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Abstract: Nanoscience can be stated as a superlative way of changing the properties of a working
fluid. Heat transmission features during the flow of nanofluids are an imperative rule from the
industrial and technological point of view. This article presents a thin film flow of viscous nanofluids
over a horizontal rotating disk. The impact of non-linear thermal radiation and a uniform magnetic
field is emphasized in this work. The governing equations were transformed and solved by the
homotopy analysis method and the ND-Solve technique. Both analytical and numerical results are
compared graphically and numerically, and excellent agreement was obtained. Skin friction and
the Nusselt number were calculated numerically. It is concluded that the thin film thickness of
nanofluids reduces with enhanced values of the magnetic parameter. In addition, the nanofluid
temperature was augmented with increasing values of the thermal radiation parameter. The impact
of emerging parameters on velocities and temperature profiles were obtainable through graphs and
were deliberated on in detail.

Keywords: nanofluids; heat transfer; thin film; nonlinear radiation; MHD; numerical approach

1. Introduction

Over the last few years, researchers have given prodigious attention to thin film flows.
The elementary impression behind such a significant thought is the applications and mechanism of it.
The investigation of thin film flow has had important commitment because of its vast applications
and uses in engineering, technology, and industries. Cable, fibber undercoat, striating of foodstuff,
extrusion of metal and polymer, constant forming, fluidization of the device, elastic sheets drawing,
chemical treating tools, and exchanges are several uses. In surveying these applications, our attention
was drawn to cultivating the examination of liquid film on a stretching surface. The first theoretical
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analysis on liquid film flow was done by Emslie et al. [1]. During the disk rotating process, the balance
between centrifugal and viscous forces was considered in this examination. They simplified the
Navier–Stokes equations and concluded that the film is uniformly maintained with its continuous
thinning property. Higgins [2] considered the influence of film inertia over a rotating disk. The liquid
film over a rotating plate with constant angular velocity was analyzed by Dorfman [3]. The fluid
film rotation from an accelerating disk was analyzed by Wang et al. [4]. For the thin and thick film
parameter and the small accelerating parameter, the asymptotic solutions were obtained. Andersson
et al. [5] asymptotically and numerically examined the magnetohydrodynamics (MHD) liquid thin
film due to a rotating disk. Over a rotating disk, Dandapat and Singh [6] examined the two layer film
flow. The heat transfer flow of thin film flows of nanofluids has been deliberated by Sandeep et al. [7].
The movement of a finite thin liquid over a stretched sheet was scrutinized by Usha et al. [8]. Khan
et al. [9] studied the nanofluid film flow of Eyring-Powell with graphene nanoparticles. The recent
study of nanofluid flow of non-Newtonian fluids using different models in different geometries can be
seen in [10–12]. Jawad et al. [13,14] investigated magneto hydrodynamic nanofluid thin film flow with
the joule and slip effect. Under the influence of slip velocity, Megahe [15] examined the Casson fluid
flow over a stretched surface. The thin film flow with a new modification was deliberated by Khan et
al. [16] and Tahir et al. [17].

With the advent of nanoscience; nanofluids have turned into a focal point of consideration in the
investigation of nanofluid flow in the presence of nanoparticles. Nanofluids are arranged by scattering
109 nm-sized substances, such as nanoparticles, nanotubes, nanofibers, droplets, etc., in fluids. Actually,
nanofluids are nanoscale shattered suspensions involving concise nanometer sized materials. These are
two-period systems; the first one is the solid phase and the second one is the liquid phase. Nanofluids
must be utilized to augment the thermal conductivity of the fluids and can be more stable with
better mixing. Nano science is used to find the appropriate working fluid to reach convective heat
transfer enhancement.

Nanofluids are used in microelectronics, hybrid powered engines, pharmaceutical procedures,
fuel cells, and nanotechnologies. In view of their importance, Sheikholeslami et al. [18–22] investigated
nanofluid flow and presented its applications. The flow of nanofluid over a stretched surface has been
determined by Abolbashari et al. [20]. The Maxwell nanofluid flow has been presented by Hayat et
al. [21]. The mixed convection flow of MHD Erying–Powell fluid has been inspected by Malik et al. [22].
The flow of Maxwell fluid over a vertical stretched surface has been examined by Nadeem et al. [23].
With convective heat and mass transfer, the MHD non-Newtonian fluid through a cone has been
probed by Raju et al. [24]. The flow of nanofluids with heat transfer over a plate has been examined by
Rokni et al. [25]. The numerical investigation of non-Newtonian fluid flow over a stretched surface has
been observed by Nadeem et al. [26]. The MHD flow of Jeffrey nanofluids with convective boundary
conditions has been examined by Shehzad et al. [27]. With heat transfer, the MHD flow of nanoliquids
has been determined by Sheiholeslami et al. [28].

In order to manipulate mechanical and/or thermal energy in electrically conducting polymers,
magnetic fields play a significant cost saving role. The natural heat transfer process due to temperature
differences within a body or between two bodies at different temperatures is best analyzed by the
use of MHD. MHD also has various practical applications in industrial and environmental sciences.
Shah et al. [29–34] investigated MHD heat transfer nanofluids with microstructure properties that have
different aspects in different geometries. Hammed et al. [35] investigated the electric and magnetic
impact on Maxwell nanofluids. Dawar et al. [36] studied squeezing MHD carbon nanotube nanofluids.
The other relevant studies can be seen in [37–40]. The most recent study on nanofluids and nanotubes
with thermal conductivity can be seen in [41–50].

The above mentioned literature survey has surpassed previous studies. Now we are in position to
study the thin film flow of viscous nanofluids over a horizontal rotating disk. The impact of non-linear
thermal radiation and uniform magnetic field are emphasized in this work. The governing equations
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have been solved by using the homotopy analysis method and the ND-Solve technique. The impact of
non-linear thermal radiation and uniform magnetic fields are emphasized in this work.

2. Mathematical Formulation

If the unsteady magnetohydrodynamic flow is assumed, heat and mass transfer nanofluids flow
in a thin finite liquid film over a stretching rotating disk. The thin elastic disk emerges radially from a
narrow slit at the origin of the cylindrical coordinate system (r,ϕ, z). The scheme of the formulated
problem is shown in Figure 1.
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The time dependent stretching velocity is written as

u = cr(1− bt)−1, (1)

Here c and b represent the stretching parameter and positive constant respectively. The time
dependent disk rotating velocity is written as

v = rΩ(1− bt)−1, (2)

where Ω is the rotating rate of the disk. The stretchable rotating disk surface temperature Ts is
defined as

Ts = T0 − Tre f
Ωr2

νn f (1− bt)1.5
, (3)

Here T0 and Tre f represent temperature at the origin and a constant reference temperature,
respectively. The magnetic field is applied along the z-direction which is defined as

B(t) = B0(1− bt)−0.5, (4)

The concentration at the disk surface Cs varying with distance r is written as
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Cs = C0 −Cre f
Ωr2

νn f (1− bt)1.5
, (5)

Here, C0 and Cre f represent the concentration at the origin and reference concentration, respectively.
Using the above suppositions, and boundary conditions, the governing equations of the flow

problem are
∂u
∂t

+
u
r
+
∂w
∂z

= 0, (6)

∂u
∂t

+
∂u
∂r

+ w
∂u
∂z
−

v2

r
= νn f

(
∂2u
∂z2

)
−

σn f B2
0

ρn f (1− bt)
u, (7)

∂v
∂t

+
∂v
∂r

+ w
∂v
∂z

+
uv
r

= νn f

(
∂2v
∂z2

)
−

σn f B2
0

ρn f (1− bt)
v, (8)

∂T
∂t

+ u
∂T
∂r

+ w
∂T
∂z

= αn f

(
∂2T
∂z2

)
+

16σ∗

3ρcpk∗
∂
∂z

(
T3 ∂T
∂z

)
, (9)

Here u, v and w are the velocity components in their respective directions as shown in Figure 1.
Also σ∗, k∗, νn f , σn f , ρn f ,

(
ρCp

)
n f

, αn f are the Stephan–Boltzmann constant, mean absorption coefficient,

kinematic viscosity, electrical conductivity, density, heat capacity and thermal diffusivity which are
defined as

σn f = 1 +
3( σs/σ f −1)φ

( σs/σ f +2)−( σs/σ f −1)φ
σ f , ρn f = (1−φ)ρ f + φρs,(

ρCp
)
n f

= (1−φ)
(
ρCp

)
f
+ φ

(
ρCp

)
s,

kn f
k f

=
ks+2k f−2φ(k f−ks)
ks+2k f +2φ(k f−ks)

,

αn f =
kn f

(ρcp)n f
.

(10)

The respective boundary conditions are

u = cr(1− bt)−0.5, v = rΩ(1− bt)−0.5, w = 0, T = Ts at z = 0,
∂u
∂z = ∂v

∂z = 0, w = ∂h
∂t + u∂h

∂r , ∂T
∂z = 0 at z = h.

(11)

The correspondence variables are defined as

u = rΩ
(1−bt)0.5 f ′(η), v = rΩ

(1−bt)0.5 g(η), w = −2(νΩ
/
(1− bt) )0.5 f (η),

h(t) =
(
ν
Ω (1− bt)

)0.5
β, T = T0 − Tre f

Ωr2

ν(1−bt)1.5θ(η), η = (Ω
/
ν(1− bt) )0.5z.

(12)

Substituting Equation (12) in Equations (7)–(9), the following system of equations is achieved

f ′′′ − S
(

f ′ +
η

2
f ′′

)
−

(
f ′2 − g2

− 2 f f ′′
)
−

(
ε1

ε2

)
M f ′ = 0, (13)

g′′ − S
(
g +

η

2
g′

)
− 2( f ′g + f g′) −

(
ε1

ε2

)
Mg = 0, (14)

(
1 + 4

3 Rd
)
θ′′ + 4

3 Rd
(
ε3
ε1

)
(θw − 1)3

(
3θ2θ′2 + θ3θ′′

)
+

3(θw − 1)2
(
2θθ′2 + θ2θ′′

)
+

3(θw − 1)
(
θ′2 + θθ′′

)


+2Pr( fθ′ − f ′θ) − 1
2 PrS(ηθ′ + 3θ) = 0,

(15)

With transformed boundary conditions
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f (0) = 0, f ′(0) = ω, g(0) = 1,θ(0) = 1,

f (β) = Sβ
4 , f ′′ (β) = 0, g′′ (β) = 0,θ′(β) = 0.

(16)

In Equations (13)–(15), S = b
Ω is a measure of unsteadiness, M =

B2
0

Ω(1−bt) signifies the magnetic

parameter, Pr = ν
b indicates the Prandtl number, θw = Ts

T0
represents the temperature ration parameter,

Rd =
4σ∗T3

0
kk∗ indicates the radiation parameter, ω = c

Ω represents the rotation parameter, and β =(
ν

Ω(1−bt)

)0.5
h specifies the value of similarity variable at free space. Finally, ε1, ε2 and ε3 are constants

defined in the following way
ε1 = (1−φ)ρ f + φρs,

ε2 =
3( σs/σ f−1)φ

( σs/σ f +2)−( σs/σ f−1)φ
σ f ,

ε3 =
ks+2k f−2φ(k f−ks)
ks+2k f +2φ(k f−ks)

.

(17)

The skin friction coefficient and local Nusselt number are defined as

Re−1/2C fr = f ′′ (0), (18)

Re−1/2Nur = −
{
1 +

4
3

Rd(1 + (θw − 1)θ(0))3
}
θ′(0), (19)

where Re1/2 = r
√

c
v is the local Reynolds number.

3. Solution Procedure

For a solution of the modeled Equations (13)–(15) with boundary conditions (16) are solved
with the homotopy analysis method (HAM) [44–50]. HAM is used due to its outstanding outcomes.
The preliminary guesses are selected as follows:

f0( f ) = η, g0(g)= 1, θ0(θ) = 1. (20)

The linear operators are denoted as L f , Lg and Lθ are represented as

L f ( f ) = fηηη, Lg(g) = gηη, Lθ
(
θ) =θηη. (21)

which has the following applicability:

L f (C1 + C2η+ C3η
2 + C4η

3) = 0, Lg(C5 + C6η+ C7η
2) = 0, Lθ(C8 + C9η) = 0. (22)

where Ci(i = 1, 2, 3, . . . 9) are constant.
Regrettably there are many practical systems that lead to an analytical solution, and analytical

solutions are of limited use. That is why we use the numerical approach to make an answer close to
the practical result. Those solutions which cannot be used in complete mathematical expressions are
numerical solutions. There are almost no problems in nature that are exactly solvable, which creates a
problem. However, there are about three or four of these problems in nature that have already been
solved but unfortunately even numerical methods cannot give an exact solution. Numerical techniques
can handle any completed physical geometries which are often impossible to solve analytically.
Figures 2–4 show the comparison of the HAM and ND-Solve technique for velocities and temperature
functions. Figure 5 shows the total residual error for velocity and temperature functions. Tables 1–4
represent the comparison of the HAM and ND-Solve technique for velocity and temperature functions.
From these tables, an excellent agreement between HAM and numerical (ND-Solve) techniques are
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obtained. Table 5 demonstrates the individual residual square errors for velocities and temperature
functions. A fast convergence of the solutions is observed in Table 5. Table 4 represents the individual
residual square errors for velocity f ′(η), g(η) and θ(η).

Table 1. The comparison of HAM and ND-Solve for different values of the dimensionless variable η.

η HAM Solution ND-Solution Absolute Error

0.0 0.000000 3.245990× 10−9 3.245990× 10−9

0.2 0.185094 0.185094 1.205310× 10−7

0.4 0.344936 0.344935 4.805570× 10−7

0.6 0.486721 0.486720 1.053600× 10−6

0.8 0.617341 0.617339 1.733100× 10−6

1.0 0.742857 0.742855 2.627600× 10−6

Table 2. Comparison of HAM and ND-Solve for velocity function f ′(η) w.r.t. different values of the
dimensionless variable η.

η HAM Solution ND Solution Absolute Error

0.0 0.000000 3.126830× 10−9 3.126830× 10−9

0.1 0.096140 0.096140 6.091750× 10−8

0.2 0.185994 0.185094 2.502260× 10−7

0.3 0.277724 0.267724 5.615220× 10−7

0.4 0.344936 0.344935 9.907840× 10−7

0.5 0.417640 0.417639 1.529500× 10−6

0.6 0.486722 0.486720 2.889860× 10−6

0.7 0.553026 0.553023 2.167090× 10−6

0.8 0.617343 0.617339 3.680790× 10−6

0.9 0.680401 0.680396 4.519730× 10−6

1.0 0.742860 0.742855 5.384880× 10−6

Table 3. The Comparison of HAM and ND-Solve for velocity function g(η) w.r.t different values of the
dimensionless variable η.

η HAM Solution ND Solution Absolute Error

0.0 1.000000 1.000000 2.768567× 10−8

0.1 0.891532 0. 891533 7.671790× 10−7

0.2 0.803873 0. 803874 1.483510× 10−6

0.3 0.732482 0. 732484 2.160850× 10−6

0.4 0.674149 0. 674152 2.768330× 10−6

0.5 0.626630 0. 626634 3.297270× 10−6

0.6 0.588423 0. 588427 3.731420× 10−6

0.7 0.558623 0. 558627 2.062710× 10−6

0.8 0.536846 0. 536850 4.284390× 10−6

0.9 0.523221 0. 523225 4.404990× 10−6

1.0 0.518424 0. 518428 4.433930× 10−6
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Table 4. Comparison of HAM and ND-Solve for temperature function θ(η) w.r.t. different values of
the dimensionless variable η.

η HAM Solution ND Solution Absolute Error

0.0 1.000000 1.000000 2.768560× 10−8

0.1 0.891532 0.891533 7.671790× 10−6

0.2 0. 803873 0.803884 1.483580× 10−6

0.3 0.732482 0.732484 2.160850× 10−6

0.4 0.674149 0.674152 2.768330× 10−6

0.5 0. 626630 0.626634 3.297270× 10−6

0.6 0.588423 0.588424 3.731420× 10−6

0.7 0.558623 0.558626 4.062710× 10−6

0.8 0.536846 0.536850 4.284390× 10−6

0.9 0. 523221 0.523225 4.404990× 10−6

1.0 0.518424 0.518428 4.439330× 10−6

Table 5. Individual residual square errors for ∆ f
m, ∆g

m, ∆θm.

Order↓ Values→ ∆
f
m ∆

g
m ∆θm

4 0.0103907 0.00912399 6.0483× 10−6

8 0.0001435 0.0000458563 0.000012574

12 1.34066× 10−6 0.0000114474 5.85501× 10−7

16 2.48834× 10−7 2.51255× 10−6 7.2275× 10−9

20 1.0237× 10−7 1.42143× 10−7 2.17901× 10−9

24 9.63577× 10−9 3.28097× 10−10 1.09873× 10−9

30 7.35454× 10−10 1.38141× 10−10 4.68332× 10−11
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4. Results and Discussion

In this section, we have presented Figures 6–16 to observe the impact of different embedded
parameters on axial velocity f (η), radial velocity f ′(η), and azimuthal velocity g(η) and temperature
θ(η) profiles. These parameters are unsteadiness (S), magnetic (M), Prandtl number (Pr), thermal
radiation (Rd), temperature ratio (θw) of axial velocity f (η), radial velocity f ′(η), azimuthal velocity
g(η) and temperature θ(η) profiles for some designated values. The effect of (M) on f (η), f ′(η) and
g(η) is displayed in Figures 6–8. We observed a decaying trend in velocity components. The reason
behind this is that the Lorentz force generated by the application of the axial magnetic field liquid
opposes the liquid motion. A fan like behavior shows a rotating disk, which actually draws the fluid
axially inward from the surrounding towards the disk surface. The inward fluid is rotated and releases
in a radial direction because of the non-porous disk. Here the magnetic field is not applied directly,
but is applied in the vertical direction, which slows down the axial flow. However, the magnetic
force radial component slows down the motion in radial direction. The subsequent decrease in radial
velocity causes the decrease in axial velocity. Moreover, the thickness is found in a decreasing fashion
with the magnetic field parameter. Figures 9–12 are schemed to observe the influence of (S) on f (η),
f ′(η), g(η) and θ(η). We observed that the growing (S) shows reducing behavior in f (η), f ′(η), g(η)
and θ(η). Figure 13 shows the influence of (M) on θ(η). According to the Lorentz theory, the applied
magnetic field reduces the thickness of the boundary layer flow and enhances the temperature of the
fluid. Therefore, the increasing (M) enhances θ(η). Figure 14 illustrates the effect of (Rd) on θ(η).
Physically, the escalating values of thermal radiation provide more heat to the liquid and as a result
the growing temperature distribution arises inside the boundary layer thickness. From the sketch,
we could see increasing behavior in the temperature profile with rising values of thermal radiation.
Figure 15 shows the impact of (Pr) on θ(η). We could see increasing behavior in the temperature
profile with the rise in Prandtl number. Figure 16 illustrates the influence of (θw) on θ(η). Physically,
the strengthen temperature ratio parameter increases the wall temperature more than the ambient
fluid temperature and as a result the fluid temperature upsurges. Therefore, θ(η) increases with the
enhancement in (θw).

The relationship between the surface drag force and embedded parameters is presented in Table 6.
The surface drag force diminishes with the augmentation in the magnetic field and the unsteadiness
parameter. Similarly, the relationship between the heat transfer rate and embedded parameters is
obtainable from Table 7. The heat transfer rate rises with the enhancement in the Prandtl number and
the unsteadiness parameter.
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Table 6. The numerical values for surface force w.r.t. different parameters.

M S Cfr

0.1 −0.384263
0.2 −0.480181
0.3 −0.571465

0.1 −0.518415
0.2 −0.581053
0.3 −0.640981

Table 7. The numerical values for heat transfer rate w.r.t. different parameters.

Rd Pr θw S Nur

0.1 0.970812
0.2 0.756927
0.3 0.632256

5.0 0.237658
5.5 0.657864
6.0 0.987797

0.1 0.161696
0.2 0.161423
0.3 0.160691

0.1 0.208260
0.2 0.234106
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5. Conclusions

In this article we have examined the unsteady flow of viscous fluid over a horizontally rotating
disk. The impact of non-linear thermal radiations was studied numerically. The impact of the magnetic
field has been taken into account. The theme of this article is listed below:

• The velocity profile reduced due to the escalated magnetic field.
• The temperature profile increased due to the escalated magnetic field.
• The velocity and temperature profiles raised due to the enhanced unsteadiness parameter.
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• The temperature profile increased due to the enhanced temperature ration and thermal
radiation parameters.

• The temperature profile reduced due to the enhanced Prandtl number.
• The skin fraction reduced due to the enhanced magnetic field and unsteadiness parameter.
• The local Nusselt number enhanced due to the enhanced Prandtl number and

unsteadiness parameter.
• The local Nussetl number reduced due to the enhanced thermal radiation and temperature

ratio parameters.
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checked the mathematical modeling and English corrections. W.K. and Z.S. solved the problem using Mathematica
software. S.I. and P.K. contributed to the results and discussions. All authors finalized the manuscript after its
internal evaluation.

Funding: This research was funded by the Center of Excellence in Theoretical and Computational Science
(TaCS-CoE), KMUTT.

Acknowledgments: This project was supported by the Theoretical and Computational Science (TaCS) Center under
Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT.

Conflicts of Interest: The author declares that they have no competing interest.

Nomenclature

(r,ϕ, z) cylindrical coordinate system
b positive constant
Ts Stretchable rotating disk surface temperature
Tre f Constant reference temperature
B(t) applied along z-direction
Cre f reference concentration
u, v and w velocity components
k∗ mean absorption coefficient(
ρCp

)
n f heat capacity

ρn f Density
θw temperature ratio parameter
Rd radiation parameter
β similarity variable at free space
c stretching parameter
Ω rotating rate of disk
T0 Temperature at the origin
C0 concentration at the origin
Cs concentration at the disk surface
σn f electrical conductivity
σ∗ Stephan–Boltzmann constant
νn f kinematic viscosity
αn f thermal diffusivity
S measure of unsteadiness
Pr Prandtl number
ω rotation parameter
M magnetic parameter
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