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Abstract

:

The time-delayed displacement feedback control is provided to restrain the superharmonic and subharmonic response of the elastic support beams. The nonlinear equations of the controlled elastic beam are obtained with the help of the Euler–Bernoulli beam principle and time-delayed feedback control strategy. Based on Galerkin method, the discrete nonlinear time-delayed equations are derived. Using the multiscale method, the first-order approximate solutions and stability conditions of three superharmonic and 1/3 subharmonic resonance response on controlled beams are derived. The influence of time-delayed parameters and control gain are obtained. The results show that the time-delayed displacement feedback control can effectively suppress the superharmonic and subharmonic resonance response. Selecting reasonably the time-delayed quantity and control gain can avoid the resonance region and unstable multi-solutions and improve the efficiency of the vibration control. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
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1. Introduction


The elastic beams have wide application in many engineering fields. Therefore, it is important to investigate the vibration problem of the elastic beams. As a very important topic in structural dynamics, the dynamics problem of the elastic beam is of practical importance in civil engineering [1,2,3]. At the same time, the vibration control problem of flexible structures has also received extensive attention. Different vibration control strategies are used to study vortex-induced vibrations of a bridge deck [4,5,6], building structure [7,8,9,10,11,12], and other structures [13,14,15]. It is worth mentioning that scholars have carried out much research on piezoelectric-based vibration control [16,17,18,19,20,21,22,23,24,25,26].



As a control strategy, the time-delayed feedback control technology, along with the rapid development of control theory [27,28,29], sensor testing technology, and computer technology, has attracted widespread attention and practical application in the field of aerospace engineering [30], vehicles engineering [31], mechanical engineering [32], civil engineering [33], etc. Delay feedback control can improve the stability of the controlled system. Based on the time-delayed displacement feedback, the time-delayed velocity feedback and the time-delayed acceleration feedback control strategy, the vibration absorber has excellent effectiveness to suppress the vibration of the system.



In the past few years, the time-delayed feedback control technology has received much attention. An optimal control method for seismic-excited building structures with multiple time delays is investigated [34]. The time delay may be used to improve the system stability [35,36]. The delayed position-feedback technique is used to reduce the payload pendulations [37]. Daqaq et al. [38] presented a comprehensive investigation of the effect of feedback delays on the non-linear vibrations of a piezoelectrically-actuated cantilever beam. Qian and Tang [39] studied the time delay control and presented that it can achieve good control performance of a dynamic beam structure system. Xu and Pu [40] investigated the bifurcations due to time delay in the feedback control system with excitation. Kalmar-Nagy, Stepan, and Moon [41] studied the existence of a subcritical Hopf bifurcation in the delay-differential equation model of the so-called regenerative machine tool vibration. Peng et al. [42] investigated the stability and bifurcation of an SDOFsystem with time-delayed feedback. Li et al. [43] investigated the nonlinear dynamics of a Duffing–van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay. Kammer and Olgac [29] conceived of a concept study that explores new directions to enhance the performance of such energy-harvesting devices from base excitation. Jin and Hu [44] investigated the stabilization of traffic flow in an optimal velocity model via delayed-feedback control. Omidi and Mahmoodi [45,46] investigated nonlinear vibration suppression of flexible structures using the nonlinear modified positive position feedback approach. El-Ganaini et al. [47] investigated the positive position feedback (PPF) controller for suppression of nonlinear system vibration. Warminski et al. [48] selected control algorithms for active suppression of nonlinear composite beam vibrations. Belhaq et al. [49,50] investigated energy harvesting in a Mathieu–van der Pol–Duffing MEMS device using time delay and quasi-periodic vibrations in a delayed van der Pol oscillator with time-periodic delay amplitude. Ji et al. [51,52,53] presented modeling and tuning for a time-delayed vibration absorber with friction and investigated sub-harmonic resonances and periodic and chaotic motion of a time-delayed nonlinear system.



These results show that the new control method (time-delayed feedback control) makes the system more stable and improves the control performance. Therefore, in this paper, adopting the time-delayed displacement feedback control strategy, the piezoelectric coupling elastic beam is controlled in order to study its superharmonic resonance and subharmonic resonance response. Based on the established delay dynamic system, we obtained the first-order resonance response approximate solution and analyzed the influence of the control gain and the time delay values on the two resonant responses. We organize the rest of the paper as follows: In Section 2, we present a mathematical formulation of the problem. In Section 3 and Section 4, the three superharmonic resonance and 1/3 subharmonic resonance are respectively discussed by using the method of multiple scales. A short summary of the results is presented in Section 5.




2. Equations of Motion


The mathematical model for the cantilever is based on the nonlinear Euler–Bernoulli beam theory. The partial-differential equation of planar motion and that associated with an external excited elastic beam are as follows [54]:


mν¨+cν˙−EAp(t)ν″+EIν″″+kνδ(x−l)−EA2lν″∫0lν′2dx=q(x,t)+Fn(x)cosΩt,



(1)






ν(0,t)=0,ν′(0,t)=0,ν″(l,t)=0,EIν‴(l,t)+kν(l,t)=0,



(2)




where m is the linear density; c is the coefficient of linear viscous damping per unit length; v denotes the displacement component along the y-axis; the primes and overdots indicate the derivatives with respect to the arc length x and time t, respectively; E is Young’s modulus of elasticity; A is the cross-sectional area; I is the moment of inertia about the neutral axis of the beam; l is the length of the beam; and p(t) is the axial force; The distributed load q(x,t) of the piezoelectric actuator (see Figure 1), is given by:


q(x,t)=∂2M∂x2,



(3)




where M is a uniformly-distributed bending moment expressed as:


M=3bdd31EaEIVa(t)3EI+6bEatad2+2bEata3[H(x−x1)−H(x−x2)].



(4)




where b and ta are the width and thickness of the piezoelectric actuator, respectively; d31 is a piezoelectric constant; Ea is the actuator Young’s modulus; tb is the thickness of the beam; Va(t) is the control voltage; H(x) is the Heaviside step function; and x1 and x2 are the starting and ending coordinates of the piezoelectric strip.



In this paper, the time delayed feedback control is used to suppress the large vibration of the beam. The block diagram is shown in Figure 2.



We derive a reduced-model for the system under consideration by using the Galerkin procedure in the form:


ν=∑i=1∞ϕi(x)qi(t),



(5)




where the qi(t) are generalized temporal coordinates and the ϕi(x) are the linear mode shapes of a elastic beams and are given by:


ϕi(x)=Aicosδix−coshεix−σisinδix−δiεisinhεix



(6)




where:


σi=δi2cosδil+εi2coshεilδi2sinδil+εiδisinhεil,δi=ri+g441/2+g24,εi=ri+g441/2−g24,








and g2=p(t)/EI, while ri is calculated using the following transcendental equation:


EIδi5+EIεi4δi+2EIεi2δi3cosδilcoshεil+EI(εiδi4−εi3δi2)sinδilsinhεi−k(εi2+δi2)sinδilsinhεil+k(δi3/εi+εiδi)cosδilsinhεi=0



(7)







Substituting Equation (5) into Equation (1) and using the Galerkin method, we obtain the following set of nonlinear ordinary differential equations:


q¨n(t)+μnq˙n(t)+ωn2qn(t)+∑i,j,k=1∞Γnijkqi(t)qj(t)qk(t)=MnVa(t)+fn(x)cosΩt,n=1,2,…,∞,



(8)




where:


μn=cm,Γnijk=−EA2ml∫0lϕi″(x)ϕn(x)∫0lϕj′(x)ϕk′(x)dxdx,M=3bdd31EaEI3EI+6bEatad2+2bEata3[ϕ(x1)−ϕ(x2)],fn=Fn∑0∞ϕndx.



(9)




We nondimensionalize Equation (8) and obtain:


q¨n∗(t∗)+μn∗q˙n∗(t)+ωn∗2qn∗(t∗)+∑i,j,k=1∞Γnijk∗qi∗(t∗)qj∗(t∗)qk∗(t∗)=Mn∗Va∗(t∗)+fn∗cosΩ∗t∗,n=1,2,…,∞,



(10)




where t∗=ω1t,τ∗=ω1τ,qn∗=qn(t)/l,ωn∗=ωn/ω1,μn∗=μn/ω1,Γnijk∗=Γnijkl2/ω12,Mn∗=Mn,fn∗=f/ω1l, and Ω∗=Ω/ω1. For convenience, remove the asterisk of the following equation.



In this article, the driving voltage of piezoelectric excitation uses the time-delayed displacement feedback strategy, for the following form:


Va(t)=∑m=1∞−k¯aϕm(x3)qm(t−τ),



(11)




where k¯a is control gain and τ is time delay. Substituting Va(t) into Equation (10), we obtain:


q¨n(t)+μnq˙n(t)+ωn2qn(t)+∑i,j,k=1∞Γnijkqi(t)qj(t)qk(t)=−∑m=1∞kanmqm(t−τ)+fncosΩt,



(12)




where Mnk¯aϕm(x3)=kanm.



The governing equation expressed in the modal coordinate form is:


qn¨(t)+μnqn˙(t)+ωn2qn(t)+Γnnnnqn3(t)=−kannqn(t−τ)+fncosΩt.



(13)








3. Superharmonic Resonance


We use the method of multiple scales [55,56,57] to solve three superharmonic resonance. The adjusting parameters are as follows: μn=O(ε),Γnnnn=O(ε),kann=O(ε),fn=O(ε),3Ω=ω0+εσ,σ=O(1). We express the solution of Equation (13) in the form:


qn(t;ε)=qn0(T0,T1,…)+εqn1(T0,T1,…)+…,



(14)







Substituting Equation (14) into Equation (13) and equating the coefficients of ε0 and ε1 on both sides, we obtain:


D02qn0+ω02qn0=fncosΩT0,



(15)






D02qn1+ω02qn1=−2D0D1qn0−μnD0qn0−Γnnnnqn03−kannqn0(t−τ).



(16)







The general solution of Equation (15) can be written as:


qn0=An(T1)exp(iω0T0)+Λnexp(iΩT0)+cc,



(17)




where i=−1,Λn=12fn(ω02−Ω2)−1, and cc stands for the complex conjugate of the preceding terms. Substituting qn0 into Equation (16), we obtain:


D02qn1+ω02qn1=−[iω0(2An′+μnAn)+6ΓnnnnAnΛn2+3ΓnnnnAn2A¯n+kannAnexp(−iω0τ)]exp(iω0T0)−ΓnnnnAn3exp(3iωT0)+ΓnnnnΛn3exp(3iΩT0)+3ΓnnnnAn2Λnexp[i(2ω0+Ω)T0]+3ΓnnnnA¯n2Λnexp[i(Ω−2ω0)T0]+3ΓnnnnAnΛn2exp[i(ω0+2Ω)T0]+3ΓnnnnAnΛn2exp[i(ω0−2Ω)T0]−Λn[iμnΩ+3ΓnnnnΛn2+6ΓAnA¯n]exp(iΩT0)−kannΛnexp[iω0(T0−τ)]+cc.



(18)







Secular terms will be eliminated from the particular solution of Equation (18), if we let:


iω0(2An′+μnAn)+6ΓnnnnAnΛn2+3ΓnnnnAn2A¯n+ΓnnnnΛn3exp(iσT1)+kannAnexp(−iω0τ)=0.



(19)







To solve Equation (19), we write An in the polar form:


An=12anexp(iβn),



(20)




where an and βn are real functions of T1. Substituting Equation (20) into Equation (19) and separating the result into real and imaginary parts, we have:


an′=−12μnean−ΓnnnnΛn3ω0sinγn,



(21)






anγn′=σean−3ΓnnnnΛn2ω0an−3Γnnnn8ω0an3−ΓnnnnΛn3ω0cosγn,



(22)




where γn=σT1−βn,μne=μn−kannsin(ω0τ)/ω0 and σe=σ−kanncos(ω0τ)/(2ω0). Therefore, for the first approximation:


qn=12ancos(3Ωt−γn)+fn(ω02−Ω2)−1cosΩt+O(ε).



(23)




where an and γn are defined by Equations (21) and (22).



The steady-state motions correspond to an′=γn′=0; that is, they correspond to the solutions of:


−12μnan+kannan2ω0sin(ω0τ)=ΓnnnnΛn3ω0sinγn



(24)






σ−3ΓnnnnΛn2ω0an−3Γnnnn8ω0an3−kannan2ω0cos(ω0τ)=ΓnnnnΛn3ω0cosγn



(25)







Squaring and adding these equations leads to the frequency-response equation:


−12μn+kann2ω0sin(ω0τ)2+σ−3ΓnnnnΛn2ω0−3Γnnnn8ω0an2−kann2ω0cos(ω0τ)2an2=Γnnnn2Λn6ω02.



(26)







Here, we study the stability of the steady-state motion, setting:


a=an0+an1,γn=γn0+γn1,



(27)







Substituting Equation (27) into Equations (21) and (22), expanding for small an1 and γn1, noting that an0 and γn0 satisfy Equation (24), and keeping linear terms in an1 and γn1, we obtain:


an1′=−12μnean1−an0(σe−3ΓnnnnΛn2ω0−3Γnnnnan028ω0)γn1,



(28)






(1+an1an0)γn1′=1an0(σe−3ΓnnnnΛn2ω0−9Γnnnn8ω0an02)an1−12μneγn1,



(29)







Using Equations (28) and (29), one can obtain the following eigenvalue equation:


−12μne−λ−an0(σe−3ΓnnnnΛn2ω0−3Γnnnnan028ω0)1an0(σe−3ΓnnnnΛn2ω0−9Γnnnn8ω0an02)−12μne−λ=0











Expanding this determinant yields:


λ2+μneλ+ρ=0,



(30)




where:


ρ=14μne2+(σe−3ΓnnnnΛn2ω0−3Γnnnnan028ω0)(σe−3ΓnnnnΛn2ω0−9Γnnnn8ω0an02).











Hence, the steady-state motions are stable when μne>0 and ρ>0, and are otherwise unstable.



Through concrete examples, we carry out the numerical analysis and discussion of the superharmonic resonance response of the first order modal of the controlled beam. Geometric dimensions and material characteristic parameters of the beam and piezoelectric actuator are as follows. Beam: l=99.62×10−2m,A=15.36×10−4m2,E=34.5GPa,I=9.8662×10−8m4,k=6.872×104N/m,p=2.574×10−1kN,m=4.4kg/m. Piezoelectric actuator: d31=−270×10−12m/V,Ea=108GPa,b=0.2×10−2m,2ta=0.04×10−2m,d=0.5×10−2m,x1=12×10−2m,x2=18×10−2m,x3=80×10−2m. For such an elastic beam, the first four non-dimensional natural frequencies and eigenfunctions are shown in Figure 3.



In order to more intuitively display the suppression effect of the delay feedback control, Figure 4a shows the response of the system with no control, active control, and time delay feedback control. It shows that the time delay feedback control can achieve significant vibration suppression effects, and the effect is better than active control. On the other hand, the delay feedback control depends on two important parameters, the control gain and the time lag value. If the parameters are not properly selected, the system response will increase, as shown in Figure 4b.



Given f1=0.005,u1=0.02,Figure 5 is the amplitude frequency curve of the first order modal of the beam with different control gain and time delay, from which we can see, when ka11=0, the non-control system response amplitude is larger. When ka11≠0, that is the response amplitude is evidently suppressed by using the time-delayed displacement feedback control. In particular, when τ=π/2,ka11=0.5, the peak amplitude of the response of the beam is decreased by about 53%, which is compared with τ=π/2,ka11=0.25. Moreover, the curves are multivalued. The multivalued of the response curve due to the nonlinearity has significance from the physical point of view because it leads to jump phenomena.



Figure 6 shows the first order modal excitation-response amplitude curve of the controlled beam in the case of different time delay τ and detuning parameter σ. We can see that as the delay time increases, the response amplitude increases. At the same time, it also can be demonstrated by Figure 7. Figure 7 shows the time history curve of the system response when τ=π/4 and τ=π/2.




4. 1/3 Subharmonic Resonance


In this section, to analyze the 1/3 subharmonic resonance of the system, we let:


Ω=3ω0+εσ.



(31)







To eliminate the secular terms in Equation (18), we put:


iω0(2An′+μnAn)+6ΓnnnnAnΛn2+3ΓnnnnAn2A¯n+3ΓnnnnΛnA¯n2exp(iσT1)+kannAnexp(−iω0τ)=0,



(32)







Substituting An=anexp(iβn)/2 into Equation (32) and separating the result into real and imaginary parts, we have:


an′=−μnean−3ΓnnnnΛn4ω0an2sinγn,



(33)






anγn′=σe−9ΓnnnnΛn2ω0an−9Γnnnn8ω0an3−9ΓnnnnΛn4ω0an2cosγn,



(34)




where γn=σT1−βn,μne=μn/2−kannsin(ω0τ)/(2ω0) and σe=σ−3kanncos(ω0τ)/(2ω0). Therefore, for the first approximation:


qn=12ancos[13(Ωt−γn)]+fn(ω02−Ω2)−1cosΩt+O(ε).



(35)







The steady-state motions correspond to an′=γn′=0, that is they correspond to the solutions of:


−μnean=3ΓnnnnΛn4ω0an2sinγn



(36)






σe−9ΓnnnnΛn2ω0an−9Γnnnn8ω0an3=9ΓnnnnΛn4ω0an2cosγn



(37)







Squaring and adding these equations leads to the frequency-response equation:


9μne2+σe−9ΓnnnnΛn2ω0−9Γnnnn8ω0an22an2=81Γnnnn2Λn216ω02an4.



(38)







Equation (38) shows that either an=0 or:


9μne2+σe−9ΓnnnnΛn2ω0−9Γnnnn8ω0an22=81Γnnnn2Λn216ω02an2,



(39)




which is quadratic in an2. Its solution is:


an2=ν±(ν2−ι)1/2,



(40)




where:


ν=8ω0σe9Γnnnn−6Λn2andι=64ω0281Γnnnn29μne2+σe−9ΓnnnnΛn2ω02,



(41)







We note that ι is always positive, and thus, nontrivial free-oscillation amplitudes occur only when ν>0 and ν2≥ι. These conditions demand that:


Λn2<4ω0σe27Γnnnn,ΓnnnnΛn2ω0σe−63ΓnnnnΛn28ω0−2μne2≥0.



(42)




is follows that Γnnnn and σe must have the same sign.



It follows from Equation (42) that, for a given Λn, nontrivial solutions can exist only if:


Γnnnnσe≥2μne2ω0Λn2+63ΓnnnnΛn28ω0



(43)




while for a given σe, nontrivial solutions can exist only if:


σeμne−σe2μne2−631/2≤63ΓnnnnΛn24ω0μne≤σeμne+σe2μne2−631/2.



(44)







In the Λn-σe/μne-plane, the boundary of the region where nontrivial solutions can exist is given by:


63ΓnnnnΛn24ω0μne=σeμne±σe2μne2−631/2



(45)







For Γnnnn>0, Figure 8 shows the regions where the subharmonic response exists. Figure 9 and Figure 10 show the amplitude-frequency curve and the response-excitation amplitude curve of the subharmonic resonance of different time delay and control gain. We note that there is no jump phenomenon in this case.



Can be seen from Figure 10, as ka11 increases, the resonance regions decrease obviously, but as τ increases, those are on the contrary. As excitation amplitude increases, the resonance curve moves to the right, the resonance regions of the system expand, and the vibration amplitude increases. The subharmonic resonance regions of the system are very sensitive to external excitation amplitude. It is worth noting that the amplitude can be effectively suppressed by adjusting the control gain ka11 and time delay.




5. Conclusions


In this paper, we study the control effect of time-delayed displacement feedback control on the superharmonic and subharmonic resonance response of the elastic beam. The first-order approximate solutions of the superharmonic and subharmonic resonance containing the control parameters are obtained. The response curves of the external excitation amplitude f, the control gain k, and the time delay τ are presented. The results show that the vibration of the beam can be effectively suppressed by using the time-delayed displacement feedback control. Adjusting the control gain and time delay can avoid the resonance region and unstable solutions. Hence, the time-delayed displacement feedback is an effective control strategy to control the vibration of the system.
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Figure 1. The theory model of the controlled beams. 
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Figure 2. A block diagram of the time-delayed feedback control. 
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Figure 3. The planar mode shapes and natural frequencies of the elastic beam. 
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Figure 4. Time history curve of the system response. (a) Time history curve under no control, active control, and time delay feedback control; (b) increased response under time delay feedback control. 
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Figure 5. The amplitude-frequency curve of the superharmonic resonance. 
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Figure 6. The response-excitation amplitude curve of the superharmonic resonance. 
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Figure 7. The time history curves of the response of the controlled beams. 
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Figure 8. Regions where the subharmonic response exists. 
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Figure 9. The amplitude-frequency curve of the subharmonic resonance. 
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Figure 10. The response-excitation amplitude curve of the subharmonic resonance. 
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