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Featured Application: The work is potential to be applied to the weapon system portfolio selection
and other project portfolio selection on the context of research and development.

Abstract: System portfolio selection is a kind of tradeoff analysis and decision-making on multiple
systems as a whole to fulfill the overall performance on the perspective of System of Systems (SoS). To
avoid the subjectivity of traditional expert experience-dependent models, a model and data-driven
approach is proposed to make an advance on the system portfolio selection. Two criteria of value
and risk are used to indicate the quality of system portfolios. A capability gap model is employed to
determine the value of system portfolios, with the weight information determined by correlation
analysis. Then, the risk is represented by the remaining useful life (RUL), which is predicted by
analyzing time series of system operational data. Next, based on the value and risk, an optimization
model is proposed. Finally, a case with 100 candidate systems is studied under the scenario of
anti-missile. By utilizing the Non-dominated Sorting Differential Evolution (NSDE) algorithm, a
Pareto set with 200 individuals is obtained. Some characters of the Pareto set are analyzed by
discussing the frequency of being selected and the association rules. Through the conclusion of the
whole procedures, it can be proved that the proposed model and data-driven approach is feasible
and effective for system portfolio selection.

Keywords: model and data-driven; system portfolio selection; value and risk; capability gap;
remaining useful life; genetic algorithm

1. Introduction

Joint operations have become the main trend of modern warfare. The construction of “system
of systems (SoS)” is not only a goal but also a basic guideline on the long-term weapon/equipment
development. System portfolio selection is a widely used concept of weapon SoS construction, where
a key step is evaluation [1]. Traditional evaluation models rely too much on subjective awareness,
making assessment results inaccurate and unconvincing to some extent. With the rise of data science,
an effective method to compensate for the low accuracy and implementing difficulty of relying on
expert experience is making decisions according to real data. Therefore, the combination of data-driven
methods and model-based approaches is a new trend to solving system portfolio selection problems.

Markowitz first proposed the portfolio theory in 1952, opening a new era of utilizing mathematical
approaches in resource allocation problems [2,3]. In the field of management science and operation
research, the portfolio theory is widely used in project research and development (R&D) [4], supplier
selection [5], material selection etc. With the development of SoS science, portfolio theory shows
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increasing popularity in the field of weapon SoS construction, where the optimal system portfolio will
be selected by evaluating system portfolio candidates through model-based methods. So far, there
has been little research that measures weapon system portfolios without subjective criteria. Typical
measurements in most literature, such as benefit-risk analysis [6], cost-efficiency analysis [7], and
requirement-satisfaction analysis [8] are inaccurate and unconvincing to some extent because they
usually require too much expert experience.

Motivated by solving issues mentioned above, data-driven methods are combined with traditional
model-based approaches to improve the accuracy and credibility of evaluation results on system
portfolios, by reducing dependence on artificial expertise. In addition, data-driven methods are
complements of model-based approaches, instead of substitutions, because pure data without models
cannot construct the bridge connecting scheme variable inputs and evaluation outputs.

In civilian fields, the portfolio selection theory has been mainly studied and applied on project
portfolio problems [9]. From the perspective of modeling, the scenario-based models are frequently
used to describe the boundary of possible cases, based on which, decision-makers evaluate and select
the well-matched optimal system portfolio [10–13]. Robust models are also widely studied and applied
in project portfolio problems to solve the difficulties in determining probabilities of future scenarios,
aiming to select an ideal system portfolio that performances well at almost all possible situations [14–16].
As for the evaluation and trade-off of project portfolios, variant methods are proposed and studied,
such as risk analysis methods [17], value evaluation methods [18], cost-efficiency methods [19], fuzzy
assessment methods [4], preference-based methods [20], game theory, interactive decision methods [21],
etc. A common ground of those methods is determining the value and risk of a system portfolio to
abstractly indicate what decision-makers expect or not expect. As regard to portfolio planning and
optimization, the goal is to select the optimal project portfolio by analyzing and comparing candidate
project portfolios. The mixed integer model [22], multi-objective optimization [23], hybrid and dynamic
planning are the most popular optimization methods. In addition, genetic algorithms [23], Monte
Carlo simulation [24] and Lagrangian relaxation methods are also widely used in the solving process,
when facing a large solution scale and specific constraints.

In military fields, most methods in system portfolio selection are based on specific evaluation
models, where the most commonly investigated techniques include multiple objective analysis, multiple
criteria analysis [25], value analysis [26], cost-efficiency analysis [27], expert judgment [27], Monte
Carlo technique, risk analysis and etc. In detail, Yang et al. [26] formulize the weapon system portfolio
problem with a mixed integer non-linear optimization model and solve the problem with an adaptive
immune genetic algorithm. Greiner et al. [28] conclude challenges of the Department of Defense
(DoD) in determining weapon system value during portfolio selection processes. Cheng et al. [29] use
combat network and operation loop to analyze strategies of the weapon system portfolio selection
problem, where the operational capability evaluation indexes of weapon systems are constructed.
Zhou et al. [30] deal with weapon system portfolio selection problems based on fuzzy clustering, with
the maximum deviation methods applied to rank all the candidates by calculating the weight of each
weapon system. Kangaspunta J et al. [27] use the cost-efficiency method to decide the acquisition and
maintenance of military equipment, aiming to build long-term capabilities in future military conflicts.
Li et al. [31] adopt a network-based method to formulate and analyze weapon system portfolio
architecting problem by embedding different types of systems into a network. Zhou et al. [32] study the
evolving capability requirement-oriented portfolio planning problem with a capability-based approach
from the perspective of operational research. Huang et al. [33] regard the weapon system portfolio as a
constrained combinatorial optimization problem and use a self-adaptive memetic algorithm-based
decision-making method to maximize the expected damage of hostile targets.

Whatever in civilian fields and military fields, the model-based portfolio selection methods have
been elaborately studied. With the increase of requirements for more accurate and valid approaches,
the data-driven idea is appropriate to be applied to the portfolio selection. In the paper, we focus mainly
on system portfolio evaluation, where a key part is determining criteria that influence the evaluation
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result of an object. Herein, two criteria of value and risk are used to evaluate system portfolios, where
the value criterion is decided according to capability gaps of system portfolios and the risk criterion is
decided by the remaining useful life (RUL) of systems. Based on the two criteria, the optimization is to
obtain the system portfolio with the maximal value and minimal risk, within the limitation of a certain
cost. To increase the credibility and practicability, the weight information in value evaluation and the
RUL are all decided according to simulation data, instead of expert experience.

The remaining parts of the paper are structured as follows. In the second section, the capability
gap-based value decision method and the RUL-based risk decision method are studied. In the third
section, a case is examined to verify the utility and effectiveness of the proposed methods and models.
Then, the results are discussed by analyzing the frequency of being selected and the association rules.

2. Materials and Methods

2.1. Capability Gap Based Value Decision

2.1.1. Weight Decision Based on Correlation Analysis

Weight information determines the criteria importance, and thus influences the final evaluation
results of systems portfolios. Typically, criteria weights tend to be determined according to expert
experience, which is criticized for its subjectivity and infeasibility. Correlation analysis is a quantitative
method to measure the correlations between independent and dependent variables, and therefore can
be used to indicate the weights of independent variables.

The maximal information coefficient (MIC) is used to measure correlations among all kinds of
data. Compared to other measurements, it is acknowledged that the MIC is more sensible to identify
correlations among variables, whatever for linear relations or non-linear relations (cubic, exponential,
sinusoidal, parabolic, etc.)

The correlation of variable X and Y can be indicated by the mutual information, as
Equation (1) shows.

I(X, Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

Because the information entropy of discrete random variables is denoted as H(p) = −
∑n

i=1 pi log pi,
where

∑n
i=1 pi = 1. Therefore, the I(X, Y) can be proved to be equivalent to Equation (2).

I(X, Y) = H(X) + H(Y) −H(X, Y)
= H(X) −H(X|Y)
= H(Y) −H(Y|X)

, (2)

With respect to MIC, it is assumed that the D = X ×Y ⊂ R2 is the variable space. Dividing the D
into a grid G of x× y. The distribution of data D in grid G is represented by D|G. Executing multiple
divisions on D and calculating the I(D

∣∣∣G) under different divisions. Then, the MIC can be obtained by
calculating the max I(D

∣∣∣G) value from all possible division schemes.
Here, a grid of one row and one column is taken for example as Figure 1 shows. All data

points are divided into four areas: top left, top right, bottom left, and bottom right. The numbers
of data points belonging to each area are 1, 4, 4, and 1. Then, the normalized numbers of data point
frequencies in the four regions are 0.1, 0.4, 0.4, and 0.1. Herein, X has two values: left and right,
and Y has two values: upper and lower. The joint probabilities of the data in four regions can be
calculated as p(X = le f t, Y = up) = 0.1, P(X = right, Y = up) = 0.4, P(X = le f t, Y = down) = 0.4,
P(X = right, Y = down) = 0.1. Therefore, the point frequencies in X, Y are P(X = le f t) = 0.5,
P(X = right) = 0.5, P(Y = upper) = 0.5 and P(Y = lower) = 0.5. According to the mutual information
calculation formula introduced above, the mutual information of X and Y is obtained as Equation (3).
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p(X = le f t, Y = up) log
(

p(X=le f t,Y=up)
p(X=le f t)p(Y=up)

)
+p(X = le f t, Y = up) log

(
p(X=le f t,Y=up)

p(X=le f t)p(Y=up)

)
I(X, Y) = +p(X = le f t, Y = up) log

(
p(X=le f t,Y=up)

p(X=le f t)p(Y=up)

)
+p(X = le f t, Y = up) log

(
p(X=le f t,Y=up)

p(X=le f t)p(Y=up)

)
= 0.1× log

(
0.1

0.5×0.5

)
+ 0.4× log

(
0.4

0.5×0.5

)
+ 0.4× log

(
0.4

0.5×0.5

)
+ 0.1× log

(
0.1

0.5×0.5

)
, (3)
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By using the traversal algorithm, we can find the maximal value from all possible division
schemes as I∗(D, x, y) = maxI(D

∣∣∣G) . Then, the characteristic matrix M(D)x,y is constructed through
normalization operation on I∗(D, x, y) as M(D)x,y = I∗(D, x, y)/log min

{
x, y

}
. Whereupon the MIC

can be obtained according to MIC(D) = max
x,y<B(n)

{M(D)x,y}.

Finally, for the relation of y = R(x), x = [x1, x2,, . . . , xn], the weight information of elements in
x can be obtained by calculating the MIC between each independent variable of [x1, x2,, . . . , xn] and
dependent variable y.

2.1.2. Value Model Construction

Value is a measurement to denote the importance degree of an object. In the military field,
a frequently used measurement for denoting value is the capability gap, meaning the gap between
system capabilities and capability requirements. Before calculating the capability gap, it’s necessary to
obtain system portfolio capabilities, which are the combination of those of component systems.

Firstly, let CR = {cr1, . . . , crk} be the set of capabilities requirements, proposed by stakeholders,
where cr j denotes the value of the jth capability requirement. The C(si) = (ci1, . . . , cik), C(si) ∈ {0, 1}m

represents the capability value of the system si, where ci j denotes the capability value of si on the jth
capability. The PC(xi) = (pc1(xi), . . . , pck(xi)) denotes the capabilities values of the system portfolio
corresponding to scheme xi, where pc j(xi) is the jth capability value.

In the combination process, one case must be considered is that certain systems in a system
portfolio may have the same capabilities. It’s a key procedure to deal with the combination of this kind
of capabilities. Hereon, four rules are introduced as follows to support this combination.

Assume there are n systems si, i = 1, . . . , n in a system portfolio, providing the same capability t,
with capability values:cit, i = 1, . . . , n.

(1) Additive rule: the combined capability value is
∑

cit, i = 1, . . . n. E.g., Assuming that
3 transportation systems operate at the same time, the freight volume are 5t, 6t and 7t respectively,
then the portfolio of the 3 systems can provide a freight capability of 18t.
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(2) Maximal rule: the combined capability value is max{cit}, i = 1, . . . , n. E.g., Assuming that there are
three bridges over a river, and each bridge can bear the weight of 100t, 120t and 130t respectively,
then only object less than 130t can pass the river, because one object can only pass over one bridge
at the same time.

(3) Minimal rule: the combined capability value is min{cit}, i = 1, . . . , n. E.g., Assuming that there
are 3 tandem oil pipelines with oil flow of 5 t/hour, 6 t/hour and 3 t/hour, then the max oil flow of
the 3 pipeline is 3 t/hour.

(4) Average rule: the combined capability value is
∑

cit/n, i = 1, . . . n. E.g., Assuming there are
3 forecast systems, with correctly predicting probability 50%, 60%, and 70%, then the overall
correctly predicting probability is 60%.

In addition, the capability can be classified into benefit and cost types. Firstly, the relation between
a single capability of a solution and corresponding capability requirement is defined based on three
premises: (1) When a capability of a solution is deficient or worse than the inferior value of the
corresponding capability requirement interval, which means the solution absolutely cannot meet the
capability requirement. Its capability gap is supposed to be 1. (2) When a solution can provide a
capability, with its value falling in the interval of corresponding capability requirement, its capability
gap should be a number between [0, 1]. Especially when the solution’s capability value exactly falls in
the middle of the capability requirement interval, the capability gap is supposed to be 0.5, which means
the capability can meet the capability requirement by half. (3) When a capability of a solution equals to
or better than the superior value of the corresponding capability requirement interval, it means that
the capability can absolutely meet the corresponding capability requirement, and the capability gap is
supposed to be 0.

A concrete case is given in Figure 2, reflecting the relation between a capability and corresponding
capability requirement interval [l, u]. Four special points discussed above are marked by circle points.
To mathematically model the relations with universal forms, a formula is defined to fit the linear line
above, shown in Equation (4).

G(ci, cri) =




−ci/(2a) + 1, 0 ≤ ci < a
(−ci + u)/(2b), a ≤ ci < u
0, u < ci

; bene f it type
1, ci = 0
0, 0 < ci < l
(ci − l)/(2b), l ≤ ci < a
(ci + worst− 2a)/(2× (worst− a)), a ≤ ci < worst

; Cost type

, (4)

where G(ci, cri) represents the capability gap between the ith capability and corresponding capability
requirement interval [l, u]. Two special notation a and b are defined to simplify the formula, where
a = (l + u)/2, b = (u − l)/2. The notation worst denotes the requirement threshold of cost-type capability
that the capability gap will be judged to be 1 if a cost-type capability value exceeds worst.

Then, the capability gaps of all capabilities should be aggregated to compute the total capability
gap of a system portfolio as

∑k
i=1 wiG(ci, cri), where the wi denote the weight of the ith capability and

is determined according to the method in Section 2.1.1. Then, according to capability gaps, the value is
defined as Equation (5), which indicates that the bigger the total capability gap, the smaller the value
of a system portfolio.

V
(
x j

)
=

k∑
i=1

wi(1−G(ci, cri))

k
,

k∑
i=1

wi = 1, (5)

Different to general “capability-based” evaluation methods, which are usually based on hierarchy
structures such as a tree structure that the capabilities of all systems in bottom level are up-aggregated
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to an integrated value, capability gap is a criterion denoting the gap between capabilities and capability
requirements. For general methods, an inevitable defect is that an extremely high capability will pull
up the integrated capability value, which is obviously unreasonable. Whereas for the capability gap, it
can mitigate the effects of extreme capability values. For example, even an infinitely high benefit-type
capability can only result in corresponding capability gap of 0, instead of unreasonably extreme value.
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2.2. Risk Decision Based on RUL Prediction

General risk assessment methods follow the steps of risk factor identification, risk analysis, risk
assessment and risk management. However, for weapon systems, decision-makers mainly focus on
the availability and stability of systems in the operation process. Therefore, the RUL, which denotes
when a system is predicted to fault, is used as a weapon system risk criterion. The longer the RUL, the
smaller the probability a risk will happen in the operational process. In addition, the RUL prediction
method based on similarities of degradation characteristics is proved to perform better than other
classical methods when there are sufficient historical samples. Therefore, the paper adopts degradation
characteristics similarities to predict the RUL to indicate system portfolio risks.

The key resource for predicting RUL is the operational data, which is typically obtained from
embedded sensors with time series. In specific, the degradation data is analyzed to support the
construction of the RUL prediction model and the main steps can be concluded as degradation track
phase space construction, track matching, and RUL prediction. Detailed procedures are given in
Figure 3.
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2.2.1. Feature extraction based on variation coefficient

When multiple sensors are used to monitor the health of a system, a key step for predicting
health states is selecting features from the multidimensional time series data, because only parameters
without commonality can be treated as attributes features. Therefore, parameters screening is the
prerequisite to ensure the non-commonality of parameters. Intuitively, practitioners should firstly deal
with correlations of parameters to make the transformed parameters independent.

In this paper, the statistic of variation coefficients is used to select the parameters features. Similar
to the concept of standard deviation and variance in statistics, the variation coefficient is described
as the dispersion degree of observations. The variation coefficient is calculated by the ratio of the
standard deviation to the mean, as Equation (6) shows. Therefore, it is dimensionless.

VC = (StandardDeviation/Mean) × 100%. (6)

Variables with larger variation coefficients show more obvious features and therefore are more
suitable for describing characteristics of data.

2.2.2. Reconstruction of Degradation Track Phase Space

According to Taken’s theorem, the potential dynamics laws of a system can be studied by
constructing the phase space that preserves the topological properties of the original system. Coupled
with the nonlinear characteristics of degradation, the time delay embedding theorem is often applied
to construct high-dimensional phase space.

Assume that the time series is X = (x1, x2, · · · , xN), then the points in the phase space can be
expressed as the following form of row vector.

Xi = (xi−(d−1)τ, xi−(d−2)τ, · · · , xi−τ, xi), i = 1 + (d− 1)τ, 2 + (d− 1)τ, · · · , N, (7)

where d is the embedded dimension of phase space and τ is the time delay.
Embedded dimension d is the key parameter in phase space construction, whose value will be

determined by the non-subjective algorithm. Xi(d) is a point in the d dimension phase space. If the
point Xn(i,d) nearest to Xi(d) exists, the following relation can be deduced.

‖Xi(d) −Xn(i,d)(d)‖ = min
j=1+(d−1)τ,··· ,N, j,i

‖Xi(d) −X j(d)‖∞, (8)

For all points in the d and d + 1 dimensional phase spaces, the definitions for a(i, d), E(d)
E∗(d), E1(d), and E2(d) are given respectively.

a(i , d) =
‖Xi(d+1)−Xn(i,d+1)(d+1)‖
‖Xi(d)−Xn(i,d)(d)‖

E(d) = 1
N−dτ

N−τ∑
i=1+(d−1)τ

a(i, d)

E1(d) =
E(d+1)

E(d)

E∗(d) = 1
N−dτ

N−τ∑
i=1

∣∣∣xi+dτ − xn(i,d)+dτ

∣∣∣
E2(d) =

E∗(d+1)
E∗(d)

, (9)

Then the value of the embedded dimension d can be determined by finding the smallest spatial
dimension that makes the d and d + 1 dimensional phase spaces topologically equivalent. The
topological equivalence here refers to that the nearest neighbors in the d dimensional space still remain
the closest in the d + 1 dimensional space, which means that the E1(d) tends to be a stable value when
the d and d + 1 dimensional phase spaces are topologically equivalent. However, in reality, it is difficult
to find the smallest d that makes E1(d) a stable value. That’s why the E∗(d) and E2(d) are defined. If x
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is a random time series, then E2(d) will vary with d, or E2(d) will approach 1. Then by combining E1(d)
and E1(d), the embedded dimension of the degradation track phase space can be determined. After
the construction of the phase space, the time series can be transformed into the form of special track.
By referring to the degradation data transformed from historical data and comparing the similarity of
the new track with the reference track in phase space, the RUL can be predicted.

2.2.3. System Portfolio Risk Determination Based on RUL

Assume that Z =
{
Z1, Z2, · · · , Zl1

}
represents the degradation reference track and Y ={

Y1, Y2, · · · , Yl2

}
, l1 > l2, is the current degradation track. Then, the normalized cross correlation

(NCC) is introduced to measure the similarity between tracks. The specific definition of NCC is given
as follows:

sYZ(i) =
(Y −Y) × (Zi −Zi)

′

‖Y −Y‖2‖Zi −Zi‖2
, (10)

where Zi =
{
Zi, Zi+1, · · · , Zi+l2−1

}
and Y are of the same length. Y and Zi are the mean vectors of Y

and Zi respectively.
Taking the jth time series x j = {x j

1, x j
2, · · · , x j

N j
} as an example, the time points of the time series

are denoted as t j = {t j
1, t j

2, · · · , t j
N j
}. Apparently, t j

N j
is the running life of the j th degradation process.

Taking time delay τ as 1 and considering embedded dimension as d for all degradation track phase
spaces (d is no less than the maximal embedded dimension of all phase spaces). Then the original
time series of degradation process is transformed into the track of phase space. Denoting the reference

track for the jth process as Z j = [X j
d, X j

d+1, · · · , X j
N j
]
T

, the points in phase space are expressed as

X j
i = [x j

i−(d−1)
, x j

i−(d−1)
, · · · x j

i ].

Assuming the current degradation time series is y =
{
y1, y2, · · · , yc

}
. Similarly, it is

transformed into an incomplete degradation track form denoted as Y = [Yd, Y1+d, · · · , Yc],
Yi = [yi−(d−1), yi−(d−2), · · · , yi−1, yi].

When performing track matching, a track subset Yk = [Yk−l+1, · · · , Yk] is selected with a time
window length of l in the current phase space. Then the NCC between the current track Yk and the
reference track Z j should be modified as follows.

s j
k = sYZ + (1−

∣∣∣∣tk − t j
k

∣∣∣∣
tk

), (11)

If the s j
k reaches the maximum at the time point T j

k, then sub-tracks at time T j
k are regarded as the

best matching results in terms of degradation reference track Z j. This result also reflects the influence
of the track shape to the degradation stage. Therefore, the RUL of the most similar part to the jth
degradation reference track can be estimated as L j

k = t j
N j
− T j

k.

On the basis of the above result of the best track matching, the weight of the remaining life
calculated according to the jth degradation reference track is given as w j

k = s j
k(T

j
k)/

(∑M
j=1 s j

k(T
j
k)

)
,

where M is the total number of the degradation processes. Then the remaining life of the system k is
estimated as Equation (12).

RULk =
M∑

j=1

ω
j
kL j

k, (12)
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Then, the RUL should be transformed into risk according to the joint probability. It is identified
as a risk event when any system in a system portfolio breaks. Therefore, for a system portfolio
xi = (s1, s2, . . . , sn), the risk is calculated as Equation (13) shows.

R(xi) = 1−
n∏

j=1

[(
1−

1
RUL j

)xi j
]
, (13)

In conclusion, the RUL is an important criterion for the weapon system research because longer
RUL can reduce the failure risk of systems in combat. The availability of each component system is the
basis to guarantee the normal operation of systems portfolios. An operation activity will be broken
or even unsuccessful if any system of a system portfolio malfunctions in the operation process. This
induces the demand for long RUL of systems.

2.3. System Portfolio Optimization

As discussed above, the paper tries to solve the system portfolio problem considering system values
and risks. The corresponding notation is as follows. Let S = {s1, . . . , sm} denotes the set of alternative
systems, indicating m systems can be selected for a system portfolio. xi = (xi1, . . . , xim), xi ∈ {0, 1}m

is one of system portfolio schemes, where xi j = 0\1, with xi j = 0 denoting the jth system in S is not
selected in scheme xi, and xi j = 1 denoting the jth system in S is selected in scheme xi. All possible
schemes compose the solution space X. Let E = (e1, . . . , em) represents the cost of systems, where ei is
the cost of system si, and B denotes the total budget.

Then, the system portfolio optimization model can be formulated as follows.

max V
(
x j

)
=

k∑
i=1

wi(1−G(ci,cri))

k

min R
(
x j

)
= 1−

k∏
i=1

[(
1− 1

RULi

)x ji
]

s.t.


m∑

i=1
x ji × ei ≤ B

x j =
(
x j1, . . . , x jm

)
, x j ∈ {0, 1}m

, (14)

where V(x j) and R(x j) are the value and risk of the system portfolio scheme x j. G(ci, cri) represents the
capability gap on the ith capability. In addition, the cost of scheme x j must within the budget limitation.

It can be seen that the optimization is a multi-objective problem and the 2 objectives are conflict
with each other. Therefore, an optimal system portfolio with the best performance in both 2 objectives
does not exist. The target is to obtain the Pareto optimal solutions of 2 objectives, also known as
non-dominated solutions.

3. Results

3.1. Background Description

It is hypothesized that the problem aims to select an optimal system portfolio under the anti-missile
scenario, where an object will suffer saturated missiles attacks. The objective is selecting a system
portfolio from 100 alternative systems (2100

− 1 candidate system portfolios in total) under the budget
limitation to maximize the system portfolio value and simultaneously minimize the whole risk.

According to the operation process of OODA, capabilities discussed in the paper are c1 detection
range, c2 communication range, c3 striking range and c4 decision time, where the former three
capabilities are beneficial type and the last one is cost type. In a specific operation scenario, the
capability requirements and combination rules are shown in Table 1.
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Table 1. Capabilities requirements.

Capabilities c1 (Km) c2 (Km) c3 (Km) c4 (Second)

CR [100,200] [100,250] [150,300] [10,30]
Rules Maximal Addition Addition Average

In addition, for capabilities of systems, they are generated by executing a Monte Carlo simulation
method according to truncated normal distribution functions. The histogram of generated data is
shown in Figure 4. The worst value of cost-type capability decision time is 34.6853, which will be used
in value calculation according to Section 2.1.2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 
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3.2. Value Calculation

3.2.1. Weight Determination

Based on simulations on the “Command: Modern Air/Naval Operations”, an ultimate
military simulator for modern military conflicts, the weight information can be deduced by the
correlation analysis.

The independent variables are four capabilities, that is detection range, communication range,
striking range and decision time. The dependent variable is the intercepted missile number. By
auto-simulating for 10,000 times, 10,000 sets of data are generated. Through the MIC algorithm, the
corresponding results can be obtained, as Table 2 shows. Through normalization, the weight of four
capabilities are determined as 0.276, 0.250, 0.174, and 0.300.

Table 2. Obtained maximal information coefficient (MIC) of input and output.

MIC Intercepted Missile Number

Detection range 0.854
Communication range 0.772

Striking range 0.537
Decision time 0.928

3.2.2. Value Calculation

Because it is impossible to calculate all values of 2100
− 1 candidate system portfolios, an example

of the value calculation process is introduced. Assuming a system portfolio SP1 have 5 component
systems of S1, S2, S3, S4, and S5, with capability information shown in Table 3.
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Table 3. Capabilities of 5 systems.

Systems Detection Range Communication Range Striking Range Decision Time

S1 128.8502018 45.00221559 41.93626171 22.55909356
S2 205.1604693 36.35948504 50.01541323 16.53053513
S3 156.9600287 27.11329846 43.28357399 16.46184426
S4 152.7120943 26.19071935 53.57115127 21.31900886
S5 111.5170147 15.40553804 29.95161145 15.33123079

SP1 205.1604693 150.0713 218.758 18.44034

According to capability combination rules in Table 1, the combined capabilities of system portfolio
SP1 are shown in the last column in Table 3.

Then, according to Equation (4), the capability gaps of four combined capabilities are calculated
as Equation (15) shows. The value of any system portfolio can be calculated based on the same steps.

G(c1, Cr1) = 0
G(c1, Cr1) =

(
−150.0713
100+250

)
+ 1 = 0.571

G(c1, Cr1) =
(
−218.758
150+300

)
+ 1 = 0.514

G(c1, Cr1) =
(

18.44034−10
30−10

)
= 0.422

, (15)

3.3. Risk Determination Based on RUL Prediction

In the case study, the key component of weapon systems, the turbine engine, is taken as an
example for analyzing risks. The data is derived from the experiment conducted by a commercial
modular simulation software C-MAPSS as shown in Figure 5.
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Figure 5. The interface of the simulation platform.

The C-MAPSS simulates the operation of a turbine engine with 900,000-pound thrust and records
monitoring signals. Based on the principle of thermodynamics, two failure modes are designed:
high-pressure compressor degradation and fan degradation. The main functional modules and
connections are shown in Figure 6. The simulation runs in the following settings:

(1) The simulation experiment data contains time series of 21 variables. It can be further divided into
a training set and a testing set. Each multivariate time series corresponds to a specific engine,
meaning that the data can be considered to be generated by engines of different systems.

(2) The initial wear condition of each engine might not be identical and there are manufacturing
variations, which are considered reasonable and not treated as reasons of engine failures.
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(3) There are 3 operational setting parameters that have a substantial impact on an
engine’s performance.

(4) There are noises in the data.
(5) The engines operate normally at the initial moment and begin to degrade at some points in time

series. In the training set, the cumulative degradation quantity continues to grow until it reaches
or exceeds the preset threshold. In the testing set, the time series will terminate when engines fail.
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As a result, 100 degradation tracks are obtained in the training set and 100 tracks before failure in
the testing set. The training data is used to establish the RUL prediction model of engines, and the
testing set is used to test the feasibility of the model.

The monitoring data is shown in the scatter plots in Figure 7. Each plot visualizes the
100 degradation tracks of one variable in the training set. The engine code, the operation cycle
and the 3 operational setting parameters are not shown in the figure.

Due to the fact that the constant variable is unable to reflect the evolution of engine degradations,
variable 1, 5, 6, 10, 16, 18, and 19 are not regarded as feature variables. What’s more, the tracks exhibit
different trends in terms of variable 9 and 14, so variable 9 and 14 are inadequate to describe the
degradation process.

Then, the variation coefficients of the rest 12 variables are calculated based on the degradation
data and the results are shown in Table 4. According to the rule of eliminating variables with small
variation coefficients, variable 3, 4, 11, 15, 17, 20 and 21 are chosen as the base variables that represent
engine degradation characters.

Table 4. Variation coefficients (VC) of the rest 12 variables.

Variable Sensor
2

Sensor
3

Sensor
4

Sensor
7

Sensor
8

Sensor
11

Sensor
12

Sensor
13

Sensor
15

Sensor
17

Sensor
20

Sensor
21

VC 0.0567 0.2760 0.5110 0.1239 0.0020 0.4573 0.1117 0.0020 0.3408 0.2907 0.3519 0.3514

According to the RUL prediction method, the remaining life of the engines in the testing set can
be estimated by matching the testing data with the reference tracks. Then, the risks can be obtained.
The results are shown in Table 5.
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Table 5. The prediction results of the remaining life of different weapon systems.

S RUL Risk S RUL Risk S RUL Risk S RUL Risk

S1 112 0.008929 S26 197 0.005076 S51 114 0.008772 S76 76 0.013158
S2 104 0.009615 S27 162 0.006173 S52 72 0.013889 S77 78 0.012821
S3 97 0.010309 S28 82 0.012195 S53 78 0.012821 S78 199 0.005025
S4 92 0.01087 S29 75 0.013333 S54 187 0.005348 S79 167 0.005988
S5 133 0.007519 S30 83 0.012048 S55 189 0.005291 S80 109 0.009174
S6 105 0.009524 S31 75 0.013333 S56 75 0.013333 S81 75 0.013333
S7 81 0.012346 S32 150 0.006667 S57 76 0.013158 S82 75 0.013333
S8 61 0.016393 S33 121 0.008264 S58 75 0.013333 S83 202 0.00495
S9 137 0.007299 S34 75 0.013333 S59 190 0.005263 S84 74 0.013514
S10 66 0.015152 S35 74 0.013514 S60 87 0.011494 S85 162 0.006173
S11 107 0.009346 S36 75 0.013333 S61 72 0.013889 S86 156 0.00641
S12 107 0.009346 S37 99 0.010101 S62 68 0.014706 S87 203 0.004926
S13 79 0.012658 S38 76 0.013158 S63 67 0.014925 S88 126 0.007937
S14 136 0.007353 S39 208 0.004808 S64 74 0.013514 S89 79 0.012658
S15 197 0.005076 S40 74 0.013514 S65 200 0.005 S90 79 0.012658
S16 188 0.005319 S41 94 0.010638 S66 74 0.013514 S91 72 0.013889
S17 79 0.012658 S42 73 0.013699 S67 200 0.005 S92 75 0.013333
S18 101 0.009901 S43 79 0.012658 S68 75 0.013333 S93 69 0.014493
S19 171 0.005848 S44 185 0.005405 S69 197 0.005076 S94 79 0.012658
S20 75 0.013333 S45 78 0.012821 S70 87 0.011494 S95 187 0.005348
S21 156 0.00641 S46 82 0.012195 S71 202 0.00495 S96 189 0.005291
S22 182 0.005495 S47 119 0.008403 S72 130 0.007692 S97 176 0.005682
S23 182 0.005495 S48 163 0.006135 S73 190 0.005263 S98 121 0.008264
S24 75 0.013333 S49 28 0.035714 S74 117 0.008547 S99 189 0.005291
S25 203 0.004926 S50 195 0.005128 S75 195 0.005128 S100 73 0.013699

3.4. Portfolio Selection Results Analysis

In total, there are 2100
− 1 possible schemes, which is a huge number. Thus, a heuristic algorithm is

necessary to be applied to the solving process. Considering the value and risk factors, the objectives are
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maximizing the value and minimize the risk of system portfolios. Therefore, a multi-objective algorithm
is employed to solving the optimization problem. The non-dominated sorting generic algorithm
(NSGA) is a kind of widely used multi-objective algorithm, which exhibits a good performance for
retaining elites in offspring. On the other side, the differential evolution (DE) is a nice genetic operator,
which plays really well on keeping population diversity. Thus, the paper uses the non-dominated
differential evolution (NSDE) algorithm, which fuses the two advantages of NSGA and DE, to solve
the system portfolio optimization problem. The corresponding parameters are set as follows. The
population size is Pop = 100, the number of iterations is Gen = 1000, the mutation probability is 0.01
and the crossover probability is 0.2.

Due to the certain randomization of all genetic algorithms, The NSDE also generates results with
certain fluctuant. A typical method to guarantee the optimality of generated result is running the
algorithm for multiple times, and then select the best individuals by comparing the corresponding
multiple results. In the case, the program is iterated for 10 times to generate 10 Pareto results with each
containing 200 individuals, shown in (a) of Figure 8. Then, the 10 sets of Pareto results are combined
together to obtain the best 200 individuals among them, as shown in (b) of Figure 8.
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Figure 8. Result exhibition: (a) Result of 10 times of running; and (b) result of 200 best individuals.

In detail, the 200 individuals of the best Pareto set are shown in the system option diagram
in Figure 9. The rectangular area is divided into 100 × 200 rectangles according to the number of
system candidates and the dimension of the non-dominated weapon system portfolios. Each rectangle
represents whether a system candidate is selected in the Pareto set. If a weapon system i is selected by
the j th non-dominated system portfolio, the i th row and j th column rectangular block will be colored
black, otherwise, it is left blank.

From Figure 10, it can be seen that some systems are frequently selected in the Pareto set. However,
some systems are seldom selected or even never selected. To compare the importance degree of
different systems, the frequencies for all systems of being selected in the Pareto set is counted. Systems
of S6, S9, S15, S16, S22, S25, S32, S39, S50, S52, S65, S69, S70, S71, S72, S73, S75, S79, S83, S90, S98, and
S99 are selected by at least one system portfolio in the Pareto set. In addition, the systems S9, S25,
S50 are quite important according to the high selected numbers in the Pareto set. Further, the rank
of systems according to selected numbers is: S25 > S9 > S50 > S39 > S69 > S75 > S83 > S22 > S71 >

S32 > S73 > S16 > S98 > S72 > S15 > S6 > S65 > S99 > S70 > S79 > S52 > S90, which to some extend
indicates the importance degrees of selected systems. As regarding to the rest systems, they can be
directly neglected in the system portfolio selection process.
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By deeper analysis, it can be discovered that some systems tend to always be selected together.
Therefore, a frequent item set mining algorithm of Apriori is applied to identify the association rules,
shown in Table 6. The support parameter indicates the ratio between the simultaneously appearing
frequency and all items, which means the probability of appearing simultaneously. The confidence of
the rule of “A→B” represents the ratio of support(A∪ B)/support(A), which means the probability of
A∪ B when A appears.

In Table 5, the association rules are ranked by the value of support and confidence respectively.
Firstly, according to the ranking by support, it can be elicited that the “S9→S25” is the most frequent rule,
which means they tend to be selected together. In addition, when system S75 is selected, the system S25
must also be selected according to the first rule in the ranking by confidence. Referring the association
rules, decision-makers can have a deeper understanding of the significance of system portfolios.
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Table 6. The association rules mined by frequent item set mining.

Ranking by Support Ranking by Confidence

Association Rules Support Confidence Association Rules Support Confidence

9→25 0.615 0.8723 75→25 0.255 1.0000
25→9 0.615 0.7593 [9,39]→25 0.28 0.9032
50→25 0.57 0.8906 [9,50]→25 0.465 0.9029
25→50 0.57 0.7037 50→25 0.57 0.8906
50→9 0.515 0.8047 9→25 0.615 0.8723
9→50 0.515 0.7305 [25,50]→9 0.465 0.8158

[9,50]→25 0.465 0.9029 50→9 0.515 0.8047
[25,50]→9 0.465 0.8158 [25,39]→9 0.28 0.7887
[9,25]→50 0.465 0.7561 25→9 0.615 0.7593
50→[9,25] 0.465 0.7266 [9,25]→50 0.465 0.7561
9→[25,50] 0.465 0.6596 69→50 0.25 0.7353
[9,39]→25 0.28 0.9032 9→50 0.515 0.7305
[25,39]→9 0.28 0.7887 50→[9,25] 0.465 0.7266
39→[9,25] 0.28 0.6222 25→50 0.57 0.7037

75→25 0.255 1.0000 9→[25,50] 0.465 0.6596
69→50 0.25 0.7353 39→[9,25] 0.28 0.6222

4. Discussion

The paper shows the feasibility of replacing expert subjective expertise with knowledge obtained
from data. Firstly, the weight information of capabilities is determined by analyzing correlations
between capabilities and the intercepted missile numbers, based on operation simulation data. Then,
as regards the risk criterion, the paper tries to determine the risk by mining information from system
operation data. The data-driven methods are only components of the model-based approaches, aiming
to increase the accuracy and credibility of results.

In the case study, 100 system candidates are provided to be optimized on the scenario of anti-missile.
By automatically simulating the operation scenario for 10,000 times, 10,000 simulation results are
generated, according to which, the maximal information coefficients between four capabilities and the
variable of intercepted missile quantity are calculated as the weight of capabilities. It quantitatively
indicates that the capability of decision time has the biggest impact on the interpreted missile quantity.
In addition, by running the simulator of C-MAPSS for 200 times, 200 groups of system operation data
are generated, according to which, systems risks are obtained through prediction of RUL.

In the system portfolio optimization, considering the great number of 2100
− 1 candidate system

portfolios, the NSDE algorithm is applied to solving the optimization problem. To guarantee the
optimality of the result as far as possible, 10 Pareto sets are obtained by running the NSDE for 10 times.
200 non-dominated individuals are reserved by comparing the 10 Pareto sets. However, it can be not
proved the best Pareto set, due to the almost infinity of candidate system portfolios and the randomness
of genetic algorithms. By further analyzing the characters of generated Pareto set, 22 systems are
selected at least one time, and 16 association rules are mined. These characters can play an assistant
rule for decision-makers to make a deeper understanding of the system portfolios.

In conclusion, the system portfolio selection is the mainstream trend of future equipment
development. Compared to other traditional system portfolio decision and optimization methods,
the proposed model and data-driven approach provide a solution to avoid the excessive dependence
on subjective expert experience in the evaluation and decision process. Traditionally, determining
these parameters requires cumbersome processes of organizing experts, collecting expert opinions,
analyzing expert scores etc., which are time and effort-consuming and more likely to be questioned.
The model and data-driven methods can make use of models that have been proved to be effective on
one hand, and on the other hand, it can determine the required parameter values in the model through
data analysis. Therefore, it supports more efficient, more credible, and more practical evaluation and
decisions in system portfolio selection and other fields applications.
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