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Abstract: Abstract text summarization aims to offer a highly condensed and valuable information
that expresses the main ideas of the text. Most previous researches focus on extractive models.
In this work, we put forward a new generative model based on convolutional seq2seq architecture.
A hierarchical CNN framework is much more efficient than the conventional RNN seq2seq models.
We also equip our model with a copying mechanism to deal with the rare or unseen words.
Additionally, we incorporate a hierarchical attention mechanism to model the keywords and key
sentences simultaneously. Finally we verify our model on two real-life datasets, GigaWord and DUC
corpus. The experiment results verify the effectiveness of our model as it outperforms state-of-the-art
alternatives consistently and statistical significantly.
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1. Introduction

Automatic abstract text summarization plays an essential part in natural language processing
(NLP) and information retrieval (IR) tasks. Abstract text summarization is to generate a short summary
which covers the core information of a passage or an article, consisting of a few keywords and sentences.
It can be harnessed for other analyses or applications, e.g., text categorization [1], opinion mining [2]
and so on. In this task, we do not simply extract the existing sentences or words from the original
text, instead we generate a highly compressed paraphrasing of the core information of the text, even
leveraging vocabulary absent from the source if needed.

Due to the fast development of deep learning, many sequence to sequence (in the following,
we use seq2seq for simplicity) models are proposed to project an input sequence into another output
sequence. They have been successful in many applications or tasks like speech recognition [3],
video captioning [4] and machine translation [5]. Unlike the above tasks, in text summarization,
the output sequence is much shorter than the input source sequence (document).

To realize the context summarization, [6] proposes an attentional seq2seq model based on RNNs
which was originally developed for machine translation. It projects the the original document into
low-dimensional embeddings. However, RNNs tend to have low-efficiency problems as they rely
on the previous steps when training. Therefore, though not commonly used in sequence model,
we propose a seq2seq model based on CNN to create the representations for the source texts. However,
traditional CNNs can only encode fixed size contexts. To address this issue, we propose to enlarge the
effective text by stacking CNN layers over each other. By doing so, the length of the sequence being
dealt with can be easily controlled, and each element in the sequence could be computed parallelly.
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In the contrast, RNN has to preserve the hidden state of the whole past, thus not able to perform
parallelization operations.

Multi-layer CNNs create hierarchical representations on the input, i.e., close elements in a
sequence interact at lower layers whereas distant elements interact at higher layers [7]. Unlike the chain
structure of RNN, our multi-layer CNN offers a shortcut to parallelly express long-range sequences.
For instance, to represent a sequence with n words, CNNs only need O( n

k ) operations, and k is the
kernel width, while RNNs need O(n) operations. In addition, kernels and non-linearities numbers
are fixed in CNN, whereas in RNN, the first word will need n operations and non-linearities, and the
last word will also need a single set of operations [8]. We also add gated linear units (GLU) [9] and
residual connections [10] in this convolutional model.

In the source document, the sentences could be very long, hence a summary could be drawn from
not only the keywords but also the key sentences. So we firstly apply two CNNs on the source text,
at word level and sentence level, respectively. Then to capture such hierarchical document structure,
we propose a hierarchical attention mechanism applied on both levels simultaneously. We first calculate
the word-level attention, then it will be re-weighted by its corresponding sentence-level attention.

In summarization task, it is common that the named-entities and keywords in the test text are
essential to the summary, but in training data they may actually be rare or even unseen, and we
call these words as out-of-vocabulary (OOV) words. To solve the issue, we introduce a copying
mechanism [11] which enables the seq2seq model to extract the OOV words. It can distinguish the
keywords based on their position or syntactic information from original text, even not knowing their
exact meanings.

In this work we have three major contributions:

• We apply a convolutional seq2seq model to realize the text summarization which could
help improve the model efficiency. And we also equip the CNN model with GLU and
residual connections;

• We adopt a hierarchical attention mechanism to generate the keywords and the key sentences
simultaneously. And we also introduce a copying mechanism to extract OOV words from
source text.

• We evaluate our model on real-life datasets with other existing models. The experiment results on
text summarization prove that our model has better performance than other advanced alternatives
consistently and statistically significantly.

In the rest of the paper, we first present the related work in Section 2, and then introduce the
mechanism of our model in detail in Section 3. Then we conduct extensive experiments on real-life
datasets in Section 4. In the end, we present the conclusion of our findings in Section 5.

2. Related Work

2.1. Automatic Text Summarization

Lots of previous work in summarization focuses on extractive methods, that is, directly extract
key words or sentences from the original document and then reproduce them as summary [12–15].

In contrast, humans tend to summarize the source text by using paraphrase in their own words
and seldom reproduce the original sentences from the document. Inspired by this intuition, many
researches used the DUC-2003 and DUC-2004 competitions http://duc.nist.gov/ to standardize
such generative summarization tasks. In generative tasks, the datsets are composed of stories
of news with diverse topics, and each story contains several reference summaries generated by
humans. TOPIARY [16] utilized a combination of compression techniques motivated by linguistic,
and an unsupervised topic detection method which appends keywords extracted from the story to the
compressed output.Reference [17] used a conventional phrase-table based machine translation model
to realize text summarization. Reference [18] leveraged weighted tree-transformation rules to compress
the source text. Reference [19] utilized quasi-synchronous grammar methods to generate summaries.

http://duc.nist.gov/
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Deep learning has been developing fast recently, and it can handle many NLP tasks [20].
So researchers have began to consider such framework as an effective, completely data-driven
alternative for text summarization. Reference [21] used convolutional modes to encode the original text,
and an attentional feed-forward neural network to generate summaries. But it did not use hierarchical
CNNs, thus not that effective. Reference [22] is an extension to [23], and it replaced the decoder
with an RNN. Reference [24] introduced a large Chinese dataset for short text summarization and
it used a RNN based seq2seq model. [25] utilized a similar seq2seq model with RNN encoder and
decoder, but it contained English corpora, reporting advanced results on DUC and Gigaword datasets.
Reference [26] utilized the generative adversarial networks to generate the abstract text summarization,
meanwhile equipped with a time-decay attention mechanism. Reference [27] was based on BERT to
take advantage of the pre-trained language model in the seq2seq framework, and designed a two-stage
decoder process to consider both sides’ context information of every word in a summary. We denoted
the above two methods as GAN and BERT respectively, and we will compare our model with them
in experiments in detail. Reference [28] proposed a two-stage sentences selection model based on
clustering and optimization techniques. Reference [29] proposed a text summarization model based on
a LSTM-CNN framework that can construct summaries by exploring semantic phrases. Reference [30]
presented an automatic process for text abstraction which was based on fuzzy rules on a variety of
extracted features to find the most important information from the source text.

2.2. Seq2seq Model

Seq2seq modeling has been the synonym of encoder-decoder structures based on RNN [31].
Firstly, the encoder RNN handles an input sequence x = x1, ..., xm, m denotes the number of elements
and then obtains the corresponding hidden state z = (z1, ..., zm). The decoder RNN uses z as an input
and generates the output t = (t1, .., tn) one by one from left to right. When generating the output ti+1,
decoder will produce a new hidden state hi+1 via the previous state hi, along with a representation
vector gi of the previous target language word yi, and a conditional input ci based on the decoder
input z. Based on the above generic formulation, many seq2seq models try to have novelties on RNN
type or conditional input.

If not considering adding the attention mechanism, models may merely utilize the final encoder
state zm by setting the conditional input ci equal to zm for each i [32] or initializing the input to the
first decoder as zm [31]. Those models [5,33] with attention mechanism calculated ci as a sum of
(z1, ..., zm) with different weights at each time step. These weights of the sum are the so-called attention
scores, which enable the decoder to focus on the different parts of the input sequence when generating
the outputs. To compute attention scores, it needs to compare each encoder’s output state zj with
a combination of the last prediction yi and previous decoder state hi. In the end, the results will be
normalized to a distribution over the input sequence.

Many seq2seq model choose LSTM [34] and GRU [32] as RNN models. Both networks extend
Elman RNNs with a gating mechanism which enables the memorization of information of previous
time steps so as to process long-term dependencies. Recently, bi-directional encoders are proposed to
capture both future and past contexts [5]. In practice, models with many layers are often equipped
with shortcut or residual connection [10].

3. Model Description

In this section, we elaborate the mathematical mechanism of our abstract text summarization
model in detail. After defining the text summarization task, we describe the CNN structure of
our proposed seq2seq model. Afterwards we introduce the copying mechanism and hierarchical
attention mechanism.
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3.1. Problem Definition

Suppose a dataset with N data components, a component (x(i), t(i)) is composed of a source text
represented as x(i) and Mi target keywords or key sentences denoted as t(i) = (t(i,1), t(i,2), . . . , t(i,Mi)).

Both source document and target summaries consist of word or sentence sequences:

x(i) = x(i)1 , x(i)2 , . . . , x(i)L
x(i)

,

t(i,j) = t(i,j)1 , t(i,j)2 , . . . , t(i,j)L
t(i,j)

,

Lx(i) and Lt(i,j) denotes the length of x(i) and t(i,j), respectively.
Note that in each data component, one source text has several corresponding target keywords

or key sentences. Then we transform the data component into pairs, that is, one source sequence
only have one corresponding target sequence, so as to fit the proposed convolutional seq2seq model.
Specifically, we split the data component into Mi pairs: (x(i), t(i,1)), (x(i), t(i,2)), . . . , (x(i), t(i,Mi))).

3.2. Position Embeddings

For the input sequence x = (x1, . . . , xm), we first represent it as a low dimensional vector
u = (u1, . . . , um), where uj ∈ Rd. As for the position embeddings, we firstly obtain a one-hot vector to
record the absolute position of a element in a sequence. Then we use an embedding layer to transform
this sparse and discrete representation into a continuous embeddings as p = (p1, . . . , pm) where
pj ∈ Rd, thus enabling our model to sense which part of the sequence are being processed. d is
the dimension of the position embeddings and input sequence element embeddings. We use the
combination of both embeddings to form the input element embeddings e = (u1 + p1, . . . , um + pm).
Similarly we also add the position embeddings to the output elements embeddings of decoder, and
then feed them back to decoder.

3.3. Convolutional Seq2seq Model

We share the convolutional layer architecture on both encoder and decoder and they will calculate
intermediate states via the input elements. We represent the output of lth layer as zl = (zl

1, . . . , zl
m)

for encoder and hl = (hl
1, . . . , hl

n) for decoder. Each layer consists of a one dimensional convolution
and a non-linearity. If a decoder has one layer with kernel width being k, then its output h1

i will
compress the information of k input elements. To enlarge the length of input elements, we stack
blocks over each other, for example, stacking 6 blocks with k = 5 could represent 25 input elements.
If needed, non-linearities enable our model to deal with the entire input sequence or only a few
elements. The computational advantage of our model is that it conducts a parallel computation
which is much more efficient than the traditional RNN model computed one element by one element.
As mentioned in Section 1, to represent a sequence with n words, CNNs only need O( n

k ) operations,
while RNNs need O(n) operations. However, our hierarchical CNN model is not that efficient than
traditional CNN model as ours has to stack CNN layers to represent a sequence more expressively,
while a traditional CNN model only needs one layer to explore a whole sequence.

In each convolution kernel, parameters are W ∈ R2d×od, bw ∈ R2d. The input is represented as
X ∈ Ro×d, which is a matrix having o input elements with the dimension being d. Then the input is
mapped by the layer to get the output being a single element Y ∈ R2d with its dimension twice of that
of the input. Then the o outputs elements will be fed to the subsequent layers. We leverage the gated
linear units (GLU) [9] as non-linearity, which is applied on the output represented as Y = [A B] ∈ R2d:

v([A B]) = A⊗ σ(B), (1)
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in which the GLU takes A, B ∈ Rd as inputs, ⊗ denotes the element-wise multiplication. It is notable
that Y ∈ R2d is also twice the size of the output v([A B]) ∈ Rd. σ(B) is the gate that controls which
inputs A of the source text are currently dealt with.

In order to realize deep CNN, we adopt the residual connections [10] which connect the input of
each convolution layer with the ouput:

hl
i = v(W l [hl−1

i−o/2, . . . , hl−1
i+o/2] + bl

w) + hl−1
i . (2)

For encoder, to ensure that the output of the convolution blocks match the input elements length,
we pad the input by o − 1 elements at each layer with zero vectors on both the left and the right.
Specifically, since no future information should be added to the decoder [35], o elements at the end of
the convolution output will be removed.

Furthermore, we also apply linear mappings on the 2d convolution outputs so as to fit the
embedding with its dimension being f . Such project is used to w when we feed the input embeddings
to encoder. We also use it to encoder output zi

j to compute the attention scores, along with the final

layer of decoder before the softmax operation layer hL.
After all the operations above, the distribution on T possible next target elements ti+1 could be

generated as follows:
p(ti+1|t1, . . . , ti, x) = softmax(Wshl

i + bs) ∈ RT , (3)

where Ws denotes the weights in the linear layer and bs is the bias.

3.4. Copying Mechanism

In text summarization task, to improve embedding quality and decrease the size of the
softmax layer in decoder, it usually selects a relative small quantity of words with high frequency,
for example, [32] adopts 30, 000 words as the vocabulary. However, it ignores those rare words,
thus those keywords or key sentences containing OOV words are unable to be predicted. To solve the
problem, we introduce the copying mechanism [11] that allows the seq2seq model to extract those
OOV words from the original document. Copying mechanism is based on the fact that keywords
or key sentences can be identified via position or syntactic information of the original text, even not
knowing their exact meanings.

With copying mechanism, we can separate the the prediction probability of new word ti+1 into
two components. One is the generative probability introduced in the above section, i.e., convolutional
seq2seq model. The other is the words that are directly copied from the original document.

p(ti+1|t1, . . . , ti, x)

= pg(ti+1|y1, . . . , ti, x) + pc(ti+1|t1, . . . , ti, x).
(4)

Each word is assigned with a weight in original document by the copying mechanism. Such weight
is able to evaluate the word’s importance via positional attention score. As mentioned above,
seq2seq model is limited to produce the keywords or key sentences from the vocabulary. However,
with the help of copying mechanism, the model is able to not only extract those OOV words, but also
extract present words since it is the truth that most keywords or key sentences exist in the original
document. The detailed equation to compute the copying component is shown as

pc(ti+1|t1, . . . , ti, x) =
1
Z ∑

j:xj=ti

exp(Ψc(xj)), t ∈ χ, (5)

Ψc(xj) = σ(hT
j Wc)st, (6)
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in which χ is the OOV words extracted from the original document, and σ denotes a non-linear
function. Wc ∈ R denotes a matrix with learnable parameters. Z is the summation of all scores,
which denotes the normalization operation. Interested readers could see [11] for more details.

3.5. Hierarchical Attention Mechanism

In text summarization, especially for those very long documents, it is not enough to only
identify the keywords, key sentences are also essential when forming the summaries. So we apply
the convolutional seq2seq model on both words and sentences level. Then we adopt the hierarchical
attention mechanism to simultaneously operate on both levels. After calculating the sentence-level
attention, it will re-weight the corresponding word-level attention which is already computed. Then the
whole attention score is renormalized:

Qa(j) =
Qa

w(j)Qa
s (s(j))

∑Nd
i=1 Qa

w(i)Qa
s (s(i))

, (7)

where Qa
w(j) is the attention weight of word level appearing at jth position, and s(j) denotes the ID of

the sentence at jth word position Qa
s (s(j)). Similarly, Qa

s (i) is the sentence-level attention weight for
the lth sentence in the origin. Nd denotes the number of the words in the origin text, and Qa(j) denotes
the attention score after re-scaling at the jth word position. Afterwards, we utilize the above attention
score to compute the attention weighted context embeddings which is further fed into the decoder
hidden state. The structure above is able to model key sentences along with the keywords within those
sentences. Figure 1 describes the framework of this mechanism.
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Figure 1. Model framework of hierarchal attention mechanism

4. Experiments and Results

We first introduce the datasets used in our experiments in detail, along with the experiment setup
and the evaluation metric. Then we introduce the variants of our model and analyze the experiment
results in detail. At last, we compare the computation costs among the models to demonstrate the
efficiency of our model.

4.1. Training Datasets

We adopted two real-life training datasets, one is the annotated Gigaword corpus as depicted
in [21], the other is the DUC corpus http://duc.nist.gov/duc2004/tasks.html. For Gigaword corpus,

http://duc.nist.gov/duc2004/tasks.html
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to preprocess the data, we utilized the scripts which are made available by the authors of their
work https://github.com/facebook/NAMAS, resulting in creating around 3.8 M training samples.
The validation and testing datasets are produced around 400K samples, and a subset of 2000 samples
are used for each validation and testing purpose. In our experiments, the performance is based
on the above validation and testing datasets. To compare our moder with others more precisely,
we also adopted the exact test samples utilized in [21]. For DUC corpus, it has two parts: one is
the 2003 corpus composed of 624 documents and summary pairs, the other is 2004 corpus having
500 document and summary pairs. We use DUC-2003 as the training dataset and DUC-2004 as the
testing dataset. However, the above DUC-2003 dataset is too small to be trained by large deep neural
networks. If only training on Gigaword datasets via DNN, the model may not be able to capture the
features of DUC datasets. So [21] utilizes a log-linear extractive model to train the DUC-2003 dataset.
But it is not expressive enough to only use the log-linear extractive model, therefore, [21] combines
it with the outputs of Gigaword datasets so that it can obtain a better testing results on DUC-2004
dataset. The model only trained on Gigaword is named as ABS, and the concatenated one is named
as ABS+. In the experiments on DUC corpus, we take the same metric as these models to evaluate
our model. We also include a new testing dataset which is a subset of CNN/Daily Mail dataset
containing 11,490 test set samples. It is a collection of news stories and corresponding summarizations
generated manually.

4.2. Experiment Setup

Before training, we firstly adopted the restricted Boltzmann machines (RBM) to help pre-process
our datasets. RBM performs a transformation of the feature space based on an unsupervised learning
step. Interested readers could read [36] for detailed information about RBM.

After pre-processing, to initialize the input embeddings, for all the models, we adopted
200 dimensional word2vec vectors [37] on the same corpus. These embeddings would be updated
during the training. We set the dimension of all the hidden state of the encoder and decoder to be 400.
As we only used the first sentence of the document as the source, the size of encoder vocabulary was
119,505 and that of decoder vocabulary was 68,885. For training, we utilized Adadelta and set the
initial learning rate as 0.001. The batch size was set to 50 and we randomly shuffled the training data
at every epoch. To speed up training, we sort every 10 batches according to their lengths at each epoch.
We harnessed the gradient clipping instead of the dropout or regularization to prevent overfitting.
On validation set, we adopted the early stopping mechanism [25] and utilized the best experimental
setup based on the validation set to produce the testing results. We limited the decoder vocabulary
size as 20,005 resulting a cutting down of the training time per epoch by almost three times. With the
help of the selected vocabulary, in comparison with full vocabulary models, only 50–75% of the epochs
are needed to converge.

When decoding, to generate the summary, we utilized beam search of size 5 and restricted the
size of summary to 30 words as maximum, as we noticed that the maximum size in the sampled
validation set is 30 as well. Specifically for DUC corpora, for each summary, we limit the model to
generate exactly 30 words so as not to emit the end-of-summary tag. We also observed that the average
summary length (7.4 to 8.1) of all our models fits the fact that the length of summaries in validation set
has about 8.7 words, without tuning specifically.

In Gigaword, we directly apply our convolutional framework on the training datasets. However,
the DUC dataset is too small that if training with our CNN model, it is likely to cause overfitting
problem. Therefore, we use the DUC-2003 as the training datasets and apply a log-linear extractive
model used in [21] to train the model and concatenate it with the training outputs of Gigaword corpus.
Then the combined model is used to test the DUC-2004 corpus.

https://github.com/facebook/NAMAS
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4.3. Evaluation Metrics

Similar as [22,35], to evaluate our model on Gigaword corpus, we utilize the full length F1 variant
of Rouge http://www.berouge.com/Pages/default.aspx. Most published work utilized limited length
recall [25], however, the defect is that different corpora have different length limits, so it is hard to
compare performances among those corpora. Whereas full length recall does not have to restrict the
length, but it unfairly favors longer summaries. So we propose to use Full-length F1 to solve the
problem since it puts penalty on longer summaries, meanwhile with no length limit. Additionally,
we present the proportion of summary tokens which also occurs in the original document, and it is
named as ’src. copy rate’. However, on DUC corpus, the evaluation is based on limited-length Rouge
recall as each summary is set to be 30 words.

4.4. Variants of Our Model

Here we describe the variants of our model that we conduct in our experiments.
RNN-1sent is our baseline model using attentional seq2seq model with the encoder and decoder

being RNNs. As done in [21], this model is also trained only on the first sentence of the original text.
RNN-2sent is identical to the above model except that it used first two sentences for training from

the source.
CNN-1sent is the model based on our convolutional seq2seq framework using the first sentence

as input training datasets.
CNN-2sent is the same as the above one except that it takes first two sentences from the source

as input.
CNN-2sent-copy is the above CNN-2sent model equipping copying mechanism proposed

in Section 3.4.
CNN-2sent-hie is the above CNN-2sent model equipped with hierarchical attention mechanism

proposed in Section 3.5.
CNN-2sent-hieco is the CNN-2sent model equipped with both copying mechanism and

hierarchical attention mechanism.
CNN-2sent-hieco-RBM is the above CNN-2sent-hieco model with the RBM pre-processing of the

datasets before training.
CNN-1sent-hieco is the CNN-1sent model equipping copying mechanism and hierarchical

attention mechanism with taking the first sentence as input.
CNN-1sent-hieco-RBM is the above CNN-1sent-hieco model equipping with the RBM pre-processing.

4.5. Experimental Results

We first describe the experimental results on Gigaword corpus, the detailed information is
illustrated in Table 1. The numbers in bold are the best figures. From which we can observe that adding
one sentence in the training datasets does help improve the performance, on both RNN and CNN
models. Actually in practice adding more sentences results in worse performance, and we attribute it
to the fact that the latter sentences are not that related to the summary. Our hierarchical convolutional
seq2seq model is more expressive than traditional model as CNN models outperform RNN models on
both one sentence and two sentences conditions. We also observe that copying mechanism can aid the
performance a lot with the highest src. copy rate. This means source document can help improving the
summarization to a extend. The hierarchical attention mechanism can also improve the performance
as it collaborates key words with key sentences simultaneously. No surprise that the CNN-2sent-hieco
obtains the best results as it utilizes both copying mechanism and hierarchical attention mechanism.
The * indicates the statistical significant improvement of all the other models using a paired two-tailed
t test with p < 0.05. The src. copy rate dropped comparing the CNN-2sent-copy as hierarchical
attention mechanism could improve the generative ability of the model, so it does not depend so much
on the source. Actually, for ABS+, it has the highest src. copy rate whereas with worst performance,

http://www.berouge.com/Pages/default.aspx
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and we attribute this to the truth that it is lacking in generative ability as a good summarization model
needs both generative and extractive abilities. Our model CNN-2sent-hieco also beats the advanced
model RASElman, GAN and BERT, which further proves the effectiveness of our model. Additionally,
our model equipped with RBM achieves the even better results than our original CNN-2sent-hieco
model, which verifies that RBM pre-processing could help improve the performance of our model to a
certain extend.

Table 1. The experimental results on Gigaword Corpus. * indicates the statistical significant
improvement.

Metric Rouge-1 Rouge-2 Rouge-L Src. Copy Rate

RNN-1sent 34.83 17.07 32.55 75.77
RNN-2sent 35.68 17.34 32.64 76.48
CNN-1sent 35.02 17.23 33.25 75.21
CNN-2sent 35.87 17.38 33.36 76.53
CNN-2sent-copy 36.32 18.03 33.87 84.12
CNN-2sent-hie 36.02 17.74 33.57 75.49
CNN-2sent-hieco 37.02 18.21 34.07 80.03
CNN-2sent-hieco-RBM * 37.95 * 18.64 * 35.11 80.74
ABS+ 29.89 11.94 27.05 92.06
RASElman 36.26 17.92 33.91 83.25
GAN 36.88 17.54 34.05 76.54
BERT 36.97 17.96 33.87 74.51

As for the DUC corpus, we just ran the 1-sentence models as the source only contains one single
sentence. Actually we only present the CNN-1sent-hieco and CNN-1sent-hieco-RBM results to save
the space as they achieved the best performance among other variants. Table 2 illustrates the detailed
experimental results. We can find that our model outperforms other models consistently with statistical
significance, which proves our framework is a better alternative for the text summarization task.

Table 2. The experimental results on DUC Corpus. * indicates the statistical significant improvement.

Metric Rouge-1 Rouge-2 Rouge-L

ABS 26.58 7.11 22.03
ABS+ 28.17 8.51 23.85
RASELman 29.02 8.34 24.07
CNN-1sent-hieco 29.12 9.35 25.11
CNN-1sent-hieco-RBM * 29.74 * 9.85 * 25.81
GAN 29.05 8.27 24.69
BERT 28.97 9.21 24.89

We also tested our models on the new testing dataset CNN/Daily Mail and we directly adopted
our best model CNN-2sent-hieco to compare with other state-of-the-art models. The results are
presented in Table 3. From it we can observe that even changing the testing dataset, our model still
consistently and statistical significantly outperforms other models, which proves that our model is
suitable and scalable to other real-life datasets.
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Table 3. The experimental results on CNN/Daily Mail testing datasets. * indicates the statistical
significant improvement.

Metric Rouge-1 Rouge-2 Rouge-L

ABS 35.68 16.47 34.14
ABS+ 36.74 16.89 35.01
RASELman 39.65 18.25 37.24
CNN-2sent-hieco 41.87 19.64 39.35
CNN-2sent-hieco-RBM * 42.04 * 19.77 * 39.42
GAN 37.87 15.71 39.20
BERT 41.71 19.49 38.79

4.6. Computation Cost

We evaluate the computation cost among several variants of our model, along with other
researches’ work mentioned above. We extract a subset of Gigaword with 60 text sources. We measure
the cost on GTX-1080 GPU. The results are illustrated in Table 4.

Table 4. The Computation Cost.

Model Times

ABS 3211
ABS+ 3865
RASELman 4573
GAN 6587
BERT 7432
RNN-1sent 7753
CNN-1sent 1681

We can easily find that our model based on CNN is much faster than other models, in which
about 4 times faster than our RNN variant. The results proves the efficiency of our convolutional
seq2seq framework.

5. Conclusions

In this work, we introduce a seq2seq generative model based on convolutional framework to
produce abstract text summarization. Our proposed model can represent a sequence with a hierarchical
structure which promotes its efficiency a lot. A copying mechanism is also adopted to further improve
the model performance as it can handle the OOV words. Moreover, our model is able to model the
keywords and key sentences simultaneously with the hierarchical attention mechanism. We conduct
comprehensive experiments on two real-life datasets, and prove the effectiveness and efficiency of our
model for generating abstract text summarization.
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