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Abstract: This paper presents an inverter topology for a wireless power transfer (WPT) system that
is intended to reduce the component counts and complexity of the conventional excitation circuit
for multiple transmitter coils. The proposed inverter topology requires only (n+2) power switches,
where “n” is the number of transmitter coils. An excitation of a proper transmitter coil pattern with
regard to the receiver coil position is determined. The output voltage can be regulated through the
primary-side control by adjusting the duty cycles of the inverter switches. A detection method of the
receiver coil position is presented using the detection switches on the secondary side. The detection
algorithm is based on the reflected impedance knowledge and requires only a current sensor on the
primary side. A proper transmitter coil pattern is energized to ensure maximum transfer efficiency
throughout the operation. The proposed system is experimentally validated on the created 500-watt
WPT multi-coil system. After the receiver coil is placed in a designated area, the proper transmitter
coil pattern can be automatically selected and energized. The output voltage can be regulated to a
desired value under the typical operation conditions, including load change.

Keywords: inverter topology; wireless power transfer; multiple transmitter coils; primary-side
control; output voltage regulation; detection of receiver coil position

1. Introduction

Safety, convenience, reliability, weatherproof, and maintenance-free are the key advantages of
wireless power transfer (WPT) compared with wired or conductive power transfer [1]. Nowadays, the
WPT technique has been successfully adopted in many applications, such as biomedical implants [2],
electronic devices [3], kitchen appliances [4], electric vehicles [5], etc. A two-coil system, i.e., a single
transmitter coil and a single receiver coil, is commonly found in conventional WPT systems. Both coils
usually have the same shape and dimension, which simplifies the design and implementation [6,7].
The desired or ideal operation of the WPT system is that the receiver coil is always placed at the
aligned position, where both the transmitter and receiver coils share the same center. The magnetic
coupling coefficient is generally maximized at this position. Unfortunately, the misalignment between
coupled coils is inevitable in practical operation. This leads to the magnetic coupling variation, which
causes the output voltage or power to fluctuate. Moreover, the power transfer efficiency is drastically
deteriorated with the reduction of the magnetic coupling coefficient [8–10]. Although the control of
the duty cycle [11,12] or switching frequency [13,14] of the converter’s switches has been reported to
address these problems, the misalignment tolerance is still limited to a low value. To improve the
sensitivity to magnetic coupling variation, developments related to the coupled coil [15–17], optimized
design of the magnetic core [18], and new compensation topology [19,20] are introduced. However,
the transfer efficiency becomes problematic, because the magnetic coupling coefficient is reduced as
the distance between coupled coils increases.
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Recently, WPT multi-coil systems have become increasingly popular, especially in applications
with free-positioning features. The key advantages of the multi-coil system include improvements
in the working area and system efficiency compared with conventional two-coil systems [21–23].
However, excitation circuits for multiple transmitter coils remain an issue in the multi-coil system.
A straightforward approach to a multi-coil configuration is to adopt multiple sources, where each
transmitter coil is energized by an inverter. This increases component counts, cost, and size to the
system. To achieve an optimal operation, there is a need for current regulation on each transmitter
coil [24–26]. This often yields complicated control methods. The transmitter coils to be energized must
be carefully selected, as the position of the receiver coil may be varied during operation. Energizing
transmitter coils with weak coupling to the receiver coil would result in little to no contribution to
the power transfer, and the system efficiency is sacrificed. A proper transmitter coil, where magnetic
coupling is maximized, should be determined before the chosen transmitter coil pattern is energized.
Therefore, the detection of the coil’s position and misalignment between coupled coils are indispensable.
Pressure sensors [27], sensing coils [28], and tunneling magnetoresistive (TMR) sensors [29] have
been adopted in past work. A tradeoff is that additional components and control are required, not to
mention extra signal conditioner circuits to accommodate the sensors.

To reduce the component counts and complexity of the conventional excitation circuit for multiple
transmitter coils, this paper presents a topology of the inverter circuit with receiver coil position
detection. Only single-source and (n+2) power switches for n transmitter coils are required. The
proposed inverter circuit can supply the transmitter coils individually or collectively, depending on
the determined coil pattern. Each transmitter coil current flows in the same direction to produce a
magnetic field with the same polarity. The DC output voltage is regulated through the primary-side
control by adjusting the angle α of the inverter voltage. The detection method of the receiver coil
position is introduced using detection switches on the secondary side. This method requires only
a current sensor on the primary side. The proper transmitter coil pattern can be determined and
energized by the proposed method. This improves the transfer efficiency of the WPT multi-coil system.
This paper is organized as follows. The circuit configuration, timing diagram, and operating mode of
the proposed system are described in Section 2. The detection method of the receiver coil position and
selection of the transmitter coil pattern are proposed in Section 3. The proposed controller is outlined
in Section 4. Experimental validation of the proposed system is presented in Section 5. Section 6
concludes this work.

2. System Description and Operation

2.1. Circuit Configuration

A block diagram of the proposed system is shown in Figure 1. Multiple transmitter coils are
excited by the inverter circuit. Detection switches are placed between the receiver coil and the rectifier
circuit. The DC output voltage (Vout) is sensed and transmitted to the primary circuit via wireless
communication devices. The primary-side controller is used to select the transmitter coil pattern and
regulate the output voltage. The secondary-side controller is used to control the detection switches
and send feedback data wirelessly. The circuit configuration of the proposed system is shown in
Figure 2. The inverter circuit consists of (n+2) MOSFET switches with antiparallel diodes (DU, DL, D1,
D2, . . . , and Dn), where “n” is the number of transmitter coils. The main upper and lower switches are
represented by SU and SL, respectively. The excitation of each transmitter coil is controlled by excitation
switches, S1 to Sn. The self-inductance and winding resistance of each transmitter coil are denoted
by LP1 to LPn and RP1 to RPn, respectively. Compensation capacitors (CP1 to CPn) are connected in
series with each transmitter coil. The mutual inductance between coupled coils is represented by M.
LS and RS are the self-inductance and winding resistance of the receiver coil, respectively. CS is the
series compensation capacitor. A rectifier circuit with four diodes (DR1 to DR4) and a filter capacitor
(Cf) are included on the output. The load is represented by RL. The detection switches are located
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in front of the rectifier circuit. When they are on, LS and CS form a resonant configuration. With a
proper switching frequency on the primary side, the secondary circuit experiences a line commutation.
The detection switches are designed to exhibit the bidirectional-carrying and bidirectional-blocking
characteristics, which make them similar to an ideal switch.
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A combination of two IGBTs (SA and SB) with external diodes (DA and DB) in reverse connection is
adopted for the detection switches. The reverse diodes provide reverse-blocking capability to prevent
the IGBTs being turned on from negative voltages. The current flowing in each transmitter coil are
denoted by IP1 to IPn. The total current in the primary circuit is obtained as:

IPT = IP1 + IP2 + . . .+ IPn (1)

2.2. Mode of Operation

The proposed system is operated in two modes, namely normal mode and detection mode. Both
modes are dependent on the operation (on and off) of detection switches. The timing diagram and
theoretical waveforms are given to describe the switching operations of both modes. The upper and
lower switches (SU and SL) work in the complementary manner. The angle α is defined as the adjusting
angle of an inverter voltage, which can be varied from 0 to 180 degrees by adjusting the duty cycle of
the upper switch’s gate signal (VGS,SU). For simplicity, all the power switches are assumed to be ideal,
and the dead time between switch SU and SL is neglected.

2.2.1. Normal Mode Operation

The normal mode operation is initiated when the detection switches, SA and SB, are turned off.
The timing diagram and theoretical waveforms for the case when the excitation switch S1 is turned
on are depicted in Figure 3. Only transmitter coil number 1 (LP1) is energized. If two or more coils
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are energized at the same time, a parallel connection of the energized coils is formed. The resulting
circuits of each stage are shown in Figure 4.
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Stage 1 [ta–tb] in Figure 3: Both upper and lower switches, SU and SL, are off. The transmitter
current IP1 flows in the negative direction through antiparallel diodes D1 and DU. The inverter voltage
(VINV) is equal to the DC input voltage (Vin). The secondary current (IS) flows in the positive direction,
where diodes DR1 and DR4 are turned on. The secondary voltage (VS) is identical to the DC output
voltage (Vout).

Stage 2 [tb–tb
’] in Figure 3: The upper switch SU starts conducting at t = tb, and the current IP1

starts flowing in the positive direction through switches SU and S1. The secondary current, IS, flows in
the positive direction and reduces to zero at t = tb

’.
Stage 3 [tb

’–tc] in Figure 3: The current IP1 still flows in the positive direction through the switches
SU and S1. At t = tb

’, the secondary current IS starts flowing in the negative direction through diodes
DR2 and DR3. The secondary voltage VS becomes negative with opposite polarity to the output voltage
(–Vout). The upper switch SU is turned off at t = tc.

Stage 4 [tc–td] in Figure 3: The lower switch SL is still off. The positive current IP1 flows through
the switch S1 and the antiparallel diode DL. The inverter voltage VINV is equal to zero. The secondary
current, IS, still flows in the negative direction through diodes DR2 and DR3.

Stage 5 [td–td
’] in Figure 3: The lower switch SL starts conducting at t = td, and the current IP1

starts flowing in the negative direction through the switch SL and the antiparallel diode D1. The
secondary current, IS, still flows in the negative direction.

Stage 6 [td
’–te] in Figure 3: The current IP1 flows in the negative direction through the switch SL

and diode D1. At t = td
’, the secondary current, IS, starts flowing in the positive direction through

DR1 and DR4. The secondary voltage VS is changing from negative to positive value. At t = te, the
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lower switch SL is turned off. The operation of one switching period is completed. Then, the switching
operation is repeated, starting from stage 1.

From fundamental harmonic approximation (FHA), a simplified equivalent circuit of the system
under the normal mode of operation is shown in Figure 5. The fundamental component of the inverter
voltage (VINV) is denoted by V1

INV, and its amplitude can be expressed as:

∣∣∣V1
INV

∣∣∣ = Vin
√

2 + 2 cos(α)
π

(2)
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The operating angular frequency is denoted by ω. LPT and RPT represent the equivalent
self-inductance and winding resistance of multiple transmitter coils, regardless of the number of coils
connected in parallel. The total compensation capacitance in the primary circuit is defined as CPT. The
equivalent AC resistance of the load and rectifier circuit [30] is defined as:

Rac
L =

8RL

π2 (3)

The reflected impedance,
⇀
Z

Normal

R , as shown in Figure 5b, is given as:

⇀
Z

Normal

R =
ω2M2

[
RS + Rac

L − j(ωLS − 1/ωCS)
][(

RS + Rac
L

)2
+ (ωLS − 1/ωCS)

2
] (4)

The total transmitter coil current,
⇀
I PT, is obtained by:

⇀
I PT =

V1
INV

RPT + j(ωLPT − 1/ωCPT) +
⇀
Z

Normal

R

(5)

The magnitude of the equivalent AC output voltage,
∣∣∣∣∣⇀Vac

out

∣∣∣∣∣, is expressed as:

∣∣∣∣∣⇀Vac

out

∣∣∣∣∣ = ωMRac
L

∣∣∣∣∣⇀I PT

∣∣∣∣∣∣∣∣∣∣⇀ZS

∣∣∣∣∣ (6)
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where
⇀
ZS = RS + Rac

L + j
(
ωLS −

1
ωCS

)
. The DC output voltage in Figure 2 is obtained as:

Vout =

∣∣∣∣∣⇀Vac

out

∣∣∣∣∣
√

RL

2Rac
L

=

√
RLRac

L ωMVin

∣∣∣∣∣⇀ZS

∣∣∣∣∣[2 + 2 cos(α)](1/2)

√
2π[δ2 + λ2](1/2)

(7)

where δ = RPT

∣∣∣∣∣⇀ZS

∣∣∣∣∣2 +ω2M2
(
RS + Rac

L

)
and λ =

∣∣∣∣∣⇀ZS

∣∣∣∣∣2(ωLPT −
1

ωCPT

)
−ω2M2

(
ωLS −

1
ωCS

)
.

The DC output voltage in Equation (7) can be regulated by adjusting the angle α, which can be
realized by controlling the duty cycle of the gate signal of the upper switch, SU.

Note that three out of six switching operations in Figure 4, namely stages 4, 5, and 6, are in the
free-wheeling mode. Even though the inverter voltage is equal to zero, the fundamental component
of the inverter voltage remains sinusoid. With the resonant compensation arrangement, the system
exhibits a high-quality factor (Q) circuit behavior. Only the fundamental component of the inverter
voltage in Equation (2) contributes to the current flowing in the circuit. Therefore, the power transfer
to the load is provided as:

Pout =

Rac
L ω

2M2V2
in

∣∣∣∣∣⇀ZS

∣∣∣∣∣2[2 + 2 cos(α)]

2π2[δ2 + λ2]
(8)

The transfer efficiency is slightly decreased when the system is operated in the free-wheeling mode
due to the additional turn-off switching loss at t = tc, as shown in Figure 3.

2.2.2. Detection Mode

The detection mode serves as an approach in determining a proper transmitter coil pattern before
the charging process. This mode starts with turning switches SA and SB on. The timing diagram and
theoretical waveforms of the detection mode are depicted in Figure 6, for the case when the excitation
switch S1 is turned on. Only the current IP1 flows through the transmitter coil LP1. Note that the
detection operation is performed on each transmitter coil to collect the necessary current information
for the determination of a proper coil pattern. Since the detection switches, SA and SB, are turned on
throughout the detection process, the secondary voltage VS and output voltage Vout are essentially
zero. The switching operation of each stage of the detection mode is shown in Figure 7.

Stage 1 [ta–tb] in Figure 6: Both upper and lower switches, SU and SL, are off. The input current,
Iin, is equal to the transmitter current, IP1, and flows in the negative direction through antiparallel
diodes D1 and DU. The inverter voltage, VINV, is equal to the DC input voltage Vin. The secondary
current, IS, flows in the positive direction through detection switch SA and diode DA.

Stage 2 [tb–tb
’] in Figure 6: The upper switch SU starts conducting at t = tb. The current IP1

becomes positive and flows through switches SU and S1. The secondary current, IS, is reduced to zero
at t = tb

’.
Stage 3 [tb

’–tc] in Figure 6: The switches SU and S1 remain on, and the current IP1 is still positive.
The negative current IS flows through the switch SB and diode DB. The switch SU is turned off at t = tc.

Stage 4 [tc–td] in Figure 6: The lower switch SL is still off. The positive current IP1 flows through the
switch S1 and the antiparallel diode DL. The secondary current, IS, still flows in the negative direction.
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Stage 5 [td–td
’] in Figure 6: The switch SL has been on. At t = td, the negative current IP1 flows

through the switch SL and the antiparallel diode D1. The secondary current, IS, still flows in the
negative direction.

Stage 6 [td
’–te] in Figure 6: The current IP1 flows in the negative direction through the switch SL

and diode D1. At t = td
’, the switch SA and diode DA conduct positive current IS. The lower switch SL

is then turned off at t = te. The operation of one switching period is completed. The next switching
cycle is repeated starting from stage 1.

A simplified equivalent circuit for detection mode operation is shown in Figure 8. Clearly, the

equivalent AC output voltage,
⇀
V

ac

out, is equal to zero. The reflected impedance,
⇀
Z

Detect

R , as shown in
Figure 8b, is given as:

⇀
Z

Detect

R =
ω2M2[RS − j(ωLS − 1/ωCS)][

R2
S + (ωLS − 1/ωCS)

2
] (9)

Due to the absence of the equivalent AC resistance (Rac
L ), the reflected impedance

⇀
Z

Detect

R is
significantly larger than the reflected impedance under normal operation in Equation (4). This means

that the primary current (
⇀
I PT) is considerably lower. With the knowledge of the current in each

transmitter coil, the position of the receiver coil can be estimated, and a proper transmitter coil pattern
is obtained.
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coil. The transmitter coils are arranged based on the comparative study reported in [31], where high
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(k) between the transmitter and receiver coils are dependent on the position of the receiver coil.
Theoretically, only the directly coupled transmitter coil or set of transmitter coils should be excited.
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Then, the receiver coil position can be calculated through the total primary current obtained
during the detection mode operation, as discussed in Section 2.2.2. The relationship between the
total primary current and the coupling coefficient in Equation (10) is illustrated in Figure 10, using
the following parameters: LPT = 280 µH, LS = 1.37 mH, RPT = 0.33 Ω, RS = 2.03 Ω, CPT = 32.57 nF,
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CS = 5.4 nF, f = 58.51 kHz, Vin = 150 V, and α = 126◦. Clearly,
∣∣∣∣∣⇀I PT

∣∣∣∣∣ is decreasing as the magnetic

coupling k is increased. A comparison of the transmitting current in each coil yields an approximated

position of the receiver coil. For example, if the
∣∣∣∣∣⇀I PT

∣∣∣∣∣ value of transmitter coil 3 is significantly lower

than the currents obtained from transmitter coils 1, 2, and 4, the receiver coil is located close to the
center of transmitter coil 3, as shown in Figure 11a. If the receiver coil is placed between coil number

3 and 4, as shown in Figure 11b, the
∣∣∣∣∣⇀I PT

∣∣∣∣∣ values of both coils are almost identical, but substantially

lower than the
∣∣∣∣∣⇀I PT

∣∣∣∣∣ value obtained from coil numbers 1 and 2 from the other end.
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3.2. Transmitter Coil Pattern Selection

Each transmitter coil in the proposed system can be excited separately or simultaneously,
depending on the switching pattern of the excitation switches (S1–S4) of the proposed inverter circuit, as
listed in Table 1. The values of the switching function, “1” and “0”, indicate that the excitation switches
are turned on and off, respectively. This results in 16 transmitter coil patterns, corresponding with the
activated coil. For efficient power transfer, transmitter coils pattern with weakly coupling coefficients
should not be energized. Only the tightly coupled transmitter coil pattern, which is defined as the
proper transmitter coil pattern, is excited. The proper coil pattern generally gives the highest magnetic
coupling available, which maximizes the transfer efficiency of the WPT system. The proposed selection

of the transmitter coil pattern is based on the obtained current
∣∣∣∣∣⇀I PT

∣∣∣∣∣ from the detection operation.

Initially, the current
∣∣∣∣∣⇀I PT

∣∣∣∣∣ is measured as the receiver coil is laterally moved along the +X direction, as

shown in Figure 12. When the receiver coil position is changed from 3 to 4 cm, the
∣∣∣∣∣⇀I PT

∣∣∣∣∣ value obtained

from transmitter coil 1 is increased from 1.5 to 2 A, which is the highest rate of change of
∣∣∣∣∣⇀I PT

∣∣∣∣∣. This
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means that the magnetic coupling between transmitter coil 1 and the receiver coil is greatly reduced

at this point. The current of 1.5 A is empirically imposed as the current limit value,

∣∣∣∣∣∣⇀I limit

PT

∣∣∣∣∣∣, for the

excitation decision of each of the transmitter coils. The proposed coil selection procedure is outlined as
follows. First, each transmitter coil is excited at a time. The magnitude of the transmitter current in

each coil is identical to
∣∣∣∣∣⇀I PT

∣∣∣∣∣ in this case. Then, each measured transmitter current is compared with∣∣∣∣∣∣⇀I limit

PT

∣∣∣∣∣∣. If
∣∣∣∣∣⇀I PT

∣∣∣∣∣ >
∣∣∣∣∣∣⇀I limit

PT

∣∣∣∣∣∣, the excitation switch to the activated transmitter coil is set to “0” or turned

off, because the magnetic coupling is rather weak, indicating that the receiver coil is located away from

the activated transmitter coil. If
∣∣∣∣∣⇀I PT

∣∣∣∣∣ ≤
∣∣∣∣∣∣⇀I limit

PT

∣∣∣∣∣∣, the receiver coil is relatively close to the excited coil,

and the corresponding excitation switch will be set to “1” or turned on. After the comparison process,
the switching pattern for a proper transmitter coil pattern is obtained.

Table 1. Possible switching patterns of the inverter circuit with n = 4.

Switching Pattern Switching Function
Activated Coil

S1 S2 S3 S4

0 0 0 0 0 None

1 0 0 0 1 Coil No.4

2 0 0 1 0 Coil No.3

3 0 0 1 1 Coil No.3, 4

4 0 1 0 0 Coil No.2

5 0 1 0 1 Coil No.2, 4

6 0 1 1 0 Coil No.2, 3

7 0 1 1 1 Coil No.2, 3, 4

8 1 0 0 0 Coil No.1

9 1 0 0 1 Coil No.1, 4

10 1 0 1 0 Coil No.1, 3

11 1 0 1 1 Coil No.1, 3, 4

12 1 1 0 0 Coil No.1, 2

13 1 1 0 1 Coil No.1, 2, 4

14 1 1 1 0 Coil No.1, 2, 3

15 1 1 1 1 Coil No.1, 2, 3, 4
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4. Proposed Controller

The control is implemented on both the primary side and the secondary side, as shown in
Figure 1. The primary-side controller is adopted to find the proper transmitter coil pattern and regulate
the output voltage. The secondary-side controller serves the detection operation and wireless data
collection of the output voltage (Vout) to the primary side.

4.1. Secondary-Side Controller

The proposed system is designed for the static WPT applications. In this work, it is assumed
that there is no movement of the receiver coil during the charging process. A flowchart diagram of
the secondary-side controller is shown in Figure 13. After the receiver coil is placed in a designated
area, the controller wakes up from the standby mode. Then, the detection operation is initiated by
turning the detection switches on for 500 ms to allow completion of the detection process. Next, the
detection switches are turned off for normal mode operation. The output voltage, Vout, is measured
and read. If Vout = 0, it means that the receiver coil is absent or the inverter circuit on the primary side
is inoperative, and the controller is put into standby mode. The Vout data will be sent to the primary
side if Vout differs from zero.
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4.2. Primary-Side Controller

The proposed control block diagram of the primary-side controller is shown in Figure 14. First,
the controller operates in the transmitter coil selection mode, as shown in Figure 14a. Each transmitter
coil is energized, one at a time. The current in each transmitter coil is obtained through the measured
total primary current, IPT, and sent to the current sensor. A signal conditioner consisting of a rectifier
and low-pass filter circuit is included in the current sensor module. The DC signal representing the
magnitude of the total primary current, |IPT |, is obtained. The MCU reads the |IPT | signal through the
analog to digital (A2D) converter function. Then, the controller starts the coil selection process. All the
|IPT | signals collected from each transmitter coil are compared with

∣∣∣Ilimit
PT

∣∣∣, as described in Section 3.2.
Then, the switching pattern of the inverter circuit is obtained for a proper transmitter coil pattern
corresponding to the receiver coil position. After the selected coil pattern is energized, the controller
operates in the output voltage regulation mode, as shown in Figure 14b.

This mode is based on the relationship between the output voltage and angle α of the inverter
voltage in Equation (7). The output voltage signal, Vout, is wirelessly fed back from the secondary side,
and compared with the reference value (V∗out). The resulting error (e) is sent to the PI controller, and
the adjusting angle α is obtained.
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The program flowchart of the primary-side controller is shown in Figure 15. At the beginning,
the controller operates in the transmitter coil selection process. To prevent excessive current in each
transmitter coil, the angle α of 126 degrees is assigned to the upper switch SU. The current limit,

∣∣∣Ilimit
PT

∣∣∣,
is set to 1.5 A. Initially, the transmitter coil number 1 (i = 1) is energized by turning the switch S1 on.

Then, the current signal
∣∣∣∣I(1)PT

∣∣∣∣ is read. If
∣∣∣∣I(1)PT

∣∣∣∣ > ∣∣∣Ilimit
PT

∣∣∣, the switching function of the excitation switch

(S(1)) is set to “0”; otherwise, it is set to “1”. As the value of “i” is increasing, transmitter coils 2, 3, and

4 take turns energizing. The signals
∣∣∣∣I(2)PT

∣∣∣∣, ∣∣∣∣I(3)PT

∣∣∣∣, and
∣∣∣∣I(4)PT

∣∣∣∣ are read and compared with the
∣∣∣Ilimit

PT

∣∣∣. The
switching pattern of the inverter circuit is obtained. The pattern 0 is obtained when the receiver coil is
placed outside the designated area. That is, the magnetic coupling is too weak, and the system will be
turned off. The proper transmitter coil pattern is formed if the switching pattern 1 to 15 is presented.
Next, the controller operates in the output voltage regulation process. The output voltage data Vout

is read. If Vout = 0, the detection switches are still on, and the system is in the detection mode. The
controller will wait until the system is in normal operation mode, where Vout is not equal to zero. Then,
the feedback signal Vout is compared with the reference signal, V∗out. With the PI controller, the angle α
of an inverter voltage is adjusted. The actual output voltage follows the reference value.
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5. Experimental Results

To validate the proposed system, an experimental setup of the WPT multi-coil system is created,
as shown in Figure 16. Four identical coils are used as multiple transmitter coils. Each coil is made of
32 turns of litz wire. The inner and outer diameters are 10 cm and 30 cm, respectively. The receiver
coil is a two-layer spiral coil with 30 turns of litz-wire for each layer. The inner and outer diameters
are 12 cm and 30 cm, respectively. The air gap between the coupled coils is maintained at 10 cm. The
transmitter coil is placed in a fixed position, whereas the receiver coil can be laterally moved in a
designated area. This results in the horizontal misalignment. The measured circuit parameters are
listed in Table 2. The input DC voltage is set to 150 V. The switching frequency is fixed at 58.51 kHz.
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Table 2. Measured circuit parameters.

Parameters Symbol Value

Self-inductance of transmitter coil LP1–LP4 280 µH
Self-inductance of receiver coil LS 1,370 µH

Winding resistance of transmitter coil RP1–RP4 0.33 Ω
Winding resistance of receiver coil RS 2.03 Ω

Load resistance RL 123.2 Ω
Primary compensation capacitance CP1–CP4 26.4 nF

Secondary compensation capacitance CS 5.4 nF
Filter capacitance Cf 560 µF

Experimental waveforms under normal mode operation are shown in Figure 17. The receiver coil
is placed at the center or zero horizontal misalignment. Switching pattern 15 is applied, where all the
transmitter coils are energized. The angle α is at 58 degrees. As seen in Figure 17b, the transmitter
current in each coil is almost identical in both magnitude and phase.

The summation of all the transmitter coil currents are equal to the total primary current, IPT. From
the output voltage Vout and current Iout shown in Figure 17c, the output power is obtained as 500 watts.

The results of the output voltage regulation when the load resistance is abruptly changed from
123.2 to 151.2 Ω is shown in Figure 18. The desired output voltage, V∗out, is 200 V. Without the output
voltage regulation, the output voltage is rising to 240 V as the load resistance is instantaneously
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increased, as seen in Figure 18a. With the proposed controller, the output voltage change is negligible
and regulated at the desired value, as shown in Figure 18b.
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Experimental waveforms under detection mode operation are shown in Figure 19. The receiver
coil is moved 10 cm from the center and placed between transmitter coils 3 and 4. Each transmitter coil
is energized at a time. The angle α is set to 126 degrees. The output signal from the current sensor,
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|IPT |, is illustrated. In Figure 19a,b, the |IPT | values of transmitter coils 1 and 2 are 2.2 A and 2.1 A,
respectively. These values are greater than the imposed limit

∣∣∣Ilimit
PT

∣∣∣ at 1.5 A. This is an indication that
the receiver coil is placed far away from both transmitter coils, where the magnetic coupling is weak.
Thus, the excitation switches S1 and S2 are off for efficient power transfer. On the other hand, the
|IPT | values of transmitter coils 3 and 4 in Figure 19c,d, are 0.72 A and 0.76 A, respectively. This is an
indication that the receiver coil is close to both transmitter coils. Therefore, both switches S3 and S4 are
turned on. From Table 1, switching pattern 3 is formed as the selected transmitter coil pattern.
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The measurement results of magnetic coupling coefficient, k, when the receiver coil was laterally
moved along the X, Y, Z1, and Z2 directions, are shown in Figure 20. To illustrate the advantage of the
proposed transmitter coil pattern selection, all the transmitter coils were first excited throughout the
operation. This is switching pattern 15, and the magnetic coupling k obtained in this case is shown
in Figure 20a. The coupling k is at the maximum value of 0.2, as the receiver coil is within a 5-cm
radius. If the receiver coil is moved further, the coupling k is reduced to 0.01 at 25 cm on the Z1 and
Z2 directions. With the proposed transmitter coil pattern selection, the resulted magnetic coupling
is shown in Figure 20b. For the case of one-coil excitation, at 15-cm misalignment along the X and
Y directions, the coupling coefficient increased from 0.18 to 0.32, which is a 77.78% improvement
compared with results in Figure 20a. For the case of two-coil excitation, the coupling coefficient
k increased from 0.16 to 0.23, which was a 43.75% improvement at 10-cm misalignment along the
Z direction. Note that “not applicable (N/A)” is the case of switching pattern 0, in which all the
transmitter coils were not activated.Appl. Sci. 2019, 9 FOR PEER REVIEW  21 
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System efficiency measurements when the receiver coil is laterally moved along the +X and +Z1
directions are shown in Figure 21a,b, respectively. The load resistance is fixed at 123.2 Ω. The output
voltage is regulated at 200 V throughout the operation. The proposed multi-coil system with and
without transmitter coil pattern selection is compared. At the center (zero horizontal misalignment),
the measured efficiencies for both cases are at 83.63%, since the activated coil patterns are identical.
When the misalignment in the +X direction is increased, the efficiency of the system with proposed coil
selection is increased to its maximum at 90.1% before decreasing to 74.3% at 25 cm. On the other hand,
the efficiency of the system without transmitter coil selection is gradually reduced to 38.21% at 25 cm.
Similarly, for the +Z1 misalignment direction, the proposed coil selection yields improved efficiencies
of 18.9% and 54.5% at 10 cm and 15 cm, respectively. The efficiency of a single-coil system (single
transmitter coil and single receiver coil) is also illustrated. At the aligned position, the efficiency of the
single-coil system is at 89.8%. That is 6.87% higher than the multi-coil system due to its higher coupling
coefficient. As the horizontal misalignment is introduced, the single-coil system efficiency drastically
decreases. At 15-cm misalignment, the efficiency is reduced to 44.1%, no matter the direction of the
misalignment. With the proposed multi-coil system, the efficiency is increased to 90.1% (in the +X
direction). For the +Z1 misalignment direction, the proposed multi-coil system yields an efficiency
improvement of 19.6% and 22.6% at 10-cm and 15-cm misalignments, respectively.
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6. Conclusions

The topology of an inverter circuit for driving multiple transmitter coils of a WPT system is
presented in this paper, which reduces the component counts, cost, size, and complexity of the
conventional excitation circuit. Detection switches are introduced in the secondary side to detect
the receiver coil position. The DC output voltage is regulated through the primary-side control by
adjusting the angle α of an inverter voltage. The detection method of the receiver coil position is
introduced based on the reflected impedance knowledge and requires only a current sensor on the
primary side. With the proposed method, the proper transmitter coil pattern with regard to the receiver
coil position can be selected to energize. This increases the magnetic coupling and transfer efficiency to
the system. The experimental results of a 500-watt WPT system with four transmitter coils and a single
receiver coil validate the proposed system.
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