

1 Supplementary Materials

Injectable Vaginal Hydrogels as a Multi-drugs Carrier for Contraception

Lei Nie ^{1,2,*,†}, Peng Zou ^{3,†}, Jing Dong ², Meng Sun ^{1,2}, Peng Ding ^{1,2}, Yanting Han ^{1,2}, Chingching Ji ⁴, Qiuju Zhou ⁵, Hongyu Yuan ^{1,2} and Jinping Suo ⁶

- 6 ¹ College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- ² Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China;
 dongjing2018@126.com (J.D.); sunmeng2010abc@163.com (M.S.); dingzhiyu120@163.com (P.D);
 yhongyu92@163.com (H.Y.)
- ³ Downhole Technology Service Company, Bohai Drilling Engineering Company Limited, CNPC, Dagang,
 Tianjin 300283, China; zoupeng621@163.com
- ⁴ Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin,
 Takustr. 3, Berlin 14195, Germany; chi.ji91@gmail.com
- 14 ⁵ Analysis & Testing Center, Xinyang Normal University, Xinyang 464000, China; zhouqiuju@iccas.ac.cn
- State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong
 University of Science and Technology, Wuhan 430074, China; jinpingsuo@hust.edu.cn
- 17 * Correspondence: nieleifu@yahoo.com; nielei@xynu.edu.cn; Tel.: +86-136-0062-1068
- 18 + These authors contributed equally to this work and should be considered co-first authors
- 19 Received: 01 March 2019; Accepted: 15 April 2019; Published: date
- 20

ation (g/L)
.51
.40
222
018
.00
.00
.16
.4
.0
)

Table S1. Preparation of simulated vaginal fluid solution by using different chemicals

Sample		Zero-order kinetic model			First-order kinetic model			Higuchi kinetic model		
numbers		Slope	Intercept	R^2	Slope	Intercept	R^2	Slope	Intercept	R^2
	1	67.185	355.106	0.951	0.0634	6.042	0.691	0.0442	-0.0331	0.996
IMC	2	128.945	660.980	0.938	0.0658	6.634	0.670	0.0769	-0.0601	0.993
	3	256.150	1335.91	0.939	0.06539	7.335	0.669	0.1664	-0.1280	0.993
	1	6.474	22.469	0.929	0.0792	3.267	0.626	0.0907	-0.0918	0.986
GSD	2	6.903	23.421	0.954	0.0738	3.444	0.686	0.1106	-0.1106	0.990
	3	13.443	49.912	0.965	0.0700	4.212	0.714	0.1860	-0.1768	0.996
	1	9.460	34.287	0.906	0.0182	3.599	0.596	0.0302	-0.0304	0.977
EE	2	19.967	50.789	0.941	0.0810	4.298	0.677	0.0626	-0.0699	0.974
	3	37.401	159.921	0.976	0.0589	5.492	0.811	0.1533	-0.1225	0.941

Table S2. Fitting parameters of various drug release models

25 ¹ CP-1, LA/GA mol ratio = 9; ² CP-2, LA/GA mol ratio = 3; ³ CP-3, LA/GA mol ratio = 1. All samples with middle

26 drug content.

27

Figure S1. GPC traces of prepared CP-1, CP-2 and CP-3 block copolymers.

32Figure S2. Standard curves of (a) IMC, (b) GSD and (c) EE. The regression equation was calculated in33the form of y = ax + b, where y and x were the values of peak area and concentration of each reference34compound, respectively.

Figure S3. The release amounts of IMC, GSD and EE from prepared 4sPLGA-mPEG block copolymer
hydrogels. Release amounts of IMC (a), GSD (b) and EE (c) packed by copolymer hydrogel with the
same middle drug content and various LA/GA mol ratios at different days. Release amounts of IMC
(d), GSD (e) and EE (f) loaded by CP-2 copolymer (LA/GA = 3) hydrogel with various drug contents
(high, middle, and low) at different days. Copolymer concentration was 30 wt%.

Figure S4. Fitting curves of cumulative release of GSD using different release kinetic models: (a)
 zero-order kinetic model, (b) first-order kinetic model, (c) Higuchi kinetic model. The CP-3
 copolymer hydrogels were used with middle dosage content, the copolymer concentration is 30 wt%.

Figure S5. HE staining of SD rat hearts at day 1, 3, and 5 after injecting hydrogels with different drug dosages into vagina (high dosage, middle dosage, and low dosage). The CP-3 block copolymer solution at the concentration of 30 wt% was used. The volume of drug-loaded copolymer solution injected into vagina is 0.2 mL. Copolymer solutions without loading drug were injected in the vagina of SD rats as control group, scale bar: 5 μm.

Figure S6. HE staining of SD rat lungs at day 1, 3, and 5 after injecting hydrogels with different drug
dosages into vagina (high dosage, middle dosage, and low dosage). The CP-3 block copolymer
solution at the concentration of 30 wt% was used. The volume of drug-loaded copolymer solution
injected into vagina is 0.2 mL. Copolymer solutions without loading drug were injected in the
vagina of SD rats as control group, scale bar: 5 μm.

Figure S7. HE staining of SD rat kidneys at day 1, 3, and 5 after injecting hydrogels with different
drug dosages into vagina (high dosage, middle dosage, and low dosage). The CP-3 block copolymer
solution at the concentration of 30 wt% was used. The volume of drug-loaded copolymer solution
injected into vagina is 0.2 mL. Copolymer solutions without loading drug were injected in the
vagina of SD rats as control group, scale bar: 5 μm.

Figure S8. TEM of CP-3 block copolymer solution at concentration (a) 1 wt% and (b) 2.5 wt%, the
micellar particles were observed.