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Abstract: Metal chalcogenide materials are current mainstream thermoelectric materials with high
conversion efficiency. This review provides an overview of the scalable solution-based methods for
controllable synthesis of various nanostructured and thin-film metal chalcogenides, as well as their
properties for thermoelectric applications. Furthermore, the state-of-art ink-based processing method
for fabrication of thermoelectric generators based on metal chalcogenides is briefly introduced. Finally,
the perspective on this field with regard to material production and device development is also
commented upon.

Keywords: metal chalcogenides; thermoelectric; solution-based synthesis; ink-based processing;
thermoelectric generator

1. Introduction

Given the current global energy crisis and environmental issues, the exploitation of green and
sustainable resources, such as wind, solar, geothermal, and biomass resources, for energy generation
is being extensively developed all over the world. In this context, thermoelectric materials that can
directly convert waste heat into electricity have attracted tremendous research interest over the past
decades [1–4]. The thermoelectric conversion efficiency can be conveniently evaluated by the figure
of merit ZT = S2σT/κ (where S is the Seebeck coefficient, σ is electrical conductivity, T is absolute
temperature, and κ is thermal conductivity). For easy comparison of the electrical and thermal
transport properties, the thermal conductivity (κ) and power factor (S2σ) can be used to judge the
performance of different thermoelectric materials [5]. Currently, the research in this field is mainly
focused on (1) developing novel environmentally benign and naturally abundant thermoelectric
materials, (2) improving thermoelectric performance of existing materials through nanostructure
engineering, and (3) developing highly efficient modules or devices for practical thermoelectric
energy conversion.

Figure 1 summarizes the figure of merit values of current state-of-the-art thermoelectric materials
with high conversion efficiency, which are mainly based on metal chalcogenide semiconductors, such as
Bi2Te3, Cu2Se, SnSe, and PbTe, etc. [4]. The outstanding ZT values of the metal chalcogenides are mainly
ascribed to their relatively weaker covalent bonding strength and higher atomic weight compared to
other thermoelectric materials, which lead to low thermal conductivity [6]. The electronic structures
and formulations of the chalcogenide materials can be readily engineered through nanotechnology
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and chemical doping. Moreover, the functional properties of metal chalcogenides can be easily
tuned by p-type or n-type doping. Importantly, most of the metal chalcogenide thermoelectric
materials are nontoxic, cheap, and Earth-abundant, holding great promise for large-scale production
and manipulation.
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The practical application of high-performance thermoelectric materials largely relies on the
development of scalable synthetic approaches with controllable size, composition, structure,
and morphology. The conventional solid-state or gas-phase methodologies are often considered
unsatisfactory due to consuming large amounts of energy, harsh reaction conditions, and/or low
production rates. Comparatively, solution-based synthesis has been considered to be a powerful and
industry-friendly approach for obtaining various metal chalcogenide materials. Currently, there are a
number of review papers on metal chalcogenide materials for thermoelectric, photovoltaic, energy
storage, electrocatalytic, and photocatalytic applications, some of which involve a specific method for
preparation of these materials [6–17]. However, there is no comprehensive summary on solution-based
synthesis and processing of metal chalcogenide materials for thermoelectric applications. Herein,
we will provide an overview on the solution-based synthesis of nanostructured or thin-film metal
chalcogenide materials as well as their thermoelectric applications reported recently. We mainly focus
on the environmentally benign such materials with high ZT values, such as Bi2Te3, Cu2Se, and SnSe.
PbTe is also a high-performance thermoelectric material; however, the environmental concern due to
its inherent toxicity limits its large-scale production and application. Other binary and multinary metal
chalcogenide materials and their composites are not covered in this paper because of the overwhelming
research in this field. Following that, we also introduce the state-of-the-art ink-based processing
methods for fabrication of thermoelectric devices based on metal chalcogenides. Finally, we conclude
with future prospects of these metal chalcogenide materials for practical thermoelectric applications.

2. Solution-Based Approaches for Synthesis of Metal Chalcogenides

Up to now, several strategies for the preparation of bulk or micro/nanostructured metal
chalcogenides have been developed. The traditional solid-state synthesis through reactions among
molten states with a specific ratio of solid reactants can generate bulk crystalline metal chalcogenides
with high density and symmetry [18–20]. However, high temperature (>600 ◦C) is usually required
to overcome the diffusion barriers among the solids in order to achieve an appropriate reaction rate.
Kinetic control and mechanism study of these reaction systems are thus rather difficult and also
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have limited control over the structures coming out of these reactions. The mechanical exfoliation
process from high-quality bulk materials can generate pristine single layers of metal chalcogenides
with ideal electronic properties [21–23]. Nevertheless, the low production yield and small lateral size
(typically less than 10 µm) of the exfoliated specimens hamper the practical application of this method.
Synthetic approaches based on gas-phase processes such as chemical vapor deposition (CVD) [24–27]
and molecular beam epitaxy growth [28,29] have been successfully applied to produce defectless,
uniform thin films of metal chalcogenide materials. However, high-temperature and high-vacuum
reaction conditions as well as specific substrates are required for the material growth. The scale-up
application of these processes still remains a great challenge due to the low production rate, limited
domain size, and difficulty in controlling thickness over the entire substrates.

Recent extensive research suggests that solution-based synthesis is the most feasible method
for large-scale production of various metal chalcogenide materials. In a solution-based system,
the conditions, such as solvents or surfactants employed, are logically chosen depending on the
target metal chalcogenides to be synthesized. The kinetic and thermodynamic parameters can also
be easily tuned to alter the speed of nucleation and the formation of the products. In addition,
the solution-based synthetic approach does not require extreme conditions such as high temperatures
or high pressures, yet it is able to generate products with high yields. In this section, we mainly
summarize the solution-based approaches for the controlled synthesis of nanoscaled or thin-film
metal chalcogenide materials, including the ‘top-down’ liquid exfoliation method, the ‘bottom-up’
hydrothermal/solvothermal method, and the wet chemical process for construction of nanostructured
metal chalcogenides, as well as the electrodeposition method for the formation of both nanoscaled and
thin-film materials. The composition, morphology, and properties of these thermoelectric materials are
also briefly discussed.

2.1. Liquid-Based Exfoliation Method

Ever since graphene was discovered, two-dimensional (2D) nanomaterials have gained tremendous
interest in the research world due to their unique and extraordinary optical, electronic, thermal, and
mechanical characteristics compared to their bulk counterparts [30,31]. In the nanostructure engineering
of thermoelectric materials, the commonly used strategy to improve thermoelectric performance is
to simultaneously reduce the thermal conductivity and enhance the electrical conductivity [10].
It has been demonstrated that lattice scattering of the phonons in nanoscaled layered thermoelectric
materials would be able to effectively reduce the material’s thermal conductivity as the formation of
nanostructures brings about lots of boundaries which act as effective phonon scattering centers [32].
Meanwhile, the charge carrier mobility on the 2D thin layers with higher crystallinity is greatly
enhanced compared to the bulk material [33]. Thus, the performance of bulk thermoelectric materials
has been improved with 2D nanostructures [34].

Currently, several methods for production of 2D metal chalcogenides have been developed,
including the bottom-up synthesis by vapor-phase deposition [27,35,36], solvothermal method [37],
and top-down approach by micromechanical cleavage [38]. However, those methods always suffer
from harsh conditions such as high vacuum, high temperature, and/or slow throughput. The liquid
exfoliation method is regarded as a highly scalable and achievable solution-based method for producing
highly crystalline 2D nanomaterials with good yields in mild conditions [39–41]. The method utilizes
high shearing or ultrasonication on crystal layers formed in their respective stabilizing liquids (such as
surfactants, polymer solutions, ionic liquids, etc.) to produce 2D nanosheets. Net exfoliation energy is
decreased by interactions of the molecules at the nanosheet–liquid interface, preventing the nanosheets
from aggregating. The obtained dispersions are stable, and the nanosheets can be synthesized at a
concentration of more than 1 g L−1. The liquid exfoliation method has been used in the synthesis of
various 2D materials, including transition metal dichalcogenides, graphene, boron nitride, transition
metal oxides, phosphorene, MXenes, and so on [39].
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For Bi2Te3, each crystal layer is made up of approximately 1-nm thick quintuple sheets where the
five atoms is covalently bonded in the order of Te1–Bi–Te2–Bi–Te1. The bulk material is then made
up of weakly interacting stacked quintuple nanosheets [42]. Given the weak van der Waals forces of
interaction between the layers, the 2D nanostructures can thus be formed by intercalation chemistry
with exfoliation. In 2009, Ding and coworkers reported the lithium intercalation and exfoliation of
layered Bi2Te3 and Bi2Se3 (Figure 2a) [43]. The intercalation of the lithium ions between the nanosheets
is due to the reducing power of electrons solvated in liquid ammonia. The intercalated materials can be
exfoliated in water with the assistance of ultrasonication to create colloidal suspensions. Dialysis can
then be used to remove the lithium ions after exfoliation. The colloidal suspensions can be coated onto
different substrates to form 2D flimsy oriented thin films. Very recently, Ju et al. prepared S-doped SnSe
nanosheets by hydrothermal lithium intercalation and subsequent exfoliation from bulk ingots [44].
The substitution of S atoms is beneficial for the phonon scattering from many atomic disorders and
nanosized boundaries, leading to effective reduction in thermal conductivity. Furthermore, through
solution-phase chemical transformation of the obtained SnSe1−xSx nanosheets using tartaric acid,
which can partially dissolve Sn2+ ions, a highly porous structure can be generated with further
decreased thermal conductivity due to the scattering effect caused by the nanoscale porous boundaries.
The fabricated porous SnSe1−xSx nanosheets exhibit a low thermal conductivity of 0.4 W m−1K−1 and a
maximal ZT value of 0.12 at 310 K, which is significantly higher than that of pristine SnSe.

Room-temperature ionic liquids are superior exfoliants as they possess attractive physical and
chemical properties including tunable viscosity, low vapor pressure, high ionic conductivity, and high
thermal stability, and they can potentially be recycled. In 2015, Turner and coworkers studied the liquid
exfoliation of Bi2Te3 nanoplatelets in an ionic liquid (1-butyl-3-methylimidazolium chloride, [C4mim]Cl)
solvent (Figure 2b) [45]. Both experiments and molecular dynamics simulations demonstrated that
the [C4mim]+ cation is the dominant factor for the interlayer sliding and separation of Bi2Te3 layers.
Bi2Te3 nanoplatelets in [C4mim]Cl were synthesized at 0.05 wt % through 1-h tip sonication at a
temperature of 80−150 ◦C and a power of 225–600 W. After sonication, as-synthesized nanoplatelets
with a thickness of 1 to 2 µm were exfoliated to 15 ± 8 nm nanosheets. Later, the same group examined
different exfoliation solvents and dispersion of Bi2Te3 from eight imidazolium-based ionic liquids at
temperatures between 350 to 550 K [46].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 19 

For Bi2Te3, each crystal layer is made up of approximately 1-nm thick quintuple sheets where 
the five atoms is covalently bonded in the order of Te1–Bi–Te2–Bi–Te1. The bulk material is then 
made up of weakly interacting stacked quintuple nanosheets [42]. Given the weak van der Waals 
forces of interaction between the layers, the 2D nanostructures can thus be formed by intercalation 
chemistry with exfoliation. In 2009, Ding and coworkers reported the lithium intercalation and 
exfoliation of layered Bi2Te3 and Bi2Se3 (Figure 2a) [43]. The intercalation of the lithium ions between 
the nanosheets is due to the reducing power of electrons solvated in liquid ammonia. The 
intercalated materials can be exfoliated in water with the assistance of ultrasonication to create 
colloidal suspensions. Dialysis can then be used to remove the lithium ions after exfoliation. The 
colloidal suspensions can be coated onto different substrates to form 2D flimsy oriented thin films. 
Very recently, Ju et al. prepared S-doped SnSe nanosheets by hydrothermal lithium intercalation and 
subsequent exfoliation from bulk ingots [44]. The substitution of S atoms is beneficial for the phonon 
scattering from many atomic disorders and nanosized boundaries, leading to effective reduction in 
thermal conductivity. Furthermore, through solution-phase chemical transformation of the obtained 
SnSe1−xSx nanosheets using tartaric acid, which can partially dissolve Sn2+ ions, a highly porous 
structure can be generated with further decreased thermal conductivity due to the scattering effect 
caused by the nanoscale porous boundaries. The fabricated porous SnSe1−xSx nanosheets exhibit a 
low thermal conductivity of 0.4 W m−1K−1 and a maximal ZT value of 0.12 at 310 K, which is 
significantly higher than that of pristine SnSe. 

Room-temperature ionic liquids are superior exfoliants as they possess attractive physical and 
chemical properties including tunable viscosity, low vapor pressure, high ionic conductivity, and 
high thermal stability, and they can potentially be recycled. In 2015, Turner and coworkers studied 
the liquid exfoliation of Bi2Te3 nanoplatelets in an ionic liquid (1-butyl-3-methylimidazolium 
chloride, [C4mim]Cl) solvent (Figure 2b) [45]. Both experiments and molecular dynamics 
simulations demonstrated that the [C4mim]+ cation is the dominant factor for the interlayer sliding 
and separation of Bi2Te3 layers. Bi2Te3 nanoplatelets in [C4mim]Cl were synthesized at 0.05 wt % 
through 1-h tip sonication at a temperature of 80−150 °C and a power of 225–600 W. After sonication, 
as-synthesized nanoplatelets with a thickness of 1 to 2 μm were exfoliated to 15 ± 8 nm nanosheets. 
Later, the same group examined different exfoliation solvents and dispersion of Bi2Te3 from eight 
imidazolium-based ionic liquids at temperatures between 350 to 550 K [46]. 

 
Figure 2. (a) Schematic illustration of how layered Bi2Te3 can be intercalated with lithium and 
exfoliated with water to form a colloidal suspension of Bi2Te3 nanosheets. (b) Schematic of the ionic 
liquid exfoliation process to generate 2D nanosheets. Readapted with permission from The Royal 
Society of Chemistry [43] and American Chemical Society [45]. 

Figure 2. (a) Schematic illustration of how layered Bi2Te3 can be intercalated with lithium and exfoliated
with water to form a colloidal suspension of Bi2Te3 nanosheets. (b) Schematic of the ionic liquid
exfoliation process to generate 2D nanosheets. Readapted with permission from The Royal Society of
Chemistry [43] and American Chemical Society [45].
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Electrochemical exfoliation methods are gaining great research interest as the procedure is simple
and the synthetic conditions are mild and easily controllable with high efficiencies. They can be applied
to layered bulk materials in a liquid electrolyte to induce structural expansion. Promising methods
for large-scale exfoliation of 2D materials include cathodic exfoliation or anodic oxidation–cationic
intercalation. These layered bulk materials contain robust in-plane covalent bonds, but out-of-plane
bonds that are held by weak van der Waals forces allow easy exfoliation into thin 2D nanosheets by
charged ions [47]. In 2016, Ambrosi et al. reported the exfoliation of layered Bi2Te3 via electrochemistry
(Figure 3) [48]. In this method, small flakes from the synthesized crystals were electrically connected to
one electrode through a copper tape with a counter electrode made of Pt foil. Exfoliation was simply
carried out by alternating the voltages from the anode (+10 V) and cathode (−10 V) to a solution of
0.5 M Na2SO4 electrolyte containing the crystals.
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(b) Experiment set-up of a two-electrode system using Bi2Te3 crystal attached to a copper tape as
the working electrode and a Pt foil as the counter electrode, which is separated from the solution
through a dialysis membrane in order to avoid direct contact of exfoliated material with the electrode
surface. (c) Exfoliation occurred by applying cathodic (−10 V) voltage to the working electrode for
two minutes. (d) Exfoliation occurred by applying repeated alternating anodic (+10 V) and cathodic
(−10 V) voltages to the working electrode for two minutes. Readapted with permission from American
Chemical Society [48].

2.2. Hydrothermal or Solvothermal Method

Hydrothermal synthesis involves the growth of crystals from submicron to nanometer scale by
chemical reaction in an aqueous solution at elevated temperature and high pressure. This method has
been widely used since the 1960s for the synthesis of functional nanomaterials with different specific
shapes and sizes [12,49]. Precise control over the internal reaction conditions, including pressure,
time, pH value, concentration, and organic additives or templates, and external reaction environment,
such as microwave or conventional heating, is necessary for the successful synthesis of the inorganic
semiconducting nanostructures. By varying these two internal and external conditions, different
hydrothermal synthesis methods have been developed [50].

To have greater control over the size, shape, reactivity, and phase of the product, the solvothermal
method can be employed by using more different organic solvents rather than water. The solvent
properties such as viscosity and polarity can influence the transport behavior and solubility of the
reagents in the liquid medium. Compared to hydrothermal synthesis, solvothermal synthesis showed
a higher tolerance as it could be carried out in a solvent with a higher reaction temperature [12].
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Since the properties of inorganic semiconductors largely depend on their size, shape,
and crystallinity, the highly controllable hydrothermal/solvothermal method has exhibited
extraordinary advantages in the synthesis of inorganic semiconducting nanostructures due to simple
manipulation, high yield, low energy consumption, good crystallinity, homogeneity, and narrow size
distribution. By using this method, a number of nanostructured metal chalcogenides (based on Bi2Te3,
Cu2Se, and SnSe) with different morphologies (Figure 4), such as nanostrings [51], nanorods [52,53],
nanowires [54], nanobelts [55], nanoplates [56–63], nanoflowers [56,64], and nanopowder [65], have
been synthesized and evaluated for thermoelectric applications. Yang et al. reported highly
crystalline β-phase Cu2Se nanosheets prepared through heating the mixture of CuO, SeO2, NaOH, and
polyvinylpyrrolidone (PVP) in ethylene glycol at 230 ◦C for 24 h. After sparking plasma sintering, the
obtained Cu2Se pellets exhibit an ultralow thermal conductivity (0.2 W m−1K−1) due to strong phonon
scattering by high-density small-angle grain boundaries in the nanostructured material, which leads to
a considerably high ZT of 1.82 at 850 K. Zhao et al. reported the preparation of nanostructured Bi2Te3

with different morphologies (such as nanotubes, needle-shaped nanowires, nanoflakes, and flower-like
clusters) by a facile hydrothermal treatment using sodium dodecyl benzene sulfonate (SDBS) and PVP
as surfactants [43]. Results show that the formation of nanostructures can be readily controlled and
tuned by the use of different surfactants and varying the reaction temperatures. Another significant
advantage of the hydrothermal/solvothermal method is its great convenience for incorporation of
different levels of element doping via addition of the corresponding precursors in the reaction mixture.
Wu et al. synthesized Ce-, Y-, and Sm-doped Bi2T3 nanopowders via hydrothermal treatment [51].
Doping with these rare earth elements can effectively decrease the thermal conductivity, especially for
the Ce-doped material, which exhibits a ZT value up to 1.29 at 373 K. The thermoelectric properties of
these nanostructured metal chalcogenides prepared by hydrothermal/solvothermal method and other
solution-based approaches are summarized in Table 1.
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nanostring clusters; (b) Bi2Te3 nanorod bundles; (c) Bi2Te3 nanowires; (d) Bi2Te3 nanoflowers; (e) Bi2Te3

nanoparticles; (f) Cu2Se nanoplates; (g) SnSe microplates; (h) SnSe nanobelts. Reprinted with permission
from the American Chemical Society [51], Elsevier Ltd. [54–56,61,66], and Wiley-VCH [53,60].
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Table 1. Summary of the thermoelectric properties of nanostructured metal chalcogenides synthesized
by various solution-based methods.

Materials Approach σ

(S cm−1)
S

(µV K−1)
κ

(W m−1 K−1) ZTmax T (K) Ref.

Bi2Te3 nanostrings HT + HP 5.1 −172 0.29 0.016 298 [51]
Y-doped Bi2Te3
nanopowders HT + HP 1.180 −150 0.85 1.23 410 [65]

Bi2Te3 nanoflowers HT + PS 370 −152 0.5 0.7 453 [56]
La-doped Bi2Te3

nanoflowers HT + HP 62 −133 0.92 0.58 480 [64]

Ce-doped Bi2Te3
nanosheets HT + HP 770 −146 0.5 1.29 398 [62]

Cu2Se nanoplates HT + SPS 1000 101 1.2 0.62 773 [67]
I-doped Cu2Se

nanosheets HT + HP 250 215 0.8 1.1 773 [61]

Bi2Te3 nanorods ST + HP 180 −135 0.35 0.43 473 [53]
Se-doped Bi2Te3

nanoplates ST + SPS 480 −198 0.72 1.23 480 [57]

Cu2Se nanoplates ST + SPS 100 290 0.3 1.82 850 [63]
Sb-doped SnSe

microplates ST + SPS 39.4 247 0.17 1.1 773 [60]

SnSe nanobelts ST + HP 22.2 350 0.25 0.83 803 [55]
Bi2Te3 nanowires TA + HT 13.3 −74 0.05 0.005 300 [68]
Bi2Te3 nanowires TA + SPS 425 −250 1.0 0.96 380 [69]

Cu2Se nanoparticles CRP + SPS 3000 37.5 0.75 0.3 673 [70]
SnSe nanoparticles CRP + SPS 30 −305 0.5 0.4 573 [70]

Cu2Se nanopowders CRP + HT 333 140 0.75 1.35 900 [71]
Bi2Te3 nanowires ED + HT 2000 −70 0.75 0.9 300 [72]

Bi2Te3 films ED 666 a

3200 b
−58 a

−50 b
1.2 a

2.4 b
0.056 a

0.104 b 300 [73]

S-doped SnSe nanosheets LE 4.76 560 0.4 0.12 310 [44]
a In-plane thermoelectric properties of electrodeposited films. b Out-of-plane thermoelectric properties of
electrodeposited films. Note: HT—hydrothermal method, HP—hot press, PS—pressure sintering, SPS—spark
plasma sintering, ST—solvothermal method, TA—template-assisted solution-phase synthesis, CRP—chemical
reduction–precipitation method, ED—electrodeposition method, LE—liquid exfoliation method.

2.3. Template-Assisted Solution-Phase Synthesis

For the past 20 years, template-directed synthesis has been a commonly used method for the
fabrication of 1D nanostructures [74–76]. In 2011, Wang et al. first reported a wet chemistry method
for the controlled formation of ultrathin Te nanowires (with a diameter of several nanometers) using
PVP as surfactant, which were subsequently employed as sacrificial templates to synthesize highly
uniform Bi2Te3 nanowires with diameter of 15–17 nm and length of tens of micrometers in triethylene
glycol solution upon addition of Bi3+ ions and hydrazine under heating (200 ◦C) at atmospheric
pressure [68]. The synthesis of Bi2Te3 nanowires was said to have involved the Kirkendall effect
and Ostwald ripening (Figure 5a), as evidenced by experimental observations. Using a similar
method, Zhang et al. later carried out a simple and efficient synthesis of n-type ultrathin Bi2Te3

nanowires with an average diameter of 8 nm in ethylene glycol solution with high yield up to 93%
(Figure 5b–d) [69]. The prepared Bi2Te3 nanowires were compressed to bulk pellets by spark plasma
sintering and exhibited a high ZT value of 0.96 at 380 K, which was attributed to the notable decrease
in thermal conductivity due to the increased phonon scattering at the boundaries of the nanowires.
Very recently, Finefrock et al. also developed a large-scale one-pot solution-phase synthesis of ultrathin
PbTe and Bi2Te3 nanowires (<15 nm) using Te nanowires as templates with high yield (>80%) at lower
temperature (120 ◦C) in ethylene glycol solution [77]. This facile and scalable solution-phase approach
is a promising and reliable route for manufacturing uniform ultrathin metal chalcogenide nanowires
for thermoelectric applications.
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Figure 5. (a) Schematic illustration of the formation mechanism of the Bi2Te3 nanowires via a
template-assisted solution-phase process. (b,c) Transmission electron microscopy (TEM) images of
ultrathin Bi2Te3 nanowires prepared by the process. The inset in (c) is the high-resolution TEM
image for the prepared Bi2Te3 nanowires. (d) ZT value of the Bi2Te3 nanowire bulk pellet at different
temperatures. Readapted with permission from The Royal Society of Chemistry [68] and American
Chemical Society [69]. PVP: polyvinylpyrrolidone.

2.4. Chemical Reduction–Precipitation Method

Very recently, Han and coworkers developed a general ambient aqueous method for large-scale
production of different nanostructured metal chalcogenides (y via a reduction–precipitation process
without using any surfactants [70]. In a typical experiment (Figure 6a), NaBH4 was used to reduce
Se powder in an aqueous solution. Copper precursor in distilled water was then added into the
reaction mixture to yield black precipitates due to the poor solubility of copper selenide. The whole
synthesis process took only one hour with high yield over 90%. Figure 6b–e presents the TEM images
of different metal chalcogenide nanostructures prepared by this method. Most metal chalcogenides
exhibit spherical morphology with a narrow size distribution of 10–20 nm. The possibility of such
uniformed nanosized particles without addition of surfactants is due to the extremely low solubility
of the nanoparticles, which gives rise to homogeneous precipitation from the aqueous solution.
The thermoelectric properties of these nanoparticles were investigated after sintering into pellets
using the spark plasma sintering technique. Pronounced enhancement in the ZT value was observed
with some metal chalcogenide nanostructures (ZTmax = 0.38 at 300 ◦C for SnSe; ZTmax = 0.27 at 230
◦C for Bi2Se3) due to the effectively reduced thermal conductivity. Li and coworkers also reported
a wet coprecipitation method for large-scale synthesis of Cu2Se nanoparticles, which exhibited an
outstanding ZT value (up to 1.35 at 850 K) after hot press sintering [71]. Pejjai et al. developed a similar
eco-friendly reduction–precipitation approach to prepare SnSe nanoparticles in a short reaction time of
10 min [78].
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as a coating on the surface. The experimental parameters, such as electrolytes, reagent 
concentrations, nature of electrodes, temperature, and applied electrical conditions, could have 
effects on the properties of the electrodeposited films. This electrochemical synthesis process is 
scalable, simple, rapid, and cost-effective and it gives great control of the thickness, crystallinity, 

Figure 6. (a) Schematic illustration of synthesis route; the inset picture shows the weight of 40 mmol
(theoretical yield) synthesized Cu2Se powder. (b–e) TEM images of Cu-, Pb-, and Bi-based chalcogenide
nanostructures. Readapted with permission from Elsevier Ltd. [70].

2.5. Electrodeposition Method

The electrodeposition method has been considered as an effective process to fabricate metallic
coatings on a substrate surface through a cathodic reduction reaction in either an aqueous or an organic
solution containing the metal ions to be electrodeposited [32,79–81]. The substrate material (such as
indium–tin oxide (ITO), silicon, copper, porous anodic alumina (PAA) membranes, etc.) is used as
the cathode to attract positively charged metallic ions and reduce them to their metallic form as a
coating on the surface. The experimental parameters, such as electrolytes, reagent concentrations,
nature of electrodes, temperature, and applied electrical conditions, could have effects on the properties
of the electrodeposited films. This electrochemical synthesis process is scalable, simple, rapid,
and cost-effective and it gives great control of the thickness, crystallinity, composition, and morphology.
Electrodeposition has been extensively applied to fabricate various metal chalcogenide thermoelectric
materials (Figure 7), such as Bi2Te3 films [59,72,73,82–89], Bi2Te3 nanowire arrays [90–93], Bi2Te3

nanotube arrays [94], Cu2Te films [95,96], Cu2Te nanowires [97], SnSe films [98–101], and so on.
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Figure 7. SEM images of (a) planar and (b) cross-sectional views of the electrodeposited Bi2Te3 films;
(c) highly ordered nanopores in an anodic alumina membrane (AAM) template; (d) side view of
the electrodeposited Bi2Te3 nanowires array partially embedded in AAM. Surface SEM images of
electrodeposited Cu2-xSe films at (e) 1000 and (f) 10,000 magnification. SEM images of (g) surface and (h)
cross-sectional views of the electrodeposited SnSe films. Readapted with permission from the American
Chemical Society [72], The Minerals, Metals and Materials Society [95], and Elsevier Ltd. [100].
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In an early study, Miyazaki et al. prepared both n-type and p-type Bi2Te3 films via electrodeposition
from a nitric acid bath containing Bi3+ and HTeO2+ via tuning the applied potential [86]. Most of
the successive work on electrodeposition of Bi2Te3 films was carried out in a similar acidic aqueous
solution of 1 M HNO3, which can only dissolve about 20 mM Te species. The low concentration of metal
ions and mass transport in the solution resulted in inhomogeneous composition, a limited growth rate,
and low film thickness (<10 µm). Nguyen and coworkers investigated organic electrolyte ethylene
glycol, which provided advantages such as high metal ion solubility and wide electrochemical window,
for electrodeposition of thick Bi2Te3 films (up to 67 µm) with uniform composition [85]. Naylor et al.
reported that using sodium lignosulfonate surfactant in the reaction can lead to reduction in Bi2Te3

crystallite size to 20.8 nm and improvement of film alignment onto the preferred (110) orientation [87].
Recently, Yang et al. prepared electrodeposited films of a Cu–Se binary compound from solutions
containing CuSO4, H2SeO3, and H2SO4. The copper contents and morphology of the films can be
tuned via shifting the depositing potential [95]. The highest power factor for electrodeposited copper
selenide film was 0.13 µW m−1 K−2 with a Seebeck coefficient of 56.0 µV K−1. A thin film thermoelectric
power generator device containing 242 pairs of n-type Bi2Te3 and p-type Sb2Te3 thin-film legs on the
bottom substrate was fabricated using the electrodeposition process [102].

Apart from the traditional substrates for electrodeposition, Jiang et al. recently reported using
a free-standing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film as the
working electrode for electrodeposition of Bi2Te3 films for preparation of a sandwich-structured
Bi2Te3/PEDOT:PSS/Bi2Te3 composite film (Figure 8) [103]. The as-prepared hybrid films exhibit a high
electrical conductivity of 403.5 S cm−1 and a Seebeck coefficient of 15.3 µV K−1 with a favorable low
thermal conductivity of 0.169–0.179 W m−1 K−1.

In addition to films, electrochemical deposition method can also be applied to produce
nanowire or nanotube arrays using a hard-template-assisted method. Chen and coworkers prepared
potentiostatically electrodeposited Bi2Te3 nanowire arrays embedded in an ordered porous anodic
alumina membrane (AAM) template. Compared to the normal direct-current electrochemical
deposition, the pulsed electrodeposition with a pulse delay time for the recovery of the ion
concentration always leads to a crystalline structure with high orientation and good uniformity [104].
Li and coworkers fabricated highly oriented single-crystalline Bi2Te3 nanowire arrays by pulsed
electrochemical deposition with an alternate pulse time of 3 ms and a delay time of 10 ms into the pores
of the AAM template [91]. Lee et al. reported the tunable crystalline structure of the electrodeposited
Bi2Te3 nanowires (with a Seebeck coefficient value of 12–33 µV K−1) by varying the delay times [92].
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3. Ink-Based Processing Method for Thermoelectric Device Fabrication

The ink-based processing method is highly favorable as a cheaper method, including for large-scale
device production. This method allows for easy assembly of thermoelectric device components,
especially in the shaping and scaling of the thermoelectric legs. Ink-based processing can effectively
reduce energy consumption for device fabrication and provide a high degree of design ability for
thermoelectric generators (TEGs) [105].

Generally, thermoelectric inks are prepared from conductive polymers [106–110], hybrids of
conductive polymers with inorganic or carbon nanofillers [111–116], and inorganic thermoelectric
materials [117–125]. Currently, most thermoelectric devices are developed from inorganic materials
due to their intrinsically higher power factors and ZT values compared to conductive polymers
and organic–inorganic hybrid thermoelectric materials. The conventional route for fabrication of
thermoelectric devices with inorganic materials involves multiple costly and time-consuming steps such
as ingot synthesis, dicing, electroplating, assembling, cleaning, and soldering (Figure 9a). Moreover,
the shapes of thermoelectric materials generated by the conventional method are mainly cuboids, giving
rise to exclusively planar TEG geometries, and thus narrowing the application scope of thermoelectric
power generation technology [105]. In comparison, the ink-based process exhibits great simplicity for
patterning and shaping of thermoelectric materials into 2D films or even 3D bulk forms by drop-casting,
spin-coating, spray-coating, inkjet-printing, screen-printing, dispenser-printing, and 3D-printing
processes (Figure 9b) [126]. Table 2 summarizes the thermoelectric properties of various ink-processed
metal chalcogenides and output power density of the derived TEG devices.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 

 
Figure 9. Comparison of the fabrication process of a thermoelectric generator (TEG) by (a) 
conventional ingot-based and (b) ink-based processes. Readapted with permission from 
WILEY-VCH [105]. TE: Thermoelectric. 

Table 2. Summary of the thermoelectric performance of various ink-processed metal chalcogenides 
and output power density of the derived TEG devices. 

Ink 
Formulation 

Process 
σ 

(S cm−1) 
S 

(µV K−1) 
κ 

(W m−1K−1) 
Power Factor 
(µW m−1 K−2) 

ZT 
Power 

Density 
(µW cm−2) 

Ref. 

Bi2Te3/Sb2Te3 
ChaMa 

3D 
printing 

330 190 0.54 — 0.9 
1620 
ΔT 39K 
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Bi2Te3/organic 
binder 

Screen 
printing 
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[127] 

Bi2Te3, 
Sb2Te3/organic 
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TE: Thermoelectric.

For thermoelectric inks of inorganic materials, several parameters such as concentration,
dispersibility, and rheological properties should be optimized to make them suitable for the
subsequent coating or printing process. Organic and polymer binders are always necessary to provide
certain viscoelastic properties to the inks, which are eventually decomposed in the post-annealing
step [118–121,124,125]. For example, Madan et al. prepared a slurry of Bi2Te3 particles and epoxy
for dispenser printing of n-type Bi2Te3 thermoelectric generators [131]. Kim et al. developed a
composite paste consisting of Bi and Te powders, organic binder, glass powder, and solvent by a
ball-milling process [124], which can be used for fabrication of a flexible glass fabric-based TEG via the
screen-printing method [118].
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Table 2. Summary of the thermoelectric performance of various ink-processed metal chalcogenides
and output power density of the derived TEG devices.

Ink Formulation Process σ

(S cm−1)
S

(µV K−1)
κ

(W m−1K−1)
Power Factor

(µW m−1 K−2) ZT
Power

Density
(µW cm−2)

Ref.

Bi2Te3/Sb2Te3
ChaMa 3D printing 330 190 0.54 — 0.9 1620

∆T 39K [123]

Bi2Te3/organic
binder

Screen
printing 250 136 1 2100 0.61 — [124]

Bi2Te3/epoxy Dispenser
printing 100 170 0.38 275 0.31 130

∆T 20 K [127]

Bi2Te3,
Sb2Te3/organic

binder

Screen
printing 670/1500 141/98 1.25/1 1332/1441 0.33/0.28 3800

∆T 50 K [118]

Bi2Te3,
Sb2Te3/epoxy

Dispenser
printing 100/130 180/120 0.24/0.42 200/520 0.25/0.37 23

∆T 10 K [128]

Bi2Te3/epoxy Screen
printing 100 135 — 1.05 — 1.11

∆T 20 K [129]

Bi2Te3 nanowires Inkjet printing 180 140 — 163 0.26 — [125]

Bi2Te3/epoxy Dispenser
printing 400 200 0.27 1500 0.17 25

∆T 20 K [130]

Cu2Se Spin coating 500 111 — 620 — — [117]

a Inorganic chalcogenidometallate ions.

One problem with the addition of organic binders is that undesirable binder residues are at
times trapped between the inorganic grains after the post-sintering stage, leading to compromised
electrical properties and ZT values of the final thermoelectric products. In recent reports, inorganic
chalcogenidometallate (ChaM) ions were observed to act as surface ligands for nano- and microscale
particles, stabilizing these particles in the solution through electrostatic interactions [132]. In 2018,
Kim and coworkers reported the extrusion-based 3D-printing of shape-conformable TE materials via
full-inorganic Bi2Te3-based colloid inks using Sb2Te3 ChaM ions as inorganic binders (Figure 10) [123].
The ChaM inorganic ions can act as ligands to provide a charged surface for the Bi2Te3 particles,
enhancing electrostatic interactions that contribute to the stability and viscoelasticity of the inks,
and meanwhile facilitating 3D shape engineering and ensuring homogeneity of thermoelectric
properties. These inks allowed for the fabrication of varied geometry thermoelectric materials that
gave rise to high thermoelectric performances, as evidenced by their ZT values of 0.6 for n-type and
0.9 for p-type materials.
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Figure 10. (a) Photograph showing viscoelastic all-inorganic TE ink. (b) Illustration of an
extrusion-based 3D-printing process. (c) Optical microscopy image (top) and a photograph (bottom) of
the 3D-printed TE materials. (d) Scheme of the structural changes of TE particles depending on the
content of Sb2Te3 ChaM binders in the Bi2Te3 ink. (e) Photographs of the fabricated half-ring-based
conformal TEG. The inset shows the 3D-printed n-type and p-type half rings. Readapted with
permission from Macmillan Publishers Ltd. [123].
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Recently, Chen et al. initially reported the inkjet printing of phase-pure, single-crystalline Bi2Te3

nanowires without adding any additives (Figure 11) [125]. The Bi2Te3 nanowires with an average
diameter of 30 nm were synthesized by a chemical batch process, and then directly dispersed into
deionized water by sonication to form the printable ink. Bi2Te3 films of different thickness (0.4–1.6 µm)
were printed onto glass substrates and then subjected to post-annealing to improve the thermoelectric
performance. The printed networks exhibited a Seebeck coefficient up to 140 µV K−1, which is
comparable to that of Bi2Te3 nanowires that are hot-pressed into pellet form. High power factor
(163 µW m−1 K−2) and thermoelectric efficiency (ZT ≈ 0.26) at room temperature are achieved with
these printed films, which are promising for the scalable roll-to-roll manufacturing of printed thin-film
thermoelectric devices.
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Figure 11. (a) Schematic diagram of the Bi2Te3 nanowire (BTNW) ink formulation, inkjet printing of
the resultant ink, and post-annealing processes. (b) Power factor (PF) of the printed films of different
thickness (i.e., 25, 50, 75, and 100 printer passes) annealed in a forming (red) and a nitrogen (blue)
gas ambient. Inset is the SEM image of the annealed nanowires in a nitrogen gas. Readapted with
permission from WILEY-VCH [125]. DI: deionized.

In 2017, Lin et al. first reported a truly soluble thermoelectric ink, prepared at room temperature
by dissolving Cu2Se powder in a mixed solvent of ethylenediamine and ethanedithiol, which can be
directly coated onto various substrates via a low-cost and scalable spin-coating process (Figure 12) [117].
Owing to the high structural perfection, the Cu2Se thin film derived from the truly soluble ink material
exhibits a considerably outstanding power factor of 0.62 mW m−1K−2 at 684 K on a rigid Al2O3

substrate and 0.46 mW m−1K−2 at 664 K on flexible polyimide film, which is greater than the values
obtained from other solution-processed Cu2Se thin films (<0.1 mW m−1K−2) and amongst the highest
values reported for flexible thermoelectric films (≈0.5 mW m−1K−2). In addition, the prepared thin
film shows excellent stability after 1000 bending cycles, showing great promise for integration into
various flexible electronics.
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Figure 12. (a) Photograph of the Cu2Se thin film on the polyimide substrate. (b) Cross-sectional SEM
analysis of the film on Al2O3 substrate. (c) TEM analysis of the nanocrystals in the film. The dashed
lines highlight the grain boundaries. Inset is the corresponding Fourier transform function (FFT) of the
TEM image. (d) Electrical conductivity, (e) Seebeck coefficient, and (f) power factor of the Cu2Se film
deposited on polyimide substrate. Readapted with permission from WILEY-VCH [117].

4. Conclusions and Outlook

The past few decades have witnessed a considerable growth in the synthesis and utilization
of metal chalcogenide-based materials in different kinds of energy storage and conversion systems.
The reliable and outstanding performance of these metal chalcogenides makes them the prime
candidates for thermoelectric applications. In fact, their thermoelectric modules with ZT of around
1 have been successfully commercialized [133]. Nevertheless, to be competitive with other power
generation systems, TEG materials should have a ZT of 2–3 at least. Further enhancement of conversion
efficiency with these metal chalcogenide materials is being investigated through chemical doping and
nanostructure engineering. This review mainly focused on the industry-friendly solution-based
synthesis of nanoscaled or thin-film metal chalcogenides with controllable size, composition,
morphology, and structure and their promising application as thermoelectric materials. The commonly
used strategies can be categorized into the ‘top-down’ liquid exfoliation method and ‘bottom-up’
methods, including the hydrothermal/solvothermal process, template-assisted solution phase synthesis,
chemical reduction–precipitation method, and electrodeposition method. In consideration of yield,
production rate, crystallinity, and thermoelectric performance of the derived metal chalcogenide
materials, the hydrothermal/solvothermal synthesis and wet chemical synthesis are most appropriate
for practical large-scale production of these materials. The ink-based processing, together with various
printing and coating methods, although still in the developing stage, is promising for cost-effective
manufacturing of thin-film flexible thermoelectric devices.
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