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Abstract: A porous TiAl alloy with 23.78% porosity was successfully fabricated via a low-toxicity,
non-aqueous gel casting method by using a titanium hydride (TiH2) and aluminum (Al) powder
mixture as the raw material. The effects of dispersant content and solid loading on the rheological
properties of the TiH2/Al slurries were studied systematically. It was found that all the slurries
exhibited a typical shear-thinning behavior, which is favorable for the gel casting process. Three-point
bending tests of the dried TiH2/Al green bodies were carried out, and the results showed that
the flexural strength was raised from 28.86 to 62.36 MPa with increasing monomer (hydroxyethyl
methacrylate, HEMA) content. In order to study the degreasing process and minimize the possible
residual carbon and oxygen after sintering, TGA analysis was performed. The fracture morphology of
the sintered TiAl alloy (1400 ◦C for 2 h) was studied by scanning electron microscope (SEM). Based on
the X-ray diffraction (XRD) identification, the main phases of the sintered part were γ-TiAl, α2-Ti3Al,
and a small amount of Al2Ti and Al3Ti.
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1. Introduction

On the basis of their low density, high modulus, high temperature strength, good flame retardancy,
excellent oxidation resistance, and creep resistance, TiAl alloys have been developed into one of
the most attractive materials for lightweight and heat-resistant structural parts, such as those used
in aviation, aerospace, aeronautical missiles, automotive engines, and so on [1–5]. In recent years,
there has also been great interest in porous TiAl alloys as potential engineering materials for various
industrial fields [6–9]. However, the traditional processing routes for preparing TiAl alloys, such as
ingot metallurgy, hot forging, precision casting, powder metallurgy, and machining [10–14], either have
long production cycles or waste quite a few materials, leading not only to high manufacturing costs,
but also to difficulty in fully realizing the advantages in the preparation of parts with complex shapes.
Therefore, it is of great importance to apply an appropriate technology to overcome the shortcomings
mentioned above.

Gel casting, as a near net shaping technology, was firstly developed by Janney and Omatete in
the early 1990s and has been widely applied in the ceramic industry [15–18]. In such a process, a
high-solid-loading slurry consisting of raw powders, solvent, and organic binder is first required.
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After the slurry is casted into a mold, the organic binder creates a macromolecular network to hold the
ceramic particles together. Homogeneous green bodies with the required mechanical properties are
therefore obtained. In the past few decades, a considerable amount of research has been done on the
development of the ceramic gel casting technique. Along with the constant maturity of gel casting
technology, the applications have been expanded to the domain of metal materials [19–22].

It is well known that the performance of titanium-based objects can be easily deteriorated by
impurities resulting from residual oxygen, nitrogen, and carbon during manufacturing [23]. Due to
the high stability of these impurities, such as TiO2 and TiN, it is impossible to eliminate them by using
titanium or its elemental powder as a raw material. Fortunately, titanium hydride can be an ideal raw
material to reduce the content of these impurities. In a previous work, the powder metallurgy of TiH2

and TiH2/Al was studied. Researchers, such as Kendra and Guo, also carried out impressive works
on the gel casting of TiH2, and their results showed that oxygen and carbon contamination could be
reduced [24–26].

In this study, a porous TiAl alloy was fabricated via non-aqueous gel casting followed by a vacuum
sintering process by using TiH2/Al as raw powders. The main purpose of the present work is to further
develop a simple approach for TiAl structural material production which could meet the requirements
of reducing the cost and expanding application areas.

2. Materials and Methods

The low-toxicity gel casting system used was composed of N, N-dimethylformamide (DMF)
as solvent, hydroxyethyl methacrylate (HEMA) as monomer, 1,6-hexanediol diacrylate (HDDA)
as cross-linker, tert-butyl peroxybenzoate (TBPB) as initiator, and polyvinyl pyrrolidone (PVP) as
dispersant. All the reagents were chemically pure and supplied by Shanghai National Pharmaceutical
Reagents Group Co. Ltd., China. Commercially available 99.7% pure TiH2 powder (supplied by
Shanghai Bike New Materials Co. Ltd., Shanghai, China) and 99.85% pure Al powder (supplied by
Shanghai Bike New Materials Co. Ltd., Shanghai, China) were used as raw materials.

Premixed solutions containing 15 vol % to 40 vol % monomer relative to the volume of the
solutions were prepared by dissolving HEMA, HDDA, and PVP in DMF at room temperature by means
of ultrasonic dispersion. A TiH2 and Al powder mixture with a molar ratio of 1:1 was added to the
solutions and mixed by a stirrer for about 30 min to obtain 40 vol % to 48 vol % TiH2/Al slurries. In all
experiments, the ratio of HEMA to HDDA was fixed at 15:1. Later, a little dose of TBPB was dropped
into the slurries and fully stirred. After that, the slurries were poured into individual silicone molds
and held at 80 ◦C in a vacuum drying chamber for 2 h to complete the gelation process. Subsequently,
the wet green bodies were carefully removed from the molds and soaked in ethanol for 8 h in order to
remove residual solvent. To avoid cracking during drying, the green bodies were dried in a vacuum
chamber at 25, 80, and 120 ◦C for 8 h in sequence. Finally, the TiH2/Al green bodies were sintered at
1400 ◦C under vacuum conditions for 2 h.

The particle size distributions of the TiH2 and Al powders were measured by a laser analyzer
(S3500, Microtrac, USA). The micromorphology of the powders and the fracture surfaces of the green
and sintered bodies were observed by a scanning electron microscope (Nova Nano SEM 230, FEI,
USA). The rheological behavior of the TiH2/Al slurries was measured at room temperature by a rotary
rheometer (Gemini 200HR, Bolin, UK) with the shearing rate ranging from 0 to 1000 s−1. The flexural
strength of the green bodies was measured by a universal testing machine (Z020, Zwick/Roell, German)
with a crosshead speed of 1 mm/min. Samples with a size of 40 mm × 5 mm × 5 mm for the test
were held in a vacuum chamber at 120 ◦C for 2 h to avoid the influence of moisture before testing.
The degreasing process of the dried green body was studied by using a TG analyzer (TGA8000TM,
PerkinElmer, USA), and the samples were heated at a rate of 10 ◦C /min from room temperature to
700 ◦C under a pure argon flow. An X-ray diffraction analyzer (D/max 2500, Rigaku, Japan) was used
to identify the phases of the sintered samples. The porosity and pore size distribution of the sintered
component were detected by a mercury intrusion method.
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3. Results

The SEM micrographs of the TiH2 and Al powders are shown in Figure 1a,b, respectively. It can be
seen from Figure 1a that most TiH2 particles have an irregular polygonal shape and a rugged surface.
Al particles are mostly hollow and spherical and much smaller than TiH2 particles. The particle size
distribution analysis is presented in Figure 2, and the result shows that the TiH2 particles have a wide
size distribution with a D50 of 21.7 µm, while the Al particles have a narrow size distribution with
a D50 of 1.58 µm. The results of the size distributions are in keeping with the SEM micrographs in
Figure 1.
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For gel casting, it is quite essential to obtain stable slurries with good fluidity; hence, dispersants
are added to stabilize solid particles and avoid aggregation or subsidence. There are mainly three
mechanisms of dispersion, namely, steric hindrance, electrostatic repulsion, and their combination.
In non-aqueous gel casting, steric hindrance dominates [27]. Therefore, polymer dispersants which
have a strong steric effect are preferred. In this study, PVP was chosen as the dispersant, and the
rheological properties of TiH2/Al slurries with a solid content of 46 vol % were measured by a rotary
rheometer. During the preparation of TiH2/Al slurries, it was found that when the ratio of PVP to
powder mass was less than 1 wt %, TiH2 particles were easily sedimented due to their big size and
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density of 3.8 g/cm3, which would result in a non-uniform distribution of powders. Hence, a sufficient
dose of PVP was needed. Three PVP addition ratios relative to the TiH2/Al powder mixture were
chosen: 1, 2, and 3 wt %. The effects of the dispersant dosage on the rheological behavior of the TiH2/Al
slurries are shown in Figure 3. It can be seen that all the TiH2/Al slurries exhibited a shear-thinning
behavior over the measured shear rate range, which indicates that the TiH2 and Al particles were in
the flocculation state in the static slurries. When shear force was applied, the flocculation structure
was dismantled and the apparent viscosities decreased. Once the flocculation structure in the slurries
was completely dismantled, the viscosities did not decrease anymore. In addition, both the apparent
viscosity and the shear stress of the slurries increased while the PVP content rose from 1 to 3 wt %.
At the shear rate of 100 s−1, the slurry prepared from the precursor solution containing 1 wt % PVP
relative to the TiH2/Al powders exhibited a shear viscosity of 169.3 mPa·s, while the slurries with
2 wt % and 3 wt % PVP displayed viscosities as high as 382.6 mPa·s and 919.2 mPa·s, respectively. For
the sake of adequate mold filling, TiH2/Al slurries with low viscosity were necessary, and 1 wt % was
chosen as the optimum amount of PVP addition to the slurry.
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For the gel casting process, the solid loading of the slurry has great effects on the fluidity of the
slurry and the density of the green and sintered parts. Low viscosity of the slurry is conducive to
uniform filling of the mold, while high solid loading has the benefit of reducing the volume shrinkage
and increasing the sintering density of the green body during drying and sintering, which is particularly
important for the deformation control of products with a complex structure. However, low viscosity
and high solid loading of the slurry often contradict each other. Therefore, a balance between the two
must be considered when preparing a gel casting slurry.

Figure 4 shows the respective rheological curves of the TiH2/Al slurries with solid loadings of 40,
42, 44, 46, and 48 vol %. As expected, the apparent viscosity and shear stress of the slurries displayed
a remarkable increasing tendency with the rise of the solid loading content. The slurry with a solid
loading of 46 vol % possessed a shear viscosity of 393.5 mPa·s at the shear rate of 100 s−1 and an intimal
viscosity less than 1000 mPa·s, which is enough to meet the requirements of gel casting. The shear
stress versus shear rate in Figure 5 could be further analyzed using the Herschel–Buckley model [28]:

τ = τ0 + kγn (1)
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where τ is the shear stress, τ0 the yield stress, k is a consistency coefficient, γ is the shear rate, and n
is the flow behavior index. According to the rheological properties of the TiH2/Al slurries shown in
Figures 3 and 4, it is evident that the slurries belong to typical pseudoplastic fluids [28].
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Figure 5. Effect of monomer content on flexural strength of dried bodies derived from the 46 vol %
TiH2/Al slurry.

In order to avoid cracking during demolding, the strength of the gel-casted body must be
considered while fabricating complex-shaped parts. Figure 5 shows the effect of monomer contents
on the flexural strength of the green bodies. It can be seen from Figure 5 that with the increase of the
monomer contents from 15 to 40 vol %, the flexural strengths of the green bodies increased from 28.86
to 62.36 MPa. This might be due to the increasing monomer content bringing more polymer networks
in per unit volume, leading to increased strength.

Figure 6 shows the fracture micrograph of TiH2/Al green bodies with different monomer contents
when the solid loading is 46 vol %. It can be seen from Figure 6 that when the gelled polymer contents
in the green bodies are relatively low (Figure 6a–d), the spherical state of the Al particles can still be
observed, while the TiH2 particles are also encapsulated by the polymer and partly covered by Al
particles. Meanwhile, there are some pores in those bodies. Some of the pores could be attributed
to the pull-out of the TiH2 particles when the green body was broken off. It was also found from
the experiment that when the monomer content is too high (for example, over 35 vol %), the slurry
solidifies quickly and is not easy to control. Meanwhile, in the processes of degreasing and sintering,
more polymer in the green bodies might lead to more residues, which would have adverse effects on
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the properties of the sintered bodies. Therefore, the suitable monomer dosage determined in this study
was 30 vol %.
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Figure 7 shows the thermogravimetric curve of the green body with a monomer content of 30 vol %
and a solid loading of 46 vol %. As can be seen from Figure 7, the thermogravimetric curve of the
TiH2/Al green body can be divided into four stages (s1–s4). The first stage is from room temperature to
300 ◦C. In this temperature range, the weight loss of the sample is about 2%, which corresponds to the
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volatilization of the solvent and the initial decomposition of the gelled polymer. The second stage is
from 300 to 500 ◦C. In this temperature range, the weight loss of the sample is about 9%, corresponding
to the massive decomposition of the polymer network, and the DTG curve also indicates that the
decomposition rate reaches its maximum value near 418 ◦C. The third stage is from 500 to 620 ◦C.
The weight of the sample remains unchanged, indicating that the burning of the polymer is basically
completed, but TiH2 does not dehydrogenate obviously. In the fourth stage, from 620 to 700 ◦C, a
small amount of thermal weight loss occurs, corresponding to the dehydrogenation process of TiH2,
i.e., TiH2→ TiHx→ α-Ti (0.7 < x < 1.1) [29]. According to the above thermal analysis results, TiH2/Al
green bodies should be kept at a temperature range of 300 to 500 ◦C for a long time under a low heating
rate during sintering to ensure that all the gelled polymer is decomposed completely.
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since no carbide phase was detected by XRD. Figure 10 is the pore size distribution curve for the TiAl
alloy sample sintered at 1400 ◦C. It can be seen from Figure 10 that the sample has a narrow pore size
distribution of 2 to 8 microns and its median pore diameter is 3.57 microns, which matches the SEM
observation shown in Figure 8. The porosity and apparent density of the as-sintered TiAl alloy are
23.78% and 4.01 g/cm3, respectively.
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4. Conclusions

This work described a non-aqueous gel casting process with potential for fabricating porous and
complicated TiAl components. Based on the characterization of the raw materials, the rheological
properties of the slurries for gel casting, the mechanical and thermal properties of green bodies, and the
microstructure and phase composition of the sintered part presented above, the following conclusions
can be drawn:

1. A non-aqueous TiH2/Al slurry system for gel casting was developed, which exhibited
shear-thinning behavior and was favorable for the gel casting process of TiH2/Al green bodies
with a complex shape. The optimum amount of PVP addition to the slurry was 1 wt % relative to
the TiH2/Al powder mixture.

2. The monomer contents have a great effect on the mechanical properties of the TiH2/Al green
bodies. The flexural strength of the green bodies increased from 28.86 to 62.36 MPa as the
monomer contents in the premix solution increased from 15 to 40 vol % relative to the premix
solution. The suitable monomer dosage determined was 30 vol % relative to the volume of
the solutions.

3. The sintered TiAl alloy exhibited a typical fracture cleavage surface; meanwhile, its pore size
distribution was 2 µm to 8 µm and its porosity was 23.78%, which indicates that the gel casting
route is a suitable way to prepare porous TiAl alloy components. The result of the XRD analysis
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shows that γ-TiAl and α2-Ti3Al were the main phases and no contaminated carbide phase
was formed.
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