances. Analysis of the density of states of the clusters in the N = 3–5
size range reveals an unexpected behavior. At N = 3, both Pt and Pd delocalize one valence electron in
order to close the 1S superatomic electron shell. At N = 4, though, the valence electrons of both dopants
remain localized, which also allows the closing of the clusters’ 1S shells. Finally, at the size N = 5,
Pt and Pd again delocalize one electron, closing the 1S and 1Px shells. Overall, these results illustrate
that it is difficult to predict a priori how doping would affect the electronic structure of clusters, even at
the very smallest sizes.
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