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Abstract: Air pollution, which is the result of the urbanization brought by modern life, has a dramatic
impact on the global scale as well as local and regional scales. Since air pollution has important
effects on human health and other living things, the issue of air quality is of great importance all
over the world. Accordingly, many studies based on classification, clustering and association rule
mining applications for air pollution have been proposed in the field of data mining and machine
learning to extract hidden knowledge from environmental parameters. One approach is to model a
region in a way that cities having similar characteristics are determined and placed into the same
clusters. Instead of using traditional clustering algorithms, a novel algorithm, named Majority Voting
based Multi-Task Clustering (MV-MTC), is proposed and utilized to consider multiple air pollutants
jointly. Experimental studies showed that the proposed method is superior to five well-known
clustering algorithms: K-Means, Expectation Maximization, Canopy, Farthest First and Hierarchical
clustering methods.
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1. Introduction

Air pollution is now recognized as an important problem all over the world. It can be referred as
a mixture of multiple pollutants that vary in size and composition. Air pollutants (also referred to
as “criteria pollutants”) are commonly grouped as particulate matters such as PM10 and PM2.5, and
ground-level pollutants such as ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen
oxides (NO) and nitrogen dioxide (NO2).

It is known that air pollution has negative impacts on human health, range of vision, materials,
and plant and animal health. Air pollutants trigger or worsen chronic diseases such as asthma,
pneumonia, heart attack, bronchitis and other respiratory problems. Since particulate matters are
very small and light, they tend to stay in the air longer than the heavier particles. This increases the
likelihood of humans and animals inhaling these particles through respiration. Due to their small
size, these particles can easily pass through the nose and throat and penetrate the lungs, and some
may even enter the circulatory system. Smoke, a gas mixture of solid and liquid particles resulting
from non-burned carbon materials such as solid fuels and fuel oil, is a variety of air pollution and has
a reducing effect on range of visibility. Air pollution also has a destructive and disturbing effect on
artistic and architectural structures. On plants, they can be lethal and prevent their growth. Thus, high
concentrations of air pollutants can harm human health, adversely influence environment, and also
cause property damage [1–4].
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Due to the seriousness of the issue, air pollution control policies require systematic monitoring
and evaluation of air quality. The causes of air pollution should be investigated and necessary
precautions should be taken in accordance with the findings. Therefore, it is very important to develop
an appropriate tool to understand the air quality in an area. For this purpose, effective methods are
continuously developed with new studies.

In this context, this study aimed at examining the air quality monitoring stations in Turkey
according to their similarities in terms of five air pollutants, PM10, SO2, NO2, NO and O3, and making
appropriate inferences based on the analysis of the levels of air pollutants measured at these stations in
the time interval from 1 November 2017 to 1 November 2018. In this way, city areas with similar air
pollution behavior can be identified so that decision-making authority can canalize emission sources to
be located to the regions in need. To perform the experiments, a novel algorithm, named majority-based
multi-task clustering (MV-MTC), is proposed, instead of applying traditional clustering algorithms, to
benefit from the common decision coming from different pollutant sources. The novelty of this study
is the implementation of multi-task clustering (MTC) in the field of environmental science and the
examination of air pollution in Turkey with this method for the first time.

The proposed algorithm (MV-MTC) was compared with popular clustering algorithms, namely
K-Means, Expectation Maximization, Canopy, Farthest First and Hierarchical clustering methods,
in terms of sum of squared error (SSE). The experimental results obtained in this study indicate that
the proposed approach produces better clusters than standard clustering algorithms by considering
relationships among multiple air pollutants jointly.

The remainder of this study is organized as follows. In Section 2, a detailed literature survey
investigating the studies using data mining methods to deal with the air quality control of Turkey is given
in addition to the recent studies on the proposed method of multi-task clustering. In Section 3, background
information on the applied methodology used in the experiments is explained. The proposed MTC
technique and dataset description are mentioned in Sections 4 and 5, respectively. The experimental
studies are presented and the obtained results are discussed in Section 6. Lastly, concluding remarks,
a brief summary and future directions are given.

2. Related Work

The monitoring stations located in nearby area are characterized by the same specific air pollution
characteristics. Many studies have been done in the literature using this information. Data mining and
machine learning are intensely applied to environmental subjects to identify interesting structure in
large amount of environmental data, where the structure finds patterns, rules, predictive models and
relationships among the data. Ignaccolo, Ghigo and Giovenali [5] classified the air quality monitoring
network in Piemonte (Northern Italy) using functional cluster analysis based on Partitioning around
Medoids algorithm and considering three air pollutants, namely NO2, PM10, and O3, to classify sites in
homogeneous clusters and identify the representative ones. Barrero, Orza, Cabello and Cantón [6]
analyzed and made experiments on the variations of PM10 concentrations at 43 stations in the air quality
monitoring network of the Basque Country to group them according to their common characteristics.
They implemented the autocorrelation function and K-means clustering. Similarly, Lu, He and Dong [7]
used principal component analysis and cluster analysis for the management of air quality monitoring
network of Hong Kong and for the reduction of associated expenses.

In Turkey, the importance of environmental issues has also gained much attention and studies
related to air quality increasingly continue in this direction. Several of environmental data mining
studies mentioned thus far on “air quality in Turkey” are compared in Table 1 by displaying the
year of the publication, the target pollutants of the study, dataset content used in the experiments,
the aim of the study, which data mining task was applied and which algorithms/methods were
implemented as well as performance metrics to evaluate the results of the applied methodology.
The bold notation in the Algorithms/Methods column shows the algorithm which performs the best
among the others. According to the findings, most of the experiments are done using the measurements
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of PM10 concentrations [8–13] and prediction of air pollutant amount is the main goal. In addition to
pollution data, some of the studies also integrate meteorological data such as temperature, wind speed,
wind direction, pressure and humidity into the problem domain [8,11–13].

Multi-task learning (MTL) is a learning technique in which useful information contained in a
number of relevant tasks is leveraged to help improve the overall performance of all tasks. All of these
tasks or at least a subset of them are assumed to be related to each other. In many of the applications,
it is found that learning these tasks jointly leads to performance improvement compared with learning
them individually. In most fields comprising computer vision, bioinformatics, health informatics,
speech and natural language processing, web applications and ubiquitous computing, MTL is used
to enhance the overall performance of the applications involved. Learning paradigms including
supervised learning (e.g., classification or regression problems) [14–16], unsupervised learning [17–23],
semi-supervised learning [24–27], active learning [28–31], reinforcement learning [32–35], multi-view
learning [21,36–38], and graphical models [39–41] are generally combined with MTL [42,43].

Multi-task classification and multi-task clustering are two well-known types of multi-task learning
recently presented in the literature. Wang, Yan, Lu, Zhang and Li [44] use multi-task classification in
the prediction of air pollution particles by implementing a deep multi-task learning framework. On the
other hand, multi-task clustering has not been studied until now for the air quality management,
neither in the environmental science.

There is an issue to be addressed: “what to share” while learning multiple tasks. The form of
sharing type determines which knowledge sharing among all the tasks could occur. Usually, there are
three forms of sharing: feature, instance and parameter. Feature-based MTL aims to learn common
features among different tasks. Instance-based MTL identifies useful data objects in a task for other tasks
and then shares knowledge via the identified instances. Parameter-based MTL uses model parameters in
a task to help learn model parameters in other tasks [42]. The proposed method in this study (MV-MTC)
is among the popularly applied unsupervised learning schemes of instance-based MTL applications.

MTC has been applied in many different areas including bioinformatics, text mining, web mining,
image mining, daily activity recognition and so on [18–23,45]. The resulting clustering template of
MTC has generally outperformed any single clustering algorithm’s outputs. Table 2 presents a brief
list of studies in which different MTC algorithms are proposed and applied in various subject areas.
It is experimentally proven that MTC algorithms provide remarkable performance when compared to
single task learners.
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Table 1. Summary of the data mining studies with “air pollution in Turkey” as the main subject.

Ref. Year The Target Pollutants The Dataset Content Aim Task Algorithms/Methods Performance Metrics

[8] 2018 PM10

PD: hourly densities of CO, NO, NO2, NOx, O3 and SO2;
M: T, WD, WS, P, RH, min. T, max. T, max. WD and
max. WS

Estimation of the density of PM10 at
Istanbul using datasets with
imbalanced class distribution

Prediction
Classification LRC, RFC, ETC, and GBC Accuracy, AUROC

[46] 2018 SO2 The time series of weekly SO2 concentrations Forecast air pollution in 65
monitoring stations

Clustering
Prediction

FTS based on FKM, FCMF
and GKF RMSE and PB

[9] 2017 PM10, SO2 Four months SO2 and PM10 concentrations in Istanbul
Evaluation of the results of regular
measurements of PM10 and SO2
concentrations in the city of Istanbul

Prediction ANOVA
SSE and MSE,
Kolmogorov–Smirnov
Test, t-test

[47] 2017 AQI (monthly basis) SO2, NO2, CO, O3 and PM10 (hourly and daily basis) Determination of the AQI in Ankara Classification FLA -

[10] 2016 PM10
Weekly PM10 concentrations in numerous stations in
Turkey

Predicting a model to estimate PM10
concentrations for 130 monitoring
stations

Clustering
Prediction FCARM, AR MAPE, Dickey–Fuller

test, p-value

[11] 2014 PM10

Hourly observations consisted of:
M: max. T, avg. T, std. T, max. WS, avg. WS, std. WS,
max. WD, avg. WD, std. WD, degree, max. RH, avg.
RH, std. RH;
PD: max. PM10, avg. PM10, std. PM10

Forecast maximum Daily PM10
concentrations one day ahead in
Duzce

Prediction ANN (MLP), SWR, MLR IA, FMB, RMSE, R2

[48] 2013 SO2 The amount of SO2 in Ankara Seasonal fuzzy time series forecasting
in Ankara

Clustering
Prediction

Fuzzy C-means combined
with ANN and SARIMA RMSE, MAPE

[12] 2011 PM10, SO2 M: T, WS and WD, RH, P, S, C, R

Prediction of the daily and hourly
mean concentrations of PM10 and
SO2 pollutants in the regions of
Istanbul

Prediction CNN, PER
r, d, the Mean Bias
Error, MAE and RMSE, t
test (p value)

[13] 2010 PM10, SO2, CO M: P, Day T, Night T, H, WS, WD; PD: SO2, CO, PM10;
GC, Day of Week, Date

Forecasting SO2, CO and PM10 levels
3 days in advance for the Besiktas
district of Istanbul

Prediction GFM_NN Band Error

LRC, Logistic Regression Classifier; T, temperature; FKM, Fuzzy K-Medoid; MLP, Multi-Layer Perceptron; RFC, Random Forest Classifier; RH, Relative Humidity (H); P, Pressure; R2,
coefficient of determination; ETC, Extra Trees Classifier; AQI, Air Quality Index; FTS, Fuzzy Time Series; FMB, Fractional Mean Bias; GBC, Gradient Boosting Classifier; RMSE, Root Mean
Squared Error; IA, Index-of-Agreement; MLR, Multiple Linear Regression; PD, Pollution Data; FCMF, FTS Models based on Fuzzy C-means; FCARM, Fuzzy C-Auto Regressive Model;
SWR, Stepwise Regression; M, Meteorological Data; GKF, Gustafson–Kessel; AR, Autoregressive model; GKF, Gustafson–Kessel; WS, Wind Speed; PB, Percent Bias; MAPE, Mean Absolute
Percentage Error; GC, General Condition; WD, Wind Direction; ANOVA, Analysis of Variance; FLA, Fuzzy Logic Algorithm; ANN, Artificial Neural Network; r, Correlation Coefficient;
MAE, Mean Absolute Error; S, Sunshine; R, Rainfall; C, Cloudiness; d, Index of Agreement; PER, Statistical Persistence Method; CNN, Cellular Neural Network; AUROC, The Area under
the Receiver Operating Characteristic; SARIMA, Seasonal Autoregressive Integrated Moving Average; GFM_NN, Geographic Forecasting Models using Neural Networks; Percentage
Error; GC, General Condition; WD, Wind Direction; ANOVA, Analysis of Variance; FLA, Fuzzy Logic Algorithm; ANN, Artificial Neural Network; r, Correlation Coefficient; MAE, Mean
Absolute Error; S, Sunshine; R, Rainfall; C, Cloudiness; d, Index of Agreement; PER, Statistical Persistence Method; CNN, Cellular Neural Network; AUROC, The Area under the Receiver
Operating Characteristic; SARIMA, Seasonal Autoregressive Integrated Moving Average; GFM_NN, Geographic Forecasting Models using Neural Networks.
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Table 2. Summary of the data mining studies taking “Multi-Task Clustering” as the main subject.

Ref. Year Subject Area Aim Algorithms/Methods Performance Metrics

[18] 2018 Bioinformatics

Generate a model that utilizes multiple
single-cell populations from biological

replicates or different samples to address
the cross-population clustering problem of

scRNA-seq data

scVDMC, KM, Pooled
KM, SNN-Cliq, CellTree,

Seurat, SC3

ARI, Cluster Error
(measured on the best
one-to-one matching
between the detected
clusters and the true

clusters)

[19] 2017
Text Mining
and Image

Mining

Propose a general multi-task clustering
algorithm by transferring knowledge of

instances through reweighting the distance
between samples in different tasks by

learning a shared subspace and selecting
the nearest neighbors for each sample from

the other tasks

MTCTKI, KM, KKM,
Ncut–GK, Ncut–SNN,

LSSMTC, DMTFC,
SMT–NMF, MTCTKI0

Clustering Accuracy, NMI

[20] 2016 Bioinformatics Identify common and context-specific
aspects of genome architecture

Arboretum-Hi-C, KM,
HC, SC

DBI, SI, D, Number of
enriched clusters, log P

value of ANOVA

[21] 2016
Web Page

Mining and
Image Mining

Develop a co-clustering based multi-task
multi-view clustering framework which
integrates within-view-task clustering,
multi-view relationship learning and

multi-task relationship learning

KM, KKM, NSC, BiCo,
SNMTF, CoRe, CoTr,
LSSMTC, DMTFC,

BMTMVC, SMTMVC

Clustering Accuracy, NMI

[49] 2016 Bioinformatics Automated HEp-2Cells Classification

CMTL and the other 28
methods presented in

the HEp-2Cells
Classification contest

held at the 2012
International Conference
on Pattern Recognition

Accuracy

[22] 2015 Activity
Recognition

Daily living analysis from visual data
gathered from wearable cameras

EMD-MTC with linear
and rbf kernel denoted

as CEMD-MTC and
KEMD-MTC

respectively; KM, KKM,
CNMF and SemiNMF,

SemiEMD-MTC,
KSemiEMD-MTC and

the LSMTC method

Clustering Accuracy, NMI

[23] 2013 Document
Clustering

Identifying and avoiding negative effects of
the boosting process of MBC and also

dealing with nonlinear separable data in
the clustering of documents

SMBC and S-MKC: KM
and KKM; MBC Clustering Accuracy, NMI

NMF, Nonnegative Matrix Factorization; Ncut–GK, Normalized Cut with Gaussian Kernel Similarity; BiCo, Bipartite
Graph Co-clustering; DMTFC, Convex Discriminative Multi-task Feature Clustering; MTCTKI0, MTCTKI without
using Shared Subspace; NSC, Normalized Spectral Clustering; SNMTF, Semi-nonnegative Matrix Tri-factorization;
CoRe, Co-regularized Multi-view Spectral Clustering; CoTr, Co-trained Multi-view Spectral Clustering; SC3,
Single-cell Consensus Clustering; SNN-Cliq, Shared Nearest Neighbor Cliq; LSSMTC, Learning the Shared
Subspace for Multi-task Clustering; DBI, Davies–Bouldin Index; SI, Silhouette Index; D, Delta Contact Count;
SMT–NMF, Symmetric Multi-task Non-negative Matrix Factorization; ARI, Adjusted Rand Index; HC, Hierarchical
Clustering; SC, Spectral Clustering; EMD-MTC, Earth Mover’s Distance Regularized Multi-task Clustering; NMI,
Normalized Mutual Information; KM, K-means; S-MKC, Smart Multi-task Kernel Clustering; KKM, Kernel K-means;
CMTL, Clustered Multi-task Learning; MBC, Multitask Bregman Clustering; SMBC, Smart Multi-task Bregman
Clustering; BMTMVC, Bipartite Graph based Multi-task Multi-view Clustering; Ncut–SNN, Normalized Cut with
Shared Nearest Neighbor Similarity; MTCTKI, Multi-task Clustering by Transferring Knowledge of Instances;
scVDMC, Variance-Driven Multitask Clustering of Singlecell RNA-seq Data; SMTMVC, Semi-nonnegative Matrix
Tri-factorization based Multi-task Multi-view Clustering; Arboretum-Hi-C, Multi-task Spectral Clustering Algorithm
for Comparative Analysis of Hi-C Data.

The proposed MV-MTC algorithm has many advantages over existing multi-task clustering methods.
First, some methods have a complicated theoretical foundation, which leads to implementation difficulties.
For instance, graph-based methods and matrix factorization for nonnegative data are commonly applied
(e.g., [21]) by implementing a semi-nonnegative matrix tri-factorization method to co-cluster the data
in each view of each task. Likewise, the algorithm introduced in [49] has several sophisticated steps:
feature extraction, clustering-based regularization, convex relaxation, and optimization. Spectral
clustering that uses the eigenvectors of the Laplacian of a graph for clustering is another way to
implement multi-task clustering [20]. In addition to graph-based methods (e.g., [19]), multi-task
clustering can be performed by reweighting the distance between data points in different tasks by
learning a shared subspace. In this way, clustering operation for each individual task is generated by
selecting the nearest neighbors for each sample from the other tasks in the learned shared subspace.
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Second, some proposed MTC methods (e.g., scVDMC [18] and Arboretum-Hi-C [20]) were
designed as field-specific methods and have a valid use only for bioinformatics data to analyze the
genome architecture or to simultaneously capture the differentially expressed genes. These methods
are not suitable for the analysis of geographical data (or for the identification of air pollution levels of
a region).

Third, our algorithm is particularly advantageous since it does not need any a priori information
about the data. However, Yan et al. [22] proposed a novel algorithm, named Convex Multi-task
Clustering (CMTC), which requires some a-priori knowledge about the data relationship.

Fourth, some multi-task clustering algorithms (i.e., [23]) require additional parameters and the
results change significantly with different parameter values. It makes it difficult to use the algorithm,
since the user should determine the optimal parameter for each problem. Our algorithm does not
require any additional parameter tuning.

Fifth, the execution time of some multi-task clustering algorithms (e.g., [45]) increases exponentially
when the input data increase. However, our algorithm (MV-MTC) requires computation time that
grows linearly with the number of instances, clusters and tasks.

Sixth, our proposed method can effectively avoid the imbalance of cluster distribution by merging
multiple models according to majority voting. In addition, the MV-MTC framework can effectively
reduce clustering errors by selecting the best clustering algorithm for the problem under consideration.

Our goal is to propose an easily implemented, generally applicable, fast, prior knowledge- and
parameter-independent multi-task clustering method. Unlike existing methods, the algorithm in this
paper is a new kind of multi-task clustering method that is much easier to understand and implement by
taking the jointly obtained common decision from different tasks using cluster labels. It was developed
as a new method that can appeal to every area rather than being specific to one area (e.g., [18,20]).

Different types of MTC algorithms have been proposed. For instance, multi-task multi-view
clustering [21] is presented to handle the learning problem of multiple related tasks with one or
more common views. Each view is associated with one task or multiple related tasks, the inter-task
knowledge is transferred to one another, and multi-task and multi-view relationships are exploited to
improve clustering performance. In [21], it is applied for webpage and image mining operations under
clustering framework.

3. Materials and Methods

In this section, applied methodologies and datasets for experiments in addition to used platforms
are presented. The overall goal of the used techniques was to create clusters with a consistent set
of similar behavioral points by ensuring the maximum similarities in intra-cluster objects while
keeping inter-cluster differences high. The clustering algorithms or techniques used in this study were:
K-Means, Expectation Maximization, Canopy, Farthest First and Hierarchical clustering in addition to
the proposed technique Multi-task clustering.

3.1. K-Means Clustering

Consider a dataset D = {o1, o2, . . . , on} where each oi represents an object as a p-dimensional
explanatory variable and n is the number of objects (instances) in the dataset. Assume that the problem
domain is to be divided into k clusters combination of which is represented as a vector CKM = {C1,
C2, . . . , Ck} and the centroids of k clusters are denoted by µ = {m1, m2, . . . , mk}.

The first step is to assign k points as cluster centers at random. The distance between each data
point oi and each cluster centroids mj, where i = {1, . . . , n} and j = {1, . . . , k}, are calculated using one of
the distance metrics such as Euclidean, Manhattan, Chebyshev, Minkowski distance, etc. as argmin jdist(oi,
m j) to find the nearest cluster for the respective instance to be assigned. New cluster centroids are
calculated by mj =

(
1/n j

) ∑
oi∈m j

oi, where nj denotes the number of objects in cluster j, Cj. This process

iteratively continues until no data point changes cluster membership. According to the method used
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for the initialization of the process, different techniques instead of random initialization can be used
such as K-Means++, Farthest First or Canopy.

3.2. Expectation Maximization Clustering

It extends the K-Means paradigm in a different way. While the K-Means algorithm assigns each
data point to a cluster, each object in the Expectation-Maximization (EM) model is assigned to each
cluster according to a weight representing the probability of membership. In other words, there is
no definite limit between clusters and new centers are calculated in terms of weighted measures [50].
EM clusters data points using a finite mixture density model, i.e., normal distribution, of k probability
distributions, where each distribution represents a cluster.

As in the K-Means clustering, the process starts with selecting cluster centroids randomly.
The procedure continues with two steps to refine the parameters (i.e., clusters) iteratively based on
statistical modeling: Expectation (E) step and Maximization (M) step [51]. In Step E, a function to
determine the probability of cluster membership of an instance is generated using the present estimate
for the attributes using Equation (1) where p

(
oi
∣∣∣C j

)
follows the normal distribution and i = {1, . . . , n},

j = {1, . . . , k}.

P
(
oi ∈ C j

)
= p

(
C j

∣∣∣oi
)
=

(
p
(
C j

)
p
(
oi
∣∣∣C j

))
/p(oi), (1)

Step M is applied as in Equation (2) for re-estimating the model parameters by discovering the attributes
which maximizes the expected log-likelihood found in Step E. The iterative process continues until
obtaining the optimal value.

m j = (1/n)
∑

n
i=1

oiP
(
oi ∈ C j

)∑
t P(oi ∈ Ct)

, (2)

3.3. Canopy Clustering

The general application of Canopy is on the preprocessing step of other clustering algorithms
such as K-Means or Hierarchical clustering to speed up the process in the case of large datasets [52].
The procedure uses two distance metrics T1 > T2 to be used for later processing and a list of data
points to cluster. Initial canopy center is determined randomly from one of the data points and then
distances of all other instances to this canopy center are approximated. The instances whose distance
value fall within the threshold of T1 is placed into a canopy while the data points whose distance value
fall within the threshold of T2 are removed from the list. These removed ones are excluded from being
selected as a new canopy center or creating new canopies. The process iteratively continues until the
list is empty.

3.4. Farthest First Clustering

It is one of the variants of K-Means clustering where each cluster centroid is selected in turn
at the point furthest from the existing cluster centers. This point must lie within the data area.
This significantly boosts the speed of clustering in general due to the need of less reassignment and
modification [53].

3.5. Hierarchical Clustering

Hierarchical clustering is used to group data objects into a tree of clusters either by bottom-up
(agglomerative) or top-down (divisive) fashion [49]. In agglomerative version, each instance of the
dataset is put into its own cluster initially and all of these atomic clusters are merged continuously
until a single cluster is formed to hold all data points inside or if there is a termination condition.
Divisive version is just the opposite of agglomerative clustering because it begins the process with a
single cluster where all data points are placed and the later steps are the subdivision of the cluster
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into smaller distinct ones until a termination criterion is satisfied such as a predetermined number of
clusters is obtained.

According to the distance calculation method between different clusters, there are many link types
used in Hierarchical clustering such as Single (the minimum link that is the closest distance between
any items of two different clusters), Complete (the maximum link that is the largest distance between
any items of two different clusters), Average (the average distance between the elements of two clusters),
Mean (the mean distance of merged cluster) and Centroid (the distance from one centroid to another).

4. Multi-task Clustering

A task is generally referred to the construction of a model using a specific dataset for a single
target or for a sub-goal. In this sense, “multiple tasks” could mean the modeling of multiple output
targets simultaneously by using task-related datasets and by considering task relations. Depending on
the definition of “multiple tasks”, we can define multi-task clustering as follows: multi-task clustering
(MTC) is a process of generating global clusters that are shared by the multiple related tasks. MTC is
desired to merge information among tasks to improve the clustering performance of individual tasks.
The most important aspect in MTC is to discover the shared information among tasks. In this paper,
a novel algorithm, named Majority Voting based Multi-task Clustering (MV-MTC), is proposed to
provide this aspect.

Consider the unlabeled dataset D = {o1, o2, . . . , on} where each oi represents an object as a
p-dimensional explanatory variable and n is the number of objects (instances) in the dataset. Assume
that the problem domain consists of r different tasks T = {t1, t2, . . . , tr}, each of which is represented
as ti.

In the first step of the algorithm, the instance set allotted to each task should be properly clustered
using one of the traditional clustering algorithms. For r different tasks, let us denote the resulting
clustering assignments as C = {Ct1 , Ct2 , . . . , Ctr} where Cti = {c1, c2, . . . , ck} for the predetermined
number of clusters as k and each ci consists of different ois from the dataset D. To take the joint decision
from all Ctis, a common factor should be determined because the same cluster names do not have to
represent the same clustering structure among the task groups. We need to determine common cluster
labels meaning the same information through all tasks.

In this context, after clustering instances of each task by one of the single clustering algorithms,
all clusters are labeled from the common label set L = {L1, L2, . . . , Lk} as in Table 3 in terms of the mean
weights of intra-cluster objects and k cluster labels for k clusters are produced according to the cluster
weights. To illustrate if we have three clusters, the heaviest one, the medium one and the lightest
one can be labeled as “L3”, “L2“ and “L1”, respectively. The same procedure is applied for r tasks.
As shown in the following example, all instances in the dataset are labeled with a suitable cluster label
Li for each task ti. As the final stage, as in the majority voting approach, the most common cluster label
among all tasks for a given instance oi is selected as the final cluster assignment. Therefore, the novel
MTC algorithm is called Majority Voting based Multi-task Clustering (MV-MTC).

Table 3. Assignments of cluster labels under different tasks.

Instance
Cluster Label
Assignments

for t1

Cluster Label
Assignments

for t2

. . .
Cluster Label
Assignments

for tr−1

Cluster Label
Assignments

for tr

o1 L1 L2 . . . Lk−1 Lk
o2 L2 Lk . . . Lk−1 L3
. . . . . . . . . . . . . . . . . .

on-1 Lk L2 . . . L1 L4
on L1 Lk-2 . . . Lk−1 Lk
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This study proposes two novel concepts: single-task clusters and multi-task clusters. In the
first phase, the proposed algorithm discovers local clusters (single-task clusters) from each task data
separately, and, in the second phase, these local clusters are combined to produce the global result
(multi-task clusters).

Definition 1. (Single-Task Clusters) Single-task clusters are groups of instances discovered from the data
partition Dt of a particular task t, i.e., D = ∪r

t=1Dt , and denoted byCti = {c1, c2, . . . , ck}, where k is the number
of clusters.

Definition 2. (Multi-Task Clusters) Given r tasks T = {ti}
r
i=1 where all the tasks are related but not identical,

multi-task clusters, which are denoted by C = {Ct1 ,Ct2 , . . . , Ctr }, are groups of instances that mostly appear in
the same level of the clusters of the tasks.

Based on these definitions, it is possible to say that there are two elementary factors for multi-task
clustering. The first factor is the definition of task. Many real world problems consist of a number of
related subtasks. For instance, PM10, SO2, NO2, NO and O3 air pollutants can be considered as the
tasks of air quality monitoring problem. The second factor is the definition of ensemble method to
combine multiple tasks. In our study, we used majority voting mechanism, which selects the cluster
that is the one with the most votes.

To figure out the rationale behind the algorithm, the example scenario in Tables 4 and 5 explain
the process step by step. In the first stage, the dataset D, which is full of instances with only one feature,
is given. There are three tasks (t1, t2 and t3) and the aim is to group the dataset into three clusters
by taking the joint decision from each task. The attribute value of instances can change according to
different tasks. The next step is applied for clustering instances by one of the clustering algorithms
simultaneously for each task. Instances are properly assigned to one of three clusters (C1, C2 or C3).
On the other hand, we need to determine a common decision point on the cluster groups of different
tasks to get the final cluster assignments. Therefore, three labels (L1, L2 and L3) are used to generalize
the clusters and mean the same groupings under different tasks according to average intra-cluster
weights. In the final part, after instances are labeled with the new label set for every task (Ct1 , Ct2 and
Ct3 ), majority voting scheme is applied to obtain final cluster labels for MV-MTC algorithm.

Figure 1 displays the general framework of multi-task clustering algorithm where each ti shows
single task of the task space and D is the unlabeled data. The main purpose is to ensure that the
instances in the clusters that are created before the MV-MTC result remain in the same set in the final
step. The number of instances remaining in the same cluster is maximized according to Equation (3)
where Ci j(or) means that the instance or is the member of cluster cj of task ti and MV−MTC j indicates
the resulting cluster cj of MV-MTC algorithm. The pseudo code of the proposed algorithm is given in
Algorithm 1.

max
{∑

r
i=1

∑
k
j=1

∑
n
r=11 : Ci j(or) ∈MV−MTC j, or ∈ Ci j

}
, (3)
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Table 4. An example showing MV-MTC algorithm step by step.

Ins. ID Task t1 Task t2 Task t3

1 3 23 43
2 10 15 30
3 21 40 54
4 9 32 89
5 18 14 72
6 12 27 28
7 6 24 26
8 4 41 22
9 17 33 79
10 19 28 58
11 10 15 47
12 3 18 73

(1) Dataset D and its instance values in terms of three tasks.

Cluster ID
Instance Assignments

Task t1 Task t2 Task t3

C1 {2, 4, 6, 11} {3, 4, 8, 9} {1, 3, 10, 11}
C2 {3, 5, 9, 10} {2, 5, 11, 12} {4, 5, 9, 12}
C3 {1, 7, 8, 12} {1, 6, 7, 10} {2, 6, 7, 8}

(2) Instance assignments to clusters under different tasks.

Cluster ID
Common Label Assignments

Task t1 Avg. Weight Task t2 Avg. Weight Task t3 Avg. Weight

C1 L2 10.25 L3 36.50 L2 50.50
C2 L3 18.75 L1 15.50 L3 78.25
C3 L1 4.00 L2 25.50 L1 26.50

(3) Determination of the common cluster labels according to average intra-cluster weights.
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Table 5. Assignments of final cluster labels to the instances in terms of different tasks and the output of
MV-MTC from majority voting rule.

Ins. ID Ct1 Ct2 Ct3 MV-MTC Ins. ID Ct1 Ct2 Ct3 MV-MTC

1 L1 L2 L2 L2 7 L1 L2 L1 L1
2 L2 L1 L1 L1 8 L1 L3 L1 L1
3 L3 L3 L2 L3 9 L3 L3 L3 L3
4 L2 L3 L3 L3 10 L3 L2 L2 L2
5 L3 L1 L3 L3 11 L2 L1 L2 L2
6 L2 L2 L1 L2 12 L1 L1 L3 L1

As shown in Algorithm 1, the methodology is made up of four steps. In the first step, single-task
clusters are generated by taking each individual task into consideration. Step 2 is performed to calculate
intra-cluster weights under different tasks. In Step 3, cluster labels are assigned to clusters according to
their weight values, assigning L1 to the cluster which has the lowest mean value, and then increasing
the label values until giving Lk to the highest one. The last step is the place where joint decision from
different tasks is taken by applying a majority voting mechanism. As a result, all data points are placed
into the most suitable clusters and final cluster labels are assigned from joint decision.

Algorithm 1: Majority Voting based Multi-task Clustering (MV-MTC)

Inputs: Dataset D = {o1, o2, . . . , on}
Task space T = {t1, t2, . . . , tr}
CA: a clustering algorithm
Cluster label set L = {L1, L2, . . . , Lk}
n: the number of instances
k: the number of clusters
r: the number of tasks
Process:
// Step 1: Clustering according to task ti
1. for i = 1 to r
2. Cti = CA(D, ti)
3. C.add(Cti )
Output:
C = {Ct1 , Ct2 , . . . , Ctr } // cluster assignments in terms of different tasks
Cti = {c1, c2, . . . , ck} // k different clusters under the task ti
// Step 2: Determine average intra-cluster weights
4. for each Cti in C
5. for i = 1 to k
6. for each o in ck
7. sum = sum + o // value of the instance
8. mi = sum/|ck|

Output:
µi = {m1, m2, . . . , mk} // k different average intra-clusters weights under the task ti
// Step 3: Label each cluster ci in Cti for all tasks according to µi values
9. for each ci in Cti

10. for i = 1 to k
11. Lci = Lindex(mi) // an appropriate cluster label from L in terms of the index of mi
// Step 4: Obtaining joint decision
12. for i = 1 to n
13. for j = 1 to r
14. L(oi) = argmax

Li∈L

∑
Lt j (oi)

1

// final cluster assignment of oi where each Lt j is the cluster label of oi in task tj and j ε {1, 2, . . . , r}
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5. Dataset Description and Used Platforms

There are seven geographical regions, namely as Eastern Anatolia, Central Anatolia, Southeastern
Anatolia, Blacksea, Mediterranean, Aegean, and Marmara, in Turkey and numerous air quality
monitoring stations (AQMS) at each region. This study was conducted on 49 AQMSs from 32 provinces
which are from different regions. The features of each station are listed in Tables 6 and 7 by showing
the name of AQMS, in which city it is located, the corresponding county of the city, longitude and
latitude information, network type (urban/rural/industrial), and which air pollutants are regularly
measured in there.

The National Air Quality Monitoring Network of Turkey includes 330 Air Quality Monitoring
Stations. The air quality of all provinces in the country is monitored. To facilitate public access
to information on air quality, the monitoring results are published online at the website of http:
//laboratuvar.cevre.gov.tr [54]. In all of the air pollution measurement stations, SO2 and PM10

parameters are measured; in addition, NO, NO2, NOx, CO and O3 are measured automatically in many
of them. In this study, all of the AQMSs were investigated and 49 out of 330 stations were selected
because the aforementioned air pollutants (PM10, SO2, NO2, NO and O3) are regularly measured in
these stations together.

Since the data become roughly periodic after one-year period, only one year of (November 2017
to November 2018) data were used in the experiments. The pollutant concentrations are mean values
of daily (24 h) measurements. The application was developed using Weka open source data mining
library [55] on Visual Studio.

http://laboratuvar.cevre.gov.tr
http://laboratuvar.cevre.gov.tr
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Table 6. The selected air quality monitoring stations (AQMS) and their features.

ID AQMS NAME CITY COUNTY LONGITUDE LATITUDE TYPE THE MEASURED POLLUTANTS

1 Adana-Catalan Adana Yüreğir 35.2619 37.1864 Rural PM10, SO2, NO2, NO, O3, NOX
2 Adana-Dogankent Adana Yüreğir 35.3491 36.8545 Rural PM10, SO2, NO2, NO, O3, NOX
3 Adana-Meteoroloji Adana Karaisali 35.3440 37.0041 Urban PM10, SO2, NO2, NO, O3, NOX
4 Adana-Valilik Adana Seyhan 35.3124 36.9991 Urban PM10, SO2, NO2, NO, O3, NOX, CO
5 Agri Agri Merkez 43.0396 39.7213 Urban PM10, SO2, NO2, NO, O3, NOX
6 Agri-Dogubeyazit Agri Dogubeyazit 44.0835 39.5476 Urban PM10, SO2, NO2, NO, O3, NOX, CO
7 Agri-Patnos Agri Patnos 42.8530 39.2365 Urban PM10, SO2, NO2, NO, O3, NOX, CO
8 Ankara-Kecioren Ankara Kecioren 32.8628 39.9672 Urban PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5
9 Ankara-Sihhiye Ankara Cankaya 32.8594 39.9272 Industrial PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5

10 Ardahan Ardahan Merkez 42.7055 41.0000 Urban PM10, SO2, NO2, NO, O3, NOX
11 Artvin Artvin Merkez 41.8182 41.1752 Urban PM10, SO2, NO2, NO, O3, NOX
12 Bartin Bartin Merkez 32.3564 41.6248 Urban PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5
13 Bayburt Bayburt Merkez 40.2255 40.2558 Urban PM10, SO2, NO2, NO, O3, NOX
14 Canakkale-Biga Icdas Canakkale Biga 27.1072 40.4173 Industrial PM10, SO2, NO2, NO, O3, NOX, CO
15 Canakkale-Can-MTHM Canakkale Can 27.0498 40.0293 Urban PM10, SO2, NO2, NO, O3, NOX
16 Edirne-Kesan-MTHM Edirne Kesan 26.6352 40.8511 Urban PM10, SO2, NO2, NO, O3, NOX, PM2.5
17 Erzincan Erzincan Merkez 39.4950 39.7430 Urban PM10, SO2, NO2, NO, O3, NOX
18 Erzurum Erzurum Yakutiye 41.2728 39.8982 Urban PM10, SO2, NO2, NO, O3, NOX
19 Erzurum-Palandoken Erzurum Palandoken 41.2752 39.8676 Urban PM10, SO2, NO2, NO, O3, NOX, CO
20 Erzurum-Pasinler Erzurum Pasinler 41.5721 40.0335 Rural PM10, SO2, NO2, NO, O3, NOX
21 Giresun-Gemilercekegi Giresun Merkez 38.3985 40.9144 Urban PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5, PM10 Flow Rate, PM2.5 Flow Rate
22 Gumushane Gumushane Merkez 39.4808 40.4608 Urban PM10, SO2, NO2, NO, O3, NOX
23 Hatay-Iskenderun Hatay Iskenderun 36.2239 36.7141 Industrial PM10, SO2, NO2, NO, O3, NOX, CO
24 Igdir Igdir Merkez 44.0536 39.9261 Urban PM10, SO2, NO2, NO, O3, NOX
25 Igdir-Aralik Igdir Aralik 44.6209 39.7868 Rural PM10, SO2, NO2, NO, O3, NOX, PM2.5
26 Istanbul-Basaksehir-MTHM Istanbul Basaksehir 28.7898 41.0954 Industrial PM10, SO2, NO2, NO, O3, NOX, CO
27 Istanbul-Esenyurt-MTHM Istanbul Esenyurt 28.6688 41.0192 Urban PM10, SO2, NO2, NO, O3, NOX
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Table 7. The selected air quality monitoring stations (AQMS) and their features.

ID AQMS NAME CITY COUNTY LONGITUDE LATITUDE TYPE THE MEASURED POLLUTANTS

28 Karabuk-Kardemir 1 Karabuk Merkez 32.6274 41.1920 Industrial PM10, SO2, NO2, NO, O3, NOX, CO
29 Kars-Istasyon Mah. Kars Merkez 43.1044 40.6050 Urban PM10, SO2, NO2, NO, O3, NOX, CO
30 Kirklareli-Limankoy-MTHM Kirklareli Limankoy 28.0559 41.8852 Rural PM10, SO2, NO2, NO, O3, NOX
31 Kirsehir Kirsehir Merkez 34.1686 39.1381 Urban PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5
32 Kocaeli-Gebze-MTHM Kocaeli Gebze 29.4365 40.8108 Urban PM10, SO2, NO2, NO, O3, NOX
33 Kocaeli-Korfez-MTHM Kocaeli Korfez 29.7888 40.7461 Industrial PM10, SO2, NO2, NO, O3, NOX, PM2.5, PM2.5 Flow Rate
34 Kocaeli-Yenikoy-MTHM Kocaeli Basiskele 29.8844 40.7042 Urban PM10, SO2, NO2, NO, O3, NOX
35 Manisa-Soma Manisa Soma 27.6129 39.1814 Urban PM10, SO2, NO2, NO, O3, NOX, CO
36 Ordu-Unye Ordu Unye 37.2802 41.1214 Urban PM10, SO2, NO2, NO, O3, NOX,PM10 Flow Rate
37 Rize Rize Merkez 40.5328 41.0217 Urban PM10, SO2, NO2, NO, O3, NOX
38 Rize-Ardesen Rize Ardesen 41.0475 41.1273 Rural PM10, SO2, NO2, NO, O3, NOX, PM2.5
39 Samsun-Atakum Samsun Atakum 36.2965 41.3253 Urban PM10, SO2, NO2, NO, O3, NOX, PM2.5, PM10 Flow Rate, PM2.5 Flow Rate
40 Seyyar-1(06 THL 77)-Malatya Arapgir Malatya Arapgir 38.4878 39.0457 Urban PM10, SO2, NO2, NO, O3
41 Seyyar-2 (06 THL 79)-Sincan OSB Ankara Mamak 33.0364 39.9008 Urban PM10, SO2, NO2, NO, O3
42 Seyyar-4 (06 DV 9975)-Isparta Kizildag Isparta Sarkikaraagac 31.3549 38.0442 Urban PM10, SO2, NO2, NO, O3
43 Tekirdag-Corlu-MTHM Tekirdag Corlu 27.8154 41.1806 Industrial PM10, SO2, NO2, NO, O3
44 Trabzon-Akcaabat Trabzon Akcaabat 39.5923 41.0143 Urban PM10, SO2, NO2, NO, O3, NOX, CO
45 Trabzon-Uzungol Trabzon Uzungol 40.2980 40.6173 Rural PM10, SO2, NO2, NO, O3
46 Trabzon-Valilik Trabzon Merkez 39.7123 41.0059 Urban PM10, SO2, NO2, NO, O3, NOX
47 Yalova-Armutlu-MTHM Yalova Armutlu 28.7845 40.5292 Rural PM10, SO2, NO2, NO, O3, NOX, PM2.5
48 Zonguldak-Eren Enerji Lise Zonguldak Catalagzi 31.8801 41.4964 Industrial PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5
49 Zonguldak-Eren Enerji Tepekoy Zonguldak Catalagzi 31.9374 41.5269 Industrial PM10, SO2, NO2, NO, O3, NOX, CO, PM2.5
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6. Experimental Results

In this study, the proposed MTC method, MV-MTC, was compared with traditional clustering
algorithms K-Means (KM), Expectation Maximization (EM), Hierarchical Clustering (HIER), Canopy
and Farthest First (FFIRST). Each task was clustered by the selected algorithm and then their decision
from consensus was obtained in MV-MTC framework. Performance evaluation was done via sum of
squared error (SSE) calculation. Before constructing the model, data were normalized and missing
data imputation was performed using the mean values.

The number of clusters, k, was selected as 10% of the number of instances in the dataset, therefore
it was 5. Distance metric was chosen as Euclidean distance. To take the joint decision from each single
clustering algorithm, each cluster was labeled according to the weights calculated as the average value
of the instances of intra-cluster. According to this scheme, five cluster labels were determined as “L1”,
“L2”, “L3“, “L4” and “L5”. Table 8 displays the average normalized weight of each cluster in terms
of different air pollutants and their corresponding cluster labels. As a result of the joint decision of
different tasks, where evaluation of PM10, SO2, NO2, NO and O3 pollutants were assumed as a new
task, final cluster assignments were done.

To evaluate the performance of the applied methodology, values of sum of squared error were
calculated. SSE is the sum of the squared differences between each observation and its group’s mean.
In Equation (4), oi represents an instance of dataset D, C j represents the jth cluster, mj is the centroid
value of the specified cluster j where oi is assigned and k is the number of cluster. Total SSE of a method
is the sum of all separate SSE calculations coming from distinct clusters.

SSE =
∑

k
j=1

∑
oi∈C j

(
oi −m j

)2
, (4)

Table 8. The mean weight values of each cluster group and their intra-cluster labels obtained by KM++.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Weight Label Weight Label Weight Label Weight Label Weight Label

PM10 0.2002 L2 0.3142 L3 0.1309 L1 0.3982 L4 0.5977 L5
SO2 0.0713 L1 0.2328 L3 0.1497 L2 0.5799 L5 0.4996 L4
NO2 0.0902 L1 0.2177 L2 0.3322 L3 0.4396 L4 0.6593 L5
NO 0.0726 L1 0.1382 L2 0.5186 L5 0.1781 L3 0.1783 L4
O3 0.4208 L3 0.3237 L2 0.7482 L5 0.4873 L4 0.2082 L1

Final assignments are obtained both by MV-MTC and single clustering algorithms. Clustering
algorithms is applied on each single task, i.e., the model is formed just by taking one pollutant
into consideration. The SSE results of different pollutants under different algorithms are shown as
CpollutantName where “pollutantName” is one of the pollutants (PM10, SO2, NO2, NO or O3) in Table 8.
CALL is the average SSE value coming from all pollutants. KM is applied with two different versions
in terms of initialization method used. KM with the random initialization is denoted as KM and
KM initialized with K-Means++ is displayed as KM++. Hierarchical clustering is implemented with
different link types among clusters. HIERSing, HIERComp, HIERAvg, HIERMean and HIERCentro represent
the hierarchical clustering types with single link, complete link, average link, mean link and centroid
link, respectively. The bold notations in Table 9 show the best results in the respective rows.

We can conclude that the proposed MV-MTC method outperforms all single clustering algorithms
that similar AQMSs are assigned to the same cluster group more accurately when multi-task clustering
is applied. Besides, the most promising output of MV-MTC is obtained by KM++. In the case of single
clustering algorithms, EM performs the best among the other applied techniques.

Final cluster assignments after performing MV-MTC with KM++ are shown in Figure 2. It points
out the geographical locations of AQMSs in the map of Turkey with different colored markers where
each color represents a cluster.
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Table 9. The results of the performance evaluation in terms of SSE values.

KM KM++ EM Canopy FFirst HIERSing HIERComp HIERAvg HIERMean HIERCentro

CPM10 396.40 406.53 392.42 476.39 415.03 532.51 411.91 516.16 456.02 526.03
CSO2 260.31 194.96 226.03 415.04 214.27 216.13 204.56 214.27 214.27 214.27
CNO2 367.95 315.79 319.25 406.52 356.39 437.90 317.32 437.90 373.54 437.90
CNO 335.17 351.29 294.79 426.31 305.73 319.82 303.40 303.40 319.82 319.82
CO3 393.83 394.42 371.31 478.08 418.25 645.29 402.39 410.27 514.38 446.52

CALL 350.73 332.60 320.76 440.47 341.93 430.33 327.92 376.40 375.61 388.91
MV-MTC 113.80 108.12 116.16 122.84 134.41 161.96 124.92 161.96 144.16 161.96
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Figure 2. Results from the implementation of multi-task clustering obtained by KM++.

In MV-MTC approach, a clustering algorithm is performed for t tasks and a merging operation
is done in the final step (“majority voting”). In this study, the best results were obtained using the
KMeans++ algorithm. The time complexity of K-Means++ is O (n× k + n× k× I), where n is the number
of instances, k is the number of clusters, and I is the number of iterations needed for convergence [56].
After single-task clustering step, the merging process takes the runtime cost of O (t × n), where t is the
number of tasks. Considering this, the total time complexity of MV-MTC algorithm is O (n × k + n × k ×
I + t × n). This time complexity indicates that the proposed MV-MTC algorithm requires computation
time that grows linearly with the number of instances, clusters and tasks. Thus, the execution time of
the algorithm will still be reasonable even if we process a large volume of data.

Table 10 shows the execution time (in seconds) to perform MV-MTC algorithm in terms of different
clustering methods. Single task clustering results are also shown as CPolluntantName, and CALL represents
the sum of the running time of all single task clustering results. Experiments were performed on a
desktop computer with Intel Core i7-6700 3.40 GHz processor and 8 GB memory. In each experiment,
the algorithms were executed 10 times and then the average values were reported. The empirical results
show that the running time of the proposed K-means++ algorithm under MV-MTC framework is better
than EM and hierarchical clustering algorithms. Besides, The MV-MTC algorithm has comparable
speed with the traditional clustering algorithms when we compare CALL and MV-MTC results on
the datasets.
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Table 10. Comparisons of different clustering methods in terms of execution time (in seconds).

KM KM++ EM Canopy FFirst HIERSing HIERComp HIERAvg HIERMean HIERCentro

CPM10 0.04 0.05 0.32 0.03 0.03 0.11 0.11 0.11 0.11 0.16
CSO2 0.04 0.03 0.36 0.04 0.03 0.11 0.11 0.11 0.11 0.17
CNO2 0.03 0.04 0.29 0.03 0.03 0.11 0.11 0.11 0.11 0.16
CNO 0.04 0.04 0.26 0.03 0.03 0.11 0.11 0.11 0.11 0.17
CO3 0.05 0.04 0.30 0.03 0.03 0.11 0.11 0.11 0.12 0.16

CALL 0.20 0.20 1.53 0.16 0.15 0.55 0.55 0.55 0.56 0.82
MV-MTC 0.31 0.60 1.55 0.33 0.29 0.73 0.73 0.73 0.76 1.05

MV-MTC algorithm was compared with one of the recently proposed MTC methods, MTCMRL [45],
in terms of time complexity. In [45], multi-task clustering is combined with model relation learning
(MTCMRL) method to automatically learn the model parameter relatedness between each pair of tasks
by providing a solution to a non-convex optimization problem. Even though the proposed algorithm
has a better clustering performance compared to other multi-task clustering methods, it still does
not offer the expected performance in terms of time complexity, which is O (n2 * m), where m is the
number of features and n is the number of instances per task, thus it increases exponentially when n is
increased to larger volumes. On the other hand, MV-MTC is still reasonable to be preferred because of
its linearly changing time complexity.

With this study, it was aimed to identify similar regions in terms of air quality. It enables flexible
decision-making at the cluster level. Thus, decision makers on the control of air quality can take
actions similarly for the members of the same cluster. Since many air quality monitoring station data
are summarized in several clusters, it provides richer but compacted information for control and
modeling. It finds structure in air quality data and is therefore exploratory in nature. Representing
the whole environmental data by few clusters may offer the great advantage of simplification in
analyzing the data. Identification of the monitoring station groups can be used to understand why
these stations in a same cluster are similar. Clustering monitoring stations minimizes the overload
of information. Grouping similar information and summarizing common characteristics help the
environmental scientists understand the current situation more clearly. In addition, it is also possible
to classify a new station by assigning it to the cluster with the closest center.

The potential contributions of this study to the prediction of air quality can be listed as follows:

• The multi-task clustering can also be used to label all the observed elements before air quality
prediction, by calculating the distance between each centroid and each element in the data, and
then selecting the cluster label (or level) with minimum distance.

• Multi-task clustering can also be used as a preprocessing step to improve the speed and performance
of the classification algorithm that is used to predict air quality index.

• In the application to predict air quality index, temporal data clustering results can give information
about air quality variations, such that a set of forecasting systems, which are dedicated to reflect
temporal changes, can be formed.

• The identification of the air pollution levels of the different regions by clustering can be useful to
design air quality monitoring network structure. Such networks must consider the monitoring
location, sampling frequencies and the pollutants concern. For instance, clustering results lead to
design an optimal network, i.e., a network providing maximum data with minimum measurement
devices. The spatial relationship analysis is used to compare the information given by the potential
sites that may form the network.

• On forecasting the level of air pollution, it is possible to find the closest cluster of a new instance
to be predicted, and then use the values in this cluster for prediction.

• Multi-task clustering can also be useful for detecting the extreme air pollution events and can help
predict future exceedances. In this sense, an air pollutant value of a region may be considered as
an outlier if it exceeds the minimum or maximum value of the cluster it belongs to.
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7. Conclusions

The main purpose of this study was to present a new multi-task clustering algorithm to determine
which provinces of Turkey have the same air pollution characteristics so that similar precautions for the
reduction of pollution can be taken by the decision-making authority for the cities in the same group.
The main air pollutants for the experiments were selected as PM10, SO2, NO2, NO and O3 and their
mean daily concentrations were taken into consideration. All of the data were taken from 49 air quality
monitoring stations from different regions of Turkey. Two phases were performed under MV-MTC
scheme: single-task clustering and multi-task clustering. In single-task clustering, each air pollutant
was handled individually and air quality monitoring stations were assigned to respective clusters
(local clustering). In multi-task clustering phase, clusters were labeled according to the intra-cluster
weights so that taking common decision from different tasks becomes easier by applying majority
voting on these cluster labels per each instance. Final cluster labels were obtained in this phase by
combining the results of single-task clusters (global clustering). According to the results of the sum
of squared error, the proposed multi-task clustering method MV-MTC performed well compared to
classical single clustering algorithms K-Means, Expectation Maximization, Canopy, Farthest First and
Hierarchical clustering. MV-MTC with K-Means, which was initialized with K-Means++, provides
promising results in the detection of similar AQMSs.

With this study, the following benefits can be obtained:

• Similar regions can be detected easily so that similar air quality management strategies can be
applied for them by the decision-making authority.

• Collecting similar information together and summarizing common features help environmental
scientists figure out the present situation more clearly.

• Data analysis becomes easier due to dealing with only few cluster instances instead of whole
environmental data.

• Data summarization is performed resulting in compact and useful information, thus one does not
need to handle huge amounts of redundant data.

• It can be used as a pre-processing step before performing the essential environmental study.
• Inherent hidden patterns of air quality data can be discovered.
• In the case of a new station to be classified, the process can be achieved by placing the station into

the cluster that has the nearest cluster center.

In the future, other unsupervised learning methods such as association rule mining or outlier
detection or time series analysis can be applied on Turkey’s air pollution data. Instead of using only
pollutant levels, meteorological factors such as temperature, humidity, wind speed and direction,
pressure, etc. are going to be added into the problem domain because they can significantly influence
the air quality level of a region. Seasonal changes can also be observed instead of using yearly data.
The severity of air quality may be clustered based on the impact on the health issue or the potential
damage to the environment. Furthermore, a new study could be conducted to investigate the main
causes of pollution by utilizing data such as fuel, exhaust and industrial waste.

PM2.5 is one of the most dangerous particulate matters. However, in Turkey, there is a missing
data problem considering the measurements of PM2.5 particulate matter. The same case is also valid
for CO pollution, thus it is not dealt with in this study. If the study is extended to be applied on other
countries, new air pollutants can also be handled.
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