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Abstract: As a fundamental and challenging problem, non-rigid structure-from-motion (NRSfM) has
attracted a large amount of research interest. It is worth mentioning that NRSfM has been applied to
dynamic scene understanding and motion segmentation. Especially, a motion segmentation approach
combining NRSfM with the subspace representation has been proposed. However, the current
subspace representation for non-rigid motions clustering do not take into account the inherent
sequential property, which has been proved vital for sequential data clustering. Hence this paper
proposes a novel framework to segment the complex and non-rigid motion via an ordered subspace
representation method for the reconstructed 3D data, where the sequential property is properly
formulated in the procedure of learning the affinity matrix for clustering with simultaneously
recovering the 3D non-rigid motion by a monocular camera with 2D point tracks. Experiment
results on three public sequential action datasets, BU-4DFE, MSR and UMPM, verify the benefits
of method presented in this paper for classical complex non-rigid motion analysis and outperform
state-of-the-art methods with lowest subspace clustering error (SCE) rates and highest normalized
mutual information (NMI) in subspace clustering and motion segmentation fields.

Keywords: low rank representation; subspace clustering; non-rigid structure-from-motion

1. Introduction

Modeling and analysis of non-rigid motions from image sequence are challenging problems
in computer vision due to complex deformable pattern and shape structure, for example, dynamic
scenes, human body activities, expressive or talking faces, etc. NRSfM tries to restore 3D non-rigid
features and camera movements out of 2D point tracks collected by a monocular camera, which has
received increasing attentions in the related community. Generally, two classes of current popular
NRSfM methods roughly are: shape basis factorization and correspondence. The shape basis methods
[1–3] assume principal components of non-rigid motion and then utilizes different shape bases to
give a linear representation. The correspondence approaches [4,5] aim to reconstruct 3D motions
from dense points or each pixel in the image sequence, which generally need spatial constraints
as regularizers. Although current NRSfM methods work well in reconstructing simple non-rigid
deformations, these NRSfM methods still have problems when it comes to practical scenarios with
complex non-rigid shape variations and different kinds of motions, such as human activities of sitting,
walking, bending, dancing etc.

Recently, Dai et al. [6,7] adopted a simple subspace to model non-rigid 3D shapes and proposed
a “prior-free” method for NRSfM problem, where there is no prior assumption about the non-rigid
or camera motions. In fact, the method can be regarded as an extension of the Robust Principal
Components Analysis (RPCA) method [8]. RPCA aims to recover low-rank subspaces from noisy data.
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Dai’s method makes the same assumption as RPCA, however, Dai’s method is oriented to 3D data
reconstructed from the known 2D information. Unfortunately, the method suffers from low accuracy
in reconstructing complex and various non-rigid motion. Although this method has been improved by
iterative shape clustering [9], which reconstructs 3D shapes and clusters the ones recurrently, however,
the improved method still faces problems for dealing with the complex non-rigid motion.

Considering complex non-rigid motion in NRSfM, Zhu et al. [10] followed Dai et al. [6,7] and
proposed a method named complex non-rigid motion 3D reconstruction by union of subspaces
(CNRMS), which reconstructs 3D complex non-rigid motion from 2D image sequence with relative
camera motions. In this method, the clustering for 3D non-rigid motion is simultaneously implemented
by a union of subspaces. It is considered that the union specifics of the individual subspaces are more
suitable to model the complex and various non-rigid motion. The experimental results show that
the method has higher clustering accuracy and better reconstruction results compared with the
method in [6].

Though introducing a subspace clustering method into the NRSfM model brings considerable
improvement for both 3D reconstruction and motion segmentation, current NRSfM methods usually
apply fundamental subspace clustering theory. However, the clustering research has had many
successful applications in computer vision, pattern recognition, and image processing [11–13],
especially spectral clustering of subspace clustering methods by affinity matrix have better
performance. For example, the segmentation accuracy in [14] is three percentage points higher
than RPCA, since the constraint of affinity matrix is helpful for data representation [13–15]. According
to the representative clustering methods [16–20], it is interpreted that to obtain good clustering results,
the intrinsic property of the data should be explored, and the feasible structure of the affinity matrix
should also been considered. However, the current methods of NRSfM take no account of these
factors. On one hand, the sequence property of non-rigid motion has not been considered in current
methods, which is ubiquitous in motion segmentation and other applications involved in sequential
data. It is proved by ordered subspace clustering (OSC) [16,17] methods which is recently proposed,
that clustering using sequential or ordered properties will improve clustering accurancy significantly.
On the other hand, there is no constraint for the structure of the affinity matrix in current NRSfM
methods. From the success of the subspace clustering methods [17–19], which adopted structure of the
affinity matrix such as block-diagonal property, it is necessary to make constraints for the structure of
the affinity matrix in NRSfM clustering methods.

Kumar et al. [21] proposed a joint framework that both segmentation and reconstruction
benefit each other. In the trajectory space and shape space there are multiple subspaces with better
reconstruction results. While Dai et al. [22] demonstrated a different view about dense NRSfM problem
by considering dense NRSfM on a Grassmann manifold.

In this paper, based on ordered subspace clustering for complex and various non-rigid motion by
3D reconstruction, a novel method is proposed, where the sequential property is properly formulated
in the procedure of learning the affinity matrix for clustering with simultaneously recovering the 3D
non-rigid motion from 2D point tracks. Experiments results on a few sequential datasets show the
benefits of the proposed model about the complex non-rigid motion analysis and its results outperform
state-of-the-art methods of motion segmentation problem. The contributions are mainly listed in detail:

• A novel framework is proposed for segmentation of complex and various non-rigid motion from
3D reconstruction using ordered subspace clustering.

• Instead of nuclear normal, a quadratic constraint is used in the self-representation model to
improve the clustering performance.

• An efficient algorithm is implemented solving the complicated optimization involved in
proposed framework.

This paper is organized as follows. First, related works are presented in Section 2. Section 3 gives
the proposed model in detail. The solution to the optimization model above is given in Section 4.
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In Section 5, the proposed method along with state-of-the-art methods are evaluated on several public
datasets. Finally, we give the conclusions of this paper in Section 6.

2. Related Works

We briefly summarize the representative methods of NRSfM, particularly the NRSfM method in [6,10].
In recent works, Dai et al. [6] proposed a method of NRSfM which adopted a low-dimensional

subspace to model the non-rigid 3D shapes, which is similar to the principle of RPCA, proposed
by Cand‘es et al. [8]. The RPCA approach usually represents the noisy 2D data derived from a
low-dimension subspace, where the clean data is recovered by the following objective function,

min
D,E
‖D‖∗ + λ‖E‖l , s.t. X = D + E, (1)

where D is the clean data of low-dimension subspace with low-rank constraint modeled by nuclear
normal ‖ · ‖∗. E denotes residual noise, and X denotes corrupted data with noise. ‖E‖l denotes error
norm, when l = 1 it is the sparse error and l = 1, 2 it denotes group sparse error. The error penalty
parameter is noted by λ > 0 .

The NRSfM model proposed by Dai et al. [6] can be regarded as an extension of RPCA, and the
overall model is described below,

min
X,E
‖X‖∗ + λ‖E‖2, s.t. W = RX# + E, (2)

where W ∈ R2F×N is the known 2D information of N points, which also can be seen in the sequences
projected from 3D points coordinates noted by X# ∈ R3F×N , here, the number of 3D points is N
and there are totally F frames. X ∈ RF×3N is a reshape of X#. The projection matrix is denoted by
R ∈ R2F×3F, which can be pre-computed out of the 2D sequences by the methods in [6,23]. In this
method, the l2 norm is selected for the error E under the assumption of Gaussian noise. It can be
replaced by other norms as in RPCA. It is called a “prior-free" method as there is no prior assumption
on non-rigid framework or camera motions.

Zhu et al. [10] argued that Dai et al.’s method [6] assumed the data sampled from a subspace
and suffered the same low accuracy as RPCA, when it is applied to complex and various motion
reconstruction. Zhu et al. proposed a NRSfM method by modeling complex and various non-rigid
motion as subspace set inspired from subspace clustering method, the low rank representation
(LRR) [14,15], and the model is described below,

min
X,Z,E
‖Z‖∗ + λ‖E‖l + γ‖X‖∗, s.t. W = RX# + E, X = XZ. (3)

where X = XZ stands for subspace clustering constraint which automatically enforces structure of
subspace set X, with Z, stands for a matrix of low rank coefficients. W = RX# + E constrains the 3D
reconstruction out of 2D projections, that is, W to X. The penalty parameter for ‖X‖∗ is γ and the
penalty parameter of ‖E‖l is λ, λ > 0. It is shown that the method simultaneously reconstructs and
clusters the 3D complex non-rigid motions X, which involved a subspace set by low-rank affinity
matrix Z.

Recently, ordered subspace clustering (OSC) [16] and the ordered subspace clustering with
block-diagonal priors (QOSC) [17] is proposed. We try to model the sequential property of sequence
data in the view of subspace clustering.

3. The Proposed Model

In the real world, most of the motions are continuous and sequential, especially for the videos
captured by a monocular camera. However, current methods about NRSfM do not utilize the sequential
or ordered information embedded in the non-rigid motion data. As for this problem, the OSC [16] and
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the QOSC [17] give a proper way to model the sequential property. Motivated by OSC and QOSC,
we introduce a penalty term to penalize the similarity between consecutive columns of the low rank
representation Z from reconstructed 3D motion data X, thus we obtain the following NRSfM model:

min
X,Z,E

1
2
‖X− XZ‖2

F +
λ

2
‖Z‖∗ + λ1‖ZS‖2,1 + λ2‖X‖∗ + λ3‖E‖1

s.t. W = RX# + E,
(4)

where S is a triangular matrix only consisting of −1, 1, and 0 values, with the diagonal elements being
−1 and the second being 1,

S =



−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . −1

0 0 0 · · · 1


n×(n−1)

,

which can make consecutive columns of Z alike. Thus ‖ZS‖2,1 seeks to preserve the sequential property
of Z for penalty , which is determined by the inherent sequential property of the the motion data
X. Additionally, the norm ‖ · ‖2,1 is used to maintain the sparsity. It is also denoted that the rigid
constraint of X = XZ, the low rank self-representation, is regarded as a reconstruction error in the
objective function.

To further obtain good clustering performance, we tried to improve the current methods by
modeling the structure of the affinity matrix of the LRR representation Z. In subspace clustering,
the ideal result of representation coefficients of inter-subspace items are all zeros and only items
from the same subspace are non-zeros. Thus its certain permutation and affinity matrix drawn
from different subspaces are block-diagonal. Therefore the clustering performance is improved
by utilizing the block-diagonal prior. One reprehensive method is the subspace segmentation via
quadratic programming (SSQP) [18], which introduces a quadratic term to force the block-diagonal
feature for clustering, and it has been proved that SSQP satisfies the block-diagonal feature on the
assumption of orthogonal linear subspaces [18]. Following this way, we revise the model in (4) by
replacing the low rank constraint of the Z with a a quadratic term to obtain an affinity matrix with the
block-diagonal feature,

min
X,Z,E

1
2
‖X− XZ‖2

F +
λ

2
‖ZTZ‖1 + λ1‖ZS‖2,1 + λ2‖X‖∗ + λ3‖E‖1

s.t. W = QX# + E, Z ≥ 0, diag(Z) = 0,
(5)

where Z ≥ 0, diag(Z) = 0 is set to get a feasible solution for Z as in [18].

4. Solutions

For the problem (4), the algorithm named alternating direction method of multipliers
(ADMM) [24] is used to search for the optimized solution. Let U = ZS, then problem in Equation (4) is
turned to the problem with the augmented Lagrangian with two constraints.
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min
X,Z,U,E

1
2
‖X− XZ‖2

F +
λ

2
‖ZTZ‖1 + λ1‖U‖2,1 +

γ

2
‖U − ZR‖2

F

+ λ2‖X‖∗ +
λ3

2
‖E‖1 +

γ1

2
‖W − RX# − E‖2

F

+ 〈F, U − ZR〉+ 〈G, W − RX# − E〉
s.t. diag(Z) = 0, Z ≥ 0,

(6)

where F and G are Lagrangian multipliers and γ, γ1 are weight parameters for the term U = ZS and
W = RX# + E. Now we can solve Equation (6) by the following four sub-problems for X, Z, U, and E
when fixing other variables alternatively.

1. Fix Z, U and E, solve for X by

min
X

f (X)
1
2
‖X− XZ‖2

F + λ2‖X‖∗ + 〈G, W − RX# − E〉+ γ1

2
‖W − RX# − E‖2

F. (7)

equivalently, we have

min
X

f (X) = λ2‖X‖∗ +
γ1

2
‖X− (Xk −

ϑ f (Xk)

γ
)‖2

F. (8)

where ϑ f (Xk) is the derivative of f (X) when X = Xk, and Z = SVD(C), C = Xk −
ϑ f (Xk)

γ .

2. Fix X, U and E, solve for Z by

min
Z

f (Z) =
1
2
‖X− XZ‖2

F +
λ

2
‖ZTZ‖1 + 〈F, U − ZS〉+ γ

2
‖U − ZS‖2

F,

s.t. diag(Z) = 0, Z ≥ 0.
(9)

To be noted, Z is element-wise nonnegative, so (9) can be turned into:

f (Z) =
1
2
‖X− XZ‖2

F +
λ

2
eTZTZe + 〈F, U − ZS〉+ γ

2
‖U − ZS‖2

F, (10)

where e ∈ Rn is a vector of all 1. So the model (9) is a classical convex quadratic problem which has
many practical solutions. Here a simple and efficient solution via projected gradient is adopted.

Firstly, we compute the derivative of f (Z) for Z,

∂ f (Z) =− XT(X− XZ) + λ1Ze− FST − γ(U − ZS)ST , (11)

where e ∈ Rn×n is a matrix in which every element is 1. Then to obtain the optimized solution,
for function f (Z), the derivative is set to be zero and we have

XXTZ+Z(λ1e + γSST) = XTX + FST + γUST . (12)

3. Fix X, E and Z, and solve for U by

min
U

f1(U) =λ2‖U‖2,1 + 〈F, U − ZS〉+ γ

2
‖U − ZS‖2

F. (13)

Equivalently, we have

min
U

f1(U) = λ1‖U‖2,1 +
γ

2
‖U − (ZS− 1

γ
F)‖2

F. (14)
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Denote Q = ZS− 1
γ F, problem (8) can be solved in [14],

Ui =


‖Qi‖−

λ1
γ

‖Qi‖
Qi if ‖Qi‖ > λ1

γ

0 otherwise,
(15)

where Ui stands for the i-th column of U , Qi stands for the i-th column of Q respectively. Here is the
closed-form solution.

4. Fix Z, X and U, solve for E by

min
E

λ2

2
‖E‖1 + 〈G, W − RX# − E〉+ γ1

2
‖W − RX# − E‖2

F, (16)

which is equivalent to

min
E

f1(E) = λ2‖E‖1 +
γ

2
‖E− (W − RX# − G

γ
)‖2

F (17)

This problem can be easily solved by the current sparse subspace clustering method.
Combining all the above updating formulas, we summarize the step for proposed OSC-NRSfM in

Algorithm 1. The parameter setting refers to that in [14]. For Algorithm 1, usually we apply ADMM to
find the optimized solution. By solving four sub-problems step by step, we can repeat the searching
process to obtain the final solution.

Algorithm 1 Solving data representation of the proposed ordered subspace clustering (OSC)-non-rigid
structure-from-motion (NRSfM).

Input: The input data X, maximal iteration number N, parameters λ, λ1, λ2, γ, γ1, constant ρ.
Output: The data representation Z.

1: Initialization: Z0 = 0, U0 = 0, E0 = 0, X0 = 0, t = 0, G = 0, F = 0, ρ = 1.3.
2: while t < N do

3: Calculate Xt by (7);
4: Find Zt by solving (9);
5: Find Ut by solving (13);
6: Find Et by solving (16);
7: Update F ← F + γ(U − ZS) ;
8: Update G ← G + γ1(W − RX# − E) ;
9: Update γ← ργ, γ1 ← ργ1;

10: Update t← t + 1;
11: end while

5. Experiments and Analysis

To evaluate performances of state-of-the-art clustering methods together with our proposed
method noted by OSC-NRSfM, we conducted experiments on representative datasets. First,
we performed face clustering and expression clustering experiments on the BU-4DFE dataset [25].
Second, we widely evaluated our proposed method for complex non-rigid motion using MSR Action3D
Dataset. Finally, we tested our method on the Utrecht multi-person motion (UMPM) [26] dataset,
which contains 3D joint positions and 2D point tracks of real-world 2D projections out of videos.
We compared the proposed OSC-NRSfM method with LRR [14], OSC [16], QOSC [17], CNRMS [10]
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and sparse subspace clustering (SSC) [13]. Here we used subspace clustering error (SCE) [16] and
normalized mutual information (NMI) to measure clustering results, which are described as follows.

SCE =
num.misclssified points

total num.of points
, (18)

where the denominator stands for the number of all samples and the numerator stands for the number
of misclassified samples.

The parameters λ, λ1, λ2, λ3 of our methods and the ones of the compared approaches were
tuned experimentally according to the experimental results and the parameter setting analysis
described in [10,14,16,17].

5.1. Face Clustering on Dynamic Face Sequence

The experiments in this section are face clustering with complex conditions on the BU-4DFE
dataset [25]. The dataset has 101 subjects (the female/male ratio is 3/2), including different races.
Each subject was required to complete six expressions (happy, surprise, sad, angry, fear and disgust).
All 2D face images sequence and dynamic 3D face shapes of different subjects were collected
simultaneously and some sample images with 2D feature tracks are shown in Figure 1. In this paper,
we only used 2D face images sequences to test the proposed method, hence ASM was introduced to
get 76 2D feature tracks for each face image. We randomly selected c = [2, 3, 5, 8, 10, 20, 30] subjects out
of 101 persons to complete face clustering. For each subject, we took continuous 11 frames for each
face expression, and totally 66 frames of 6 expressions are selected for each subject. Therefore, the data
matrix for c subjects is X ∈ R132c×76. We repeated 30 times of tests, and the c subjects are selected
randomly for each test. The optimal parameter settings were λ = 0.01, λ1 = 0.2, λ2 = 0.001, λ3 = 0.05.

Figure 1. Sample images with 2D feature tracks from the BU-4DFE dataset.
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It is easy to observe from Table 1 that the proposed method OSC-NRSfM outperformed other
methods, except for the case when the number of clusters increased. The results show that the modified
methods improved the accuracy of clustering impressively if there were relatively more cluster centers.

Table 1. Face clustering error rate (%) on the BU-4DFE dataset for 2,3,5,8,10,20,30 subject classes.

Subject The Error Rate(%)

CNRMS Proposed LRR OSC QOSC SSC

2 14.22 6.16 34.60 0.68 0.33 47.50
3 19.21 1.53 35.46 1.87 0.27 63.33
5 24.94 0.96 27.37 3.92 2.13 66.67
8 28.13 0.41 28.38 5.64 4.82 78.89

10 26.24 0.28 26.48 8.45 7.16 78.78
20 30.14 2.93 34.20 9.18 6.65 80.11
30 34.73 5.63 36.14 10.10 7.62 82.28

5.2. Expression Clustering on Dynamic 3D Face Expression Sequence

Facial expressions are very important factors in communications. The BU-4DFE dataset includes
3D face expression sequences for 101 persons, and each person has six expression sequences. Therefore,
the expression clustering aims to cluster the face image sequences to 6 categories regardless of the
identities. In this experiment, we selected 6 expression sequence from c subjects of the 101 persons to
test. For the i-th expression sequence of a subject, we picked continuous 11 frames. Then, 2D features
of c subjects for i-th expression can be represented as Xi, Xi(i = 1, 2, . . . , 6) ∈ R22c×76. The total face
images test dataset is X = [X1, ..., X6]. For one given c from the set c = [2, 3, 5, 8, 10, 20, 30], we randomly
selected c subjects to repeat each experiment 30 times and then calculated the average clustering
performance as final experimental result. The optimal parameter settings were λ = 0.01, λ1 =

0.02, λ2 = 0.001, λ3 = 0.1.
The expression clustering error rates on BU-4DFE are shown in Table 2. It can be seen that

the performance of proposed OSC-NRSfM method outperforms the compared methods, which
demonstrates our proposed method can deal with complex sequences data such as facial expressions
sequence. We visualized the difference of affinity matrices of Z when the number of subjects was
five in Figure 2. The block-diagonal property of affinity matrices Z demonstrated the block-diagonal
constraint to Z is functional. The affinity matrices provided by the proposed method are obviously
with block-diagonal features and are more numerous within block weights. The clustering results of Z
are shown in Figure 3. Here the same color means the same class it belongs to.

Table 2. Expression clustering error (%) on BU-4DFE.

Subject The Error Rate(%)

CNRMS Proposed LRR OSC QOSC SSC

2 31.14 15.28 49.47 28.66 19.12 52.32
3 32.00 16.35 60.51 21.30 20.27 67.44
5 45.34 20.16 66.87 26.48 21.47 77.33
8 50.96 12.13 70.27 32.23 24.85 79.38

10 55.86 8.76 72.30 32.41 23.08 79.44
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(a) LRR (b) CNRMS (c)Proposed

(d) OSC (e) QOSC (f) SSC

Figure 2. The visualization results of affinity matrices Z for expression clustering on the BU-4DFE dataset.

(a) LRR

(b) CNRMS

(c) Proposed

(d) OSC

50 100 150 200 250 300

(e) QOSC

(f) SSC

Figure 3. Clustering results of six expressions of five subjects on the BU-4DFE dataset.
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5.3. Clustering on MSR Action3D Dataset

MSR-Action3D is a classical action dataset consist of the depth data. The dataset contains 20 kinds
of actions for 10 subjects: high arm wave, hand catch, high throw, horizontal arm wave, two hand wave,
hammer, hand clap, draw x, forward kick, draw tick, draw circle, forward punch, sideboxing, jogging,
tennis serve, golf swing, tennis swing, bend, side kick, pick up and throw. Each action was performed
three times by each subject. The sampling frequency was 15 frames/s, and the spatial resolution of each
image was 640× 480. The dataset consists of 23,797 depth maps. Some samples are shown in Figure 4.
Many actions were very similar despite clean backgrounds, so the dataset was challenging. To obtain
the 2D motion, we utilized a real-time skeleton tracking algorithm [27] to get 20 joint positions in
the depth image. In our experiment, we selected c = [2, 3, 5, 8, 10] kinds of actions from 21 kinds of
actions randomly. For each selected action, we took continuous 8 frames , therefore, the data matrix is
X ∈ R16c×20. For one given c, we randomly selected c actions to test 30 times so as to calculate the mean
clustering errors. The parameter settings are λ = 0.01, λ1 = 0.1, λ2 = 0.001, λ3 = 0.1. The experimental
results are listed in Tables 3 and 4, 3D action clustering error rates and NMI, which demonstrates that
the proposed method improved the accuracy of clustering impressively especially when the number
of subjects was large. The proposed method was not the fastest one, but it was relatively fast with
better performance.

Table 3. 3D action clustering error (%) on the MSR Action3D dataset.

Actions The Error Rate (%)

CNRMS Proposed LRR OSC QOSC SSC

2 31.88 14.06 38.17 31.54 4.29 45.08
3 27.33 19.05 51.66 40.42 12.97 50.21
5 40.93 26.74 63.26 51.67 18.53 60.30
8 44.16 16.92 66.50 54.74 27.32 65.91

10 54.12 14.85 66.86 57.89 27.73 67.43

Figure 4. Sample images from the MSR Action3D dataset.
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Table 4. 3D action normalized mutual information (NMI) on MSR Action3D dataset.

Actions Normalized Mutual Information (NMI)

CNRMS Proposed LRR OSC QOSC SSC

2 0.0293 0.6674 0.1023 0.2002 0.8157 0.0571
3 0.0567 0.6425 0.1812 0.2954 0.7910 0.2236
5 0.0919 0.6606 0.2706 0.4197 0.7044 0.3158
8 0.1199 0.8348 0.3622 0.5007 0.7335 0.3908

10 0.1304 0.8428 0.4118 0.4929 0.7504 0.4203

5.4. Clustering on UMPM Motion Dataset

The UMPM Benchmark consists of a set of human motion sequences collected in the real
environment, which can be regarded as complex and various non-rigid motion due to several
representative daily human actions and interactions of big range change of poses/shapes. Each motion
sequences are performed by 1, 2, 3 or 4 persons, and acquired under four fixed viewpoints. The dataset
includes the synchronized video recordings and 3D joints information, which were captured by motion
capture device. This paper selected eight coherent motion sequences {“p1− table− 2”, “p1− grab−
3”, “p1− chair− 2”, “p2− staticsyn− 1”, “p4− f ree− 11”, “p1− orthosyn− 1”, “p3− ball− 1”, “p3−
meet− 2”} to evaluate our method. Here, the video named “p1− table− 2” represents a video recorded
by one person performing two actions around the table. The sample images and markers of UMPM
dataset [26] are shown in Figure 5.

(a) Sampled images

(b)Fifteen virtual joint positions per subject

Figure 5. Sample images and marker information from the UMPM dataset [26].

As each of the video was relatively large, about 5600 frames, we picked one frame every eight
frames, therefore, in total 700 frames were used for testing. We used 15 virtual joint positions per
subject as inputs, and then according to the given camera parameters, the corresponding 3D joint
position may be reconstructed. In the following, our proposed method will report the ordered subspace
clustering result via 3D reconstruction. Since the UMPM dataset contains the known 3D joint positions
obtained directly from the motion capture markers. This paper conducts LRR on the 3D ground-truth,
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and the other methods are based on the 2D joint coordinates computed from the 3D joint positions.
Table 5 shows the quantitative results on the accuracy of clustering. Table 6 shows the NMI results
on clustering. In Table 5, the clustering error rate of the proposed method was lower than the other
methods, especially, the error of our method was lower than LRR, which was based on the captured
3D joints. This demonstrates that the introduced 3D reconstruction information significantly enhances
the accuracy of clustering. Figure 6 is the visual clustering results of ′′p3−meet− 2”. Here the same
color means the same class it belongs to. Small blocks in different colors mean clustering error. Table 7
shows the running time of different methods. The proposed method provides a balance of efficiency
and accuracy.

Table 5. The clustering error (%) for eight sequences {“p1− table− 2”, “p1− grab− 3”, “p1− chair−
2”, “p2− staticsyn− 1”, “p4− f ree− 11”, “p1− orthosyn− 1”, “p3− ball − 1”, “p3−meet− 2”}.

Human Motion Sequences The Error Rate (%)

CNRMS Proposed LRR OSC QOSC SSC

p1− table− 2 31.63 25.80 36.96 33.89 30.82 33.61
p1− grab− 3 18.74 15.98 25.18 20.65 19.09 54.45
p1− chair− 2 22.50 13.69 27.68 22.24 21.31 14.62

p2− staticsyn− 1 3.62 2.22 6.97 5.86 3.01 16.17
p4− f ree− 11 0.50 0.16 2.36 2.20 1.10 7.08

p1− orthosyn− 1 30.31 25.32 46.29 38.39 30.45 47.58
p3− ball − 1 13.34 12.50 25.56 13.78 14.10 46.09
p4−meet− 2 15.23 14.66 28.74 17.10 14.98 26.55

Table 6. The NMI for 8 sequences {“p1− table− 2”, “p1− grab− 3”, “p1− chair− 2”, “p2− staticsyn−
1”, “p4− f ree− 11”, “p1− orthosyn− 1”, “p3− ball − 1”, “p3−meet− 2”} on UMPM dataset.

Human Motion Sequences Normalized Mutual Information (NMI)

CNRMS Proposed LRR OSC QOSC SSC

p1− table− 2 0.4727 0.4665 0.2926 0.4540 0.2804 0.3638
p1− grab− 3 0.3804 0.5286 0.4639 0.4944 0.4539 0.2403
p1− chair− 2 0.4774 0.5066 0.3514 0.3566 0.3602 0.5904

p2− staticsyn− 1 0.7078 0.8029 0.4546 0.4974 0.3173 0.2518
p4− f ree− 11 0.6411 0.9675 0.7032 0.7684 0.7192 0.5164

p1− orthosyn− 1 0.3139 0.3244 0.3198 0.3202 0.2553 0.2175
p3− ball − 1 0.1842 0.3095 0.4405 0.2871 0.3793 0.1151
p4−meet− 2 0.4619 0.6030 0.4788 0.6049 0.5126 0.6010

Table 7. The running time for 8 sequences {“p1 − table − 2”, “p1 − grab − 3”, “p1 − chair −
2”, “p2− staticsyn − 1”, “p4− f ree − 11”, “p1− orthosyn − 1”, “p3− ball − 1”, “p3− meet − 2”} on
UMPM dataset.

Human Motion Sequences Running Time (s)

CNRMS Proposed LRR OSC QOSC SSC

p1− table− 2 32,206.98 78.20 15.03 1041.21 556.36 18.02
p1− grab− 3 14,602.75 72.20 16.41 1022.66 546.11 19.05
p1− chair− 2 23,847.55 64.41 13.75 829.50 453.08 13.58

p2− staticsyn− 1 22,581.06 620.34 198.73 784.54 424.89 7.53
p4− f ree− 11 38,383.29 303.11 110.44 777.50 429.48 22.50

p1− orthosyn− 1 14,616.11 75.75 88.78 739.13 396.98 7.97
p3− ball − 1 50,912.36 287.61 73.62 780.59 420.13 18.02
p4−meet− 2 46,776.58 397.76 1,204.52 943.67 509.44 22.36
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(a) ID

(b) LRR

(c) CNRMS

(d) Proposed

(e) OSC

(f) QOSC

(g) SSC

Figure 6. Clustering results of “p3−meet− 2".

6. Conclusions

The paper has proposed an ordered subspace clustering method for complex and various non-rigid
motion via 3D reconstruction. In the proposed model, we reveal the sequential property and intrinsic
structure of the complex and various non-rigid motion based on the reconstructed 3D information.
Specially, inspired by QOSC and CNRMS, we formulate the block-diagonal structure and sequential
constraint to 3D representation generated by CNRMS model so as to obtain good representation for
clustering. We verified the proposed method OSC-NRSfM on three public datasets. The experimental
results demonstrated that the proposed method of this paper outperforms state-of-the-art methods.
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