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Abstract: Daily questionnaires from mobile applications allow large amounts of data to be collected
with relative ease. However, these data almost always suffer from missing data, be it due to
unanswered questions, or simply skipping the survey some days. These missing data need to
be addressed before the data can be used for inferential or predictive purposes. Several strategies
for dealing with missing data are available, but most are prohibitively computationally intensive
for larger models, such as a recurrent neural network (RNN). Perhaps even more important,
few methods allow for data that are missing not at random (MNAR). Hence, we propose a simple
strategy for dealing with missing data in longitudinal surveys from mobile applications, using a
long-term-short-term-memory (LSTM) network with a count of the missing values in each survey
entry and a lagged response variable included in the input. We then propose additional simplifications
for padding the days a user has skipped the survey entirely. Finally, we compare our strategy with
previously suggested methods on a large daily survey with data that are MNAR and conclude that
our method worked best, both in terms of prediction accuracy and computational cost.
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1. Introduction

Survey data from mobile applications can quickly generate large datasets suitable for deep
learning. Recent literature demonstrates its potential in medical fields, in what is now referred to as
‘mobile health’ [1–5].

A relevant example is the emergence of just-in-time adaptive interventions (JITAIs). These are
mobile applications designed to provide users with personalized treatment, generally aimed at
improving lifestyle, through surveys and sensors. JITAIs have been developed for, among others:
gestational weight management [6], insomnia [7], anxiety in children [8], sedentary behavior in the
elderly [9], diabetes self-management [10], and smoking cessation [11].

When surveys are included in the models that drive these applications, missing data are a
persistent problem due to unanswered questions, or even entire missing surveys (Figure 1) [12,13].
Developers could choose to make each question mandatory to avoid unanswered questions, but this
would bias the results towards a group that is inclined to answer every question, or increase the
number of entirely missing surveys. Furthermore, the missingness generating process must be taken
into account (Table 1). This raises the question of how to deal with missing data in longitudinal surveys.
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Table 1. Description of types of missingness: missing completely at random (MCAR); missing at
random (MAR); missing not at random (MNAR) [14].

MCAR MAR MNAR

Meaning Missingness is not correlated
with the outcome.

Missingness could be correlated
with other variables.

Missingness is correlated with
the outcome.

Example Question could be overlooked,
survey forgotten.

Older individuals could be less
inclined to state their weight.

Depressed individuals
are less inclined to fill in
depression survey.
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Figure 1. Survey completion by all athletes. Absence of linepieces indicate ’missing’ surveys; color
indicates the amount of missingness within surveys. There are filled in surveys throughout the entire
sequence, although usage in 2011–2012 is so sparse that it appears as though there are none.

A common solution to missing data in deep learning is to use indicators for missingness of the
original variables [15], such that the model can learn to associate each variables’ missingness with the
outcome. However, this still leaves the question of how to impute the missing values in the original
data. Moreover, including an indicator for each original variable doubles the input size, which may
be problematic for data sets with a low number of observations relative to the number of features.
Hence we propose a simple alternative for when the increase in variables is too high given the number
of observations by Z-scoring, summing the missingness indicators, including the last recorded outcome
in the input, and simplifying the padding of missing surveys.

The golden standard in handling missing data that are MCAR or MAR is through full conditional
specification (FCS), which repeatedly imputes missing values of one variable, given the others [16,17].
Each imputation then trains a separate model, and the resulting models are pooled for inference or
prediction. By drawing multiple imputations from the posterior, FCS can reflect the variance of the
original variables. Furthermore, pre-existing relationships between variables can be preserved through
passive imputation, resulting in greater precision [18,19].

A downside to FCS is that it cannot impute data that are MNAR without introducing bias.
Moreover, the computational cost is greatly increased by drawing the imputations and separately
training models on each of them. Recent literature suggests the required number of imputations
depends on the amount of missingness and can even exceed 100, which would increase the
computational cost by a hundred-fold from training the individual models alone [20].

Gondara and Wang (2017) [21] proposed training a denoising autoencoder on corrupted copies
of a complete subset of the training data, minimizing the reconstruction error on the non-corrupt,
non-missing subset. For purely predictive purposes, their method requires considerably less domain
knowledge to use correctly compared to FCS, since the model automatically learns relationships
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between variables, rather than requiring careful consideration of each variable’s imputation method.
Moreover, in their experiments, the autoencoder outperformed FCS both in terms of predictive accuracy
and computational cost. However, their method relies on two strong assumptions: Firstly, there must
be a large enough complete subset of the data to train such an autoencoder and secondly, this complete
subset must accurately represent the incomplete data (i.e., missing data are MCAR).

Lipton et al., (2016) [15] proposed simply including indicators for missingness of the original
variables (Equation (1)), followed by 0–1 normalization (Equation (4)) and zero imputation.
This method has the strong advantage that the model can learn direct relationships between
missingness and the response, meaning that it should be able to model even MNAR. However,
the number of variables can be increased by up to a two-fold, depending on how many columns
contain missing values. For survey data largely consisting of partial entries, the individual missingness
vectors may not bear enough information to justify the resulting increase in parameters. That is to say,
the response variable might simply correlate with the number of questions an individual is inclined to
answer on a given day.

Hence we propose a simple alternative for when the amount of missingness sufficiently correlates
with the outcome by summing the missingness indicators (Equation (2)), followed by Z-scoring
(Equation (3)) of the non-binary features, including the last recorded outcome in the input, and
simplifying the padding of entirely missing surveys (Figure 2).
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Figure 2. Example of a sequence of surveys. Dashed surveys are missing (red: prior to first entry; blue:
between entries; black: variable sequence length until the participant’s last entry).

2. Materials and Methods

This study has been approved by the ethical committee of Tokyo Institute of Technology under
the approval number 2018069.

2.1. Description of Data

Repeated survey data spanning a 7-year period (2011–2017) was collected from a mobile
application. This application was made available to 7098 athletes in Japan. Of these athletes, 5970 had
at least one recorded outcome. These were randomly distributed into a train (80%), validation (10%),
and test set (10%), each containing surveys from different athletes.

The survey consisted of 65 questions regarding the athletes’ physical activity, food intake,
and biometric data (e.g., weight, body fat percentage) on a particular day. The outcome variable
was the self-assessed condition on that day, ranging from 1 (very poor) to 10 (very good). Since the data
are sparse and contain a considerable amount of missing data, the outcome variable was discretized to
good condition (≥6) or poor condition (<6) to simplify the prediction problem to binary classification.

In total, 70.1% of survey answers on filled in surveys were missing. Questions which were
answered less than 5% of the time were omitted, since these bear little information about the average
user of the application. On average, participants only filled in the survey 2.9% of all days, leaving a
large number of missing days (Figure 1).
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2.2. Imputation

For the FCS approach, m = 5 imputed data sets were generated, as recommended by Van Buuren
(2016) [16]. Although recent literature suggests a larger m might be more precise [20], the computation
time already far exceeded other methods, taking upwards of m times as long. Logistic regression was
used to impute binary variables and predictive mean matching otherwise.

The missingness indicators approach was implemented in the same manner as described in
Lipton et al. (2016) [15], adding a matrix X∗ of zeroes and ones corresponding to available and missing
original data X, respectively as in Equation (1), followed by zero imputation.

Xnew =
[
X, X∗

]
; x∗ij =

{
1 if xij = ∅

0 otherwise
∀ xij ∈ Xn×p (1)

where n is the number of observations and p the number of questions on the survey. Categorical
variables were restricted to two categories (yes/no), where missingness was imputed by the most
sensible alternative. In our method, a missingness variable was added by summing the number
of missing values in each row as in Equation (2). Other combinations (mean, standard deviation)
were also considered but did not appear to perform better in initial experimentation.

Xnew =
[
X, (1, 1, . . . , 1)X∗

]
; x∗ij =

{
1 if xij = ∅

0 otherwise
∀ xij ∈ Xn×p (2)

Studentized Z-scores were obtained from all non-binary variables using the non-missing training
data as follows:

zij =
xij − x̄·j

sj
∀xij ∈ Xn×p (3)

where x̄·j and sj are the sample mean and standard deviation of non-missing observations from variable
j, respectively. Whereas 0-1 normalization as in Equation (4) followed by zero imputation affects the
mean (biased towards zero), Z-scoring as in Equation (3) followed by zero imputation is effectively
mean-imputation, preserving the original mean. This assigns a ’neutral’ value to missing values,
whereas normalization followed by zero imputation assigns an extreme value. Categorical variables
were treated as aforementioned.

xnormalized,ij =
xij −min(x·j)

max(x·j)−min(x·j)
∀xij ∈ Xn×p (4)

2.3. Padding

Most participants filled in the survey sporadically, leaving large gaps in the sequences.
Three padding strategies (Figure 2) for these missing days were compared in terms of prediction
error. The first involves simply padding all missing days as entries consisting entirely of zeroes
(complete padding). These zeroes were then masked in the first layer of the model, allowing the
LSTM to ignore these entries. This approach is very similar to that described in Che et al., (2018) [22],
except that their version was based on a gated recurrent unit [23]. A quick comparison showed that an
LSTM performed better on these data (results not included).

Since participants started using the application at different times, the second method ignores
the missing days prior to a participant’s first entry (partial padding). In other words, the first day of
entry was considered to be day 1. While this method cannot account for effects of a particular day
(e.g., there might have been a national holiday), it reduces the total sequence length, which in turn
reduces the model complexity and computational cost.
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The third method simply ignores missing days and instead models the available data as an
ordered sequence (minimal padding). While this method cannot account for the time between surveys,
it further reduces the sequence length.

2.4. Lagged Response

Where available, the last recorded outcome was added to the input. For the first observation, this
variable was set to zero instead, treating it in the same way as other missing values. In the results
section, this is referred to as LR.

2.5. Experiments

All models consisted of a 3-layer LSTM network with 32, 24 and 16 nodes in the first, second,
and third hidden layer, respectively [24]. A combination of non-recurrent and recurrent dropout was
used, as proposed by Semeniuta et al. (2016) [25]. Non-recurrent dropout was set to 0.5 and recurrent
dropout to 0.4. Additional regularization and different layer types were considered, but did not appear
to improve accuracy (results not included). Gradient updates were performed in batch sizes equal to
the longest complete sequence (n = 673) using adaptive moment estimation with hyperparameters
equal to that of the original paper [26]. Binary crossentropy was minimized on the validation set and
overfitting was assessed by discrepancies between training and validation loss. Initial experimentation
revealed that validation accuracy plateaued after around 2000 epochs. This number of epochs was
used for each comparison in the results section, unless stated otherwise.

All experiments were conducted using the Windows version of the RStudio interface to Keras
Tensorflow, with GPU acceleration enabled, on the system summarized in Table 2. ROC statistics were
calculated using the ROCR package [27].

Table 2. Hardware used in the experiments.

CPU i7 7820HK (@3.6 GHz)
GPU NVidia GTX1070 (8GB VRAM)
RAM 32GB DDR4-2400

3. Results

Model selection was based on (macro) F1 score on the validation set. The F1 and area under the
receiver operator curve (AUROC) statistics shown in this section were calculated by means of 10-fold
cross validation (90% data) and on the independent test set (10% data). See Figure 3 for corresponding
ROC curves.
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Figure 3. Receiver operator curves corresponding to the AUROC values on the test set in Table 3.

3.1. Imputation

Table 3 shows the performance of FCS, compared to indicators for missingness and a simple count
of missingness. Including a lagged response variable (last recorded observation) increased performance
of all methods. These results were obtained using the simplest padding strategy (minimal padding).
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Lipton et al. (2016) [15] normalized their input to (0, 1) (Equation (4)), while our method involved
standardization (Equation (3)). Hence, a quick comparison is included using either scaling technique
in conjunction with our method, which shows standardization resulted in better performance than
normalization on these data (Table 4).

Table 3. Performance of different imputation strategies. Abbreviations: full conditional specification
(FCS), lagged response (LR), indicators (I), missingness count (MC). Our method is the combination
MC, LR. The highest test performance is shown in bold.

10-Fold CV Mean ± Std Test Performance

F1 FCS 0.589 ± 0.037 0.585
FCS, LR 0.591 ± 0.038 0.588
I 0.679 ± 0.064 0.676
I, LR 0.701 ± 0.050 0.696
MC 0.728 ± 0.037 0.723
MC, LR 0.780 ± 0.039 0.781

AUROC FCS 0.474 ± 0.106 0.473
FCS, LR 0.479 ± 0.103 0.477
I 0.649 ± 0.069 0.645
I, LR 0.667 ± 0.081 0.648
MC 0.728 ± 0.079 0.717
MC, LR 0.751 ± 0.040 0.740

Table 4. Comparison of scaling methods, using a lagged response variable and a missingness count.
The highest test performance is shown in bold.

10-Fold CV Mean ± Std Test Performance

F1 Unscaled 0.623 ± 0.078 0.618
Standardized 0.780 ± 0.039 0.781
Normalized 0.578 ± 0.064 0.576

AUROC Unscaled 0.613 ± 0.084 0.601
Standardized 0.751 ± 0.040 0.740
Normalized 0.474 ± 0.061 0.465

3.2. Padding

Compared to the simplest strategy (minimal padding), padding the missing days in between
measurements (partial padding) more than doubled the median training time per epoch (Table 5),
while underperforming the unpadded approach (Table 6). Padding the missing days chronologically
(complete padding) took even longer and resulted in inability to determine the test error, presumably
due to the resulting large gaps in between observations and poor overlap between different individuals’
dates of filling in the survey.

To assess whether the padded approaches simply plateaued later than the minimal approach,
testing accuracy was also assessed beyond the heuristically defined plateau at 2000 epochs. While a
slight increase in accuracy after the additional training time was indeed observed, the minimal padding
approach equally benefitted from the additional epochs.

Table 5. Seconds per epoch for different padding strategies. The highest performance is shown in bold.

Minimal Partial Complete

Time per epoch (s) 35 81 145
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Table 6. Comparison of padding strategies after 2k, 4k, and 6k epochs. The highest test performance is
shown in bold.

10-Fold CV Mean ± Std Test Performance

F1 Minimal (2k) 0.780 ± 0.039 0.781
Minimal (4k) 0.796 ± 0.034 0.795
Minimal (6k) 0.796 ± 0.034 0.796
Partial (2k) 0.779 ± 0.037 0.776
Partial (4k) 0.787 ± 0.036 0.785
Partial (6k) 0.788 ± 0.038 0.788
Complete (2k) - -
Complete (4k) - -
Complete (6k) - -

AUROC Minimal (2k) 0.751 ± 0.040 0.740
Minimal (4k) 0.754 ± 0.044 0.743
Minimal (6k) 0.758 ± 0.045 0.750
Partial (2k) 0.723 ± 0.062 0.719
Partial (4k) 0.736 ± 0.051 0.731
Partial (6k) 0.735 ± 0.047 0.731
Complete (2k) - -
Complete (4k) - -
Complete (6k) - -

4. Discussion

The FCS approach with m = 5 imputations underperformed all other methods, both in terms of
prediction accuracy and computation time (increased by a factor m). The most likely explanation for its
subpar accuracy is that the missing data were MNAR, and FCS is not suitable for MNAR. This assertion
is supported by the increased performance observed when directly specifying missingness through
indicators (Table 3). Another contributing factor might be that the amount of missingness (70.1% on
filled in surveys; 98.9% in total) is simply too large, causing issues when imputing missing data and
then ‘reusing’ the data for the predictive model.

While FCS might have benefitted from a considerably larger number of imputations, it was
already the most computationally costly method. Since model averaging generally tends to increase
performance, the additional computation time—if available—might perhaps be better spent on
e.g., bagging other methods, rather than drawing additional imputations with FCS.

Interestingly, correctly padding and masking the missing days did not improve accuracy, nor did
the forward filling strategy proposed in Lipton et al. (2016) [15]. The former could either be attributed
to a small effect of time in between survey entries on the outcome, or inability of the model to learn this
effect using the number of observations at hand (ntrain = 4776) in conjunction with the high amount
of missingness. A limitation of this comparison is that we did not further investigate how different
regularization techniques might have affected the performance of the padding strategies. The forward
filling strategy might be better justifiable for clinical data, where measurements are taken at intervals
after which they are expected to change.

While ignoring the missing days resulted in the greatest performance (Table 6), reasonable
performance could also be achieved by masking and padding the missing days in between
measurements. This method might achieve higher accuracy on problems where the time in between
observations is of greater relevance to the outcome.

These results demonstrate that with appropriate adjustments, a deep learning algorithm can
even learn reasonably from a sparse sequence of gappy data. Various simplifications of previously
suggested methods greatly reduced computational time, while simultaneously outperforming more
costly methods in terms of prediction accuracy. The greatest accuracy was achieved on these
data, by including a LR variable and a count of the missing variables, followed by Z-scoring and
zero imputation.
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Importantly, our method does not require a subset of the data which is complete, nor does it
require the missing data to be MCAR or MAR. It must be noted, however, that our method might not
perform well if the amount of missingness is not as informative about the outcome as it is in these
survey data. Future work can demonstrate whether this approach also performs well on other time
series with various forms of missingness.
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The following abbreviations are used in this manuscript:

RNN Recurrent neural network
LSTM Long-term-short-term memory
MCAR Missing completely at random
MAR Missing at random
MNAR Missing not at random
FCS Full conditional specification
AUROC Area under the receiver operator curve
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