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Abstract: We propose a local feature descriptor based on moment. Although conventional scale
invariant feature transform (SIFT)-based algorithms generally use difference of Gaussian (DoG)
for feature extraction, they remain sensitive to more complicated deformations. To solve this
problem, we propose MIFT, an invariant feature transform algorithm based on the modified
discrete Gaussian-Hermite moment (MDGHM). Taking advantage of MDGHM’s high performance
to represent image information, MIFT uses an MDGHM-based pyramid for feature extraction, which
can extract more distinctive extrema than the DoG, and MDGHM-based magnitude and orientation
for feature description. We compared the proposed MIFT method performance with current best
practice methods for six image deformation types, and confirmed that MIFT matching accuracy was
superior of other SIFT-based methods.

Keywords: MDGHM; SIFT; feature extraction

1. Introduction

The scale invariant feature transform (SIFT) was proposed by Lowe [1] to extract image features
invariant to changes in image scale, rotation, illumination, viewpoint, and partial occlusion. SIFT has
been widely used in various areas, including image stitching [2], image registration [3], object
recognition [4]. Several SIFT variants and extensions have been developed recently to facilitate
robust feature extraction. Ke [5] used principal component analysis (PCA) rather than histograms to
reduce computational time and compared SIFT and PCA-SIFT. Bay [6] proposed speeded-up robust
features (SURF) to reduce computational time. Mikolajczyk [7] presented a comparative study for
several local descriptors. Kang [8] proposed a modified local discrete Gaussian-Hermite moment based
SIFT (MDGHM-SIFT) that significantly improved matching accuracy by replacing gradient magnitude
and orientation with accumulated MDGHM based magnitude and orientation. Junaid [9] proposed
binarization of gradient orientation histograms to reduce storage and computational resources.
Although these SIFT based algorithms can improve feature extraction performance, they are all
the different types of Gaussian based methods and, hence, sensitive to complicated deformations, e.g.,
large illumination changes [10].

Gaussian–Hermite moment (GHM) has been recently shown to have merit for image features [11].
GHM base functions have different orders with different numbers of zero crossings, hence GHM can
distinguish image features more efficiently, and incorporating part of the Gaussian function makes
GHM less sensitive to noise. Discrete GHM (DGHM) [12,13] is a global feature representation method,
and modified DGHM (MDGHM) [8] is an efficient local feature representation method generated
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from DGHM. Kang [14] also proposed an MDGHM-SURF descriptor that used MDGHM to extract
distinctive features.

This paper proposes MIFT, an MDGHM based invariant feature transform where the MDGHM
based pyramid was constructed using input image MDGHMs, in contrast to the Gaussian pyramid
and DoG used in the first SIFT stage, and MDGHM based magnitude and orientation were used to
calculate orientation and keypoint descriptors in the third and fourth SIFT stages rather than the
original gradient method.

The remainder of this paper is organized as follows. Section 2 briefly reviews conventional SIFT
and MDGHM and Section 3 describes the proposed MIFT algorithm. Section 4 presents experimental
results and an example application, and Section 5 summarizes and concludes the paper.

2. Scale Invariant Feature Transform and Modified Discrete Gaussian–Hermite Moment

This section reviews the conventional SIFT algorithm [1] and MDGHM [8].

2.1. Scale Invariant Feature Transform

The SIFT is a robust local feature descriptor comprising four stages.

1. Scale space extrema detection. Search keypoint candidates on the basis of the extrema over all
scale images. This constructs a Gaussian pyramid and finds the local extrema in DoG images.

2. Keypoint localization: Locate keypoints by removing unstable keypoint candidates having low
contrast or poor localization along an edge.

3. Orientation assignment. Identify the orientation for each keypoint based on local image
gradient information.

4. Build a descriptor for each keypoint.

2.2. Discrete Gaussian-Hermite Moment

The MDGHM has orthogonality, and calculates the moment for a local image area, acting like a
filter mask to describe local features using neighboring information. Suppose I(i,j) is an image and
t(u,v) is a mask with size M × N [0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1]. The coordinates for t(u,v) are
transformed to −1 ≤ x, y ≤ 1 by:

x =
2u−M + 1

M− 1
, y =

2v− N + 1
N − 1

(1)

Hence, the Hermite polynomial is:

Hp(x) = (−1)p exp(x2)
dp

dtp exp(−x2) (2)

and the MDGHM mask can be expressed as:
∧
Hp(x, σ) = 2

M−1

_
Hp(x/σ) = 2

M−1
1√

2p p!
√

πσ
exp(−x2/2σ2)Hp(x/σ)
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N−1
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Hq(y/σ) = 2

N−1
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2qq!
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(3)

Thus, MDGHM of an image at point (i, j) can be expressed as:

∧
ηp,q(i, j) =

4
(M− 1)(N − 1)

M−1

∑
u=0

N−1

∑
v=0

I(u + i− M
2

+ 1, v + j− N
2
+ 1)×

∧
Hp(x, σ)

∧
Hq(y, σ) (4)

Figure 1 shows MDGHM examples with three derivative orders. MDGHM acts like a Gaussian
filter with multi-order derivatives. Since the base function of the nth order MDGHM changes sign n
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times, MDGHM can efficiently represent spatial characteristics and strongly separate image features
using the multi-order derivatives. Therefore, MDGHM can be used as a filter to describe local features.Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 14 

 
 

 
 

 
(a) 

 
(b) 

 
 

 
 

Figure 1. Modified discrete Gaussian-Hermite moment examples with derivative orders p = 1, 3, 5; q 
= 0: (a) three-dimensional view and (b) two-dimensional view. 
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Figure 1. Modified discrete Gaussian-Hermite moment examples with derivative orders p = 1, 3, 5;
q = 0: (a) three-dimensional view and (b) two-dimensional view.

3. Proposed MIFT Algorithm

The scale invariant feature transform remains sensitive to deformations [1,8], because DoG and
gradient methods do not provide distinctive information to accurately determine keypoint location in
a deformed image. To obtain better matching accuracy, we propose MIFT, an MDGHM based invariant
feature transform. Figure 2 shows an overview for SIFT and MIFT methods.
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Figure 2. Scale invariant feature transform (SIFT) and proposed MIFT methods.

3.1. Stage 1

We use MDGHM based scale space to detect extrema, rather than the Gaussian pyramid and DoG
used for conventional SIFT, extracting more distinctive features. The input image is down-sampled by
a factor of 2 to create an octave, and MDGHM is applied to create scale images according to selected
parameters for derivative order, sigma, and mask size.

Let (iα, jα, s) be an arbitrary pixel in a scale s, then the local moment at (iα, jα, s) can be expressed
using MDGHM as:

∧
ηp,q(iα, jα, s) = 4

(M−1)(N−1)

kM−1
∑

u=0

kN−1
∑

v=0
I(iα + (mMu− M

2 + 1),jα + (mNv− N
2 + 1), s)

∧
Hp(x, σ)

∧
Hq(y, σ) (5)
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and the vertical,
∧
ηp,0(iα, jα, s) and horizontal,

∧
η0,q(iα, jα, s), moments can be obtained for each

keypoint. Therefore, we can calculate the scale space moment by summing the vertical and
horizontal components:

∧
L(iα, jα, s) =

∧
ηp,0(iα, jα, s) +

∧
η0,q(iα, jα, s) (6)

and more distinctive keypoint candidates can be detected using MDGHM pyramid extrema than the
DoG pyramid.

Figure 3 compares and contrasts DoG and MDGHM pyramids and feature detection methods
between conventional SIFT and proposed MIFT methods, and Figure 4 provides example scale space
using DoG and MDGHM. Since MDGHM can include more distinctive feature information, the
MDGHM pyramid can represent feature information in more detail than conventional SIFT, and
building the MDGHM scale space is also somewhat simpler.
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The vertical and horizontal axes in Figure 4 represent octave and scale in scale space, respectively.
MDGHM scale space images extract more distinctive feature information. Points with maximum or
minimum MDGHM compared with its 26 neighbors at the consecutive three scales are regarded as
keypoint candidates.

3.2. Stage 2

The proposed MIFT keypoint localization is similar to conventional SIFT, except that local DoG
maxima and minima are replaced by the MDGHM counterparts. We then fit the candidates to filter
those with low contrast or localized along an edge.

3.3. Stage 3

Figure 5 shows the SIFT and MIFT processes to assign keypoint orientation. Conventional SIFT

uses gradient magnitude and orientation, whereas MIFT uses the MDGHM magnitude,
∧
m(iα, jα, s),

and orientation,
∧
µ(iα, jα, s), for each keypoint, where:

∧
m(iα, jα, s) =

√
(
∧
ηp,0(iα, jα, s))

2
+ (
∧
η0,q(iα, jα, s))

2
(7)

and:
∧
u(iα, jα, s) = tan−1

η̂0,q(iα, jα, s)

η̂p,0(iα, jα, s)
(8)
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Each sample point around a keypoint has an MDGHM magnitude and an orientation, and the
orientation histogram is calculated by summing these orientations weighted by the magnitudes.
The highest histogram peak and other local peaks within 80% of the highest peak are selected as
the orientations.

3.4. Stage 4

We calculate a descriptor that is invariant to deformations following a similar procedure to
conventional SIFT, using MDGHM rather than gradient based magnitude and orientation, as shown in
Figure 6. We calculate MDGHM magnitude and orientation for each sample point in a region around a
given keypoint (Figure 6, left), and accumulate these orientations into the orientation histogram for



Appl. Sci. 2019, 9, 1503 6 of 14

eight directions weighted by their magnitude (Figure 6, right). Each descriptor consists of a 2 × 2 array
of histograms, hence each keypoint descriptor has 2 × 2 × 8 = 32 dimensions. In this study, we used
4 × 4 × 8 = 128 dimensions to describe a keypoint.
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4. Experimental Results

We performed experiments to evaluate the proposed MIFT performance using keypoint matching
accuracy, compared with five SIFT relative algorithms, and considered application to ego-motion
compensation for a humanoid robot.

4.1. Keypoint Matching Accuracy

Table 1 compares the proposed MIFT method with five SIFT relative algorithms. SIFT relative
algorithms generally have four stages and, hence, they are characterized by their differences.

Table 1. Proposed MIFT and SIFT based algorithms used for comparison.

Stage
Alg. SIFT PCA-SIFT MDGHM-SIFT SURF MDGHM-SURF MIFT

1 DoG DoG DoG Integral image
Hessian matrix

Integral image
MDGHM matrix

MDGHM
pyramid

2 Localization Localization Localization Localization

3 Gradient Gradient

Accumulated
MDGHM

(multi-order
derivatives)

Haar wavelet MDGHM based
orientation

MDGHM
(single order
derivative)

4 Histogram PCA Histogram Sum of Haar
wavelet

MDGHM based
descriptor

MDGHM based
histogram

Notes: Alg. = Algorithm, SIFT = scale invariant feature transform, PCA = principle components analysis, MDGHM
= modified discrete Gaussian-Hermite moment, SURF = speeded up robust features, MIFT = MDGHM based
invariant feature transform, DoG = difference of Gaussian.

4.1.1. Image Deformation Dataset

We conducted an experiment to matching accuracy for a dataset containing six image
deformations [15]: scale, image, viewpoint, blur, JPEG-compression, and illumination. Figure 7 shows
some example testing images, where the left and right images represent reference and corresponding
deformed images, respectively.
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Figure 7. Example dataset reference (left) and distorted (right) image pairs: (a) scale; (b) rotation; (c)
viewpoint; (d) blur; (e) JPEG compression; and (f) illumination.

4.1.2. Matching Method and Evaluation Metrics

We utilized nearest neighbor distance ratio (NNDR) matching [7] for performance evaluation,
since NNDR selects only the best match. Two descriptors were considered to match if they were
nearest neighbors and the distance ratio was less than a threshold. We used DR as a short descriptor
for NNDR for convenience.

We used recall, 1-precision, and F-score evaluation metrics [7,14]:

recall =
number of correct− positives

total number of positives
, (9)

1− precision =
number of false− positives

total number of matches
, (10)

and:
F− score = 2 × precision × recall

precision + recall
, (11)

where correct positive was a match for two keypoints corresponding to the same physical location,
false positive was a match for two keypoints corresponding to different physical locations, and F score
ε [0, 1].

4.1.3. Performance Evaluation

Figure 8 shows the resultant considered method performances, where each datapoint was the
average for 3–6 continuously varying test images, and we increased DR 0–1 with 0.05 interval.
MIFT achieved significantly superior performance than the other SIFT based algorithms for all
deformations, with general performance order being MIFT, MDGHM-SIFT, SIFT, MDGHM-SURF,
SURF and PCA-SIFT algorithms for most deformation cases. Thus, MDGHM had a positive effect on
feature representation ability for image information.



Appl. Sci. 2019, 9, 1503 8 of 14

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 14 

 

 
(a) 

 
(c) 

 
(e) 

 
(b) 

 
(d) 

 
(f)  

Figure 8. Comparison between the proposed MIFT and five SIFT based algorithms (as defined in 

Table 1) for (a) scale; (b) rotation; (c) viewpoint; (d) blur; (e) JPEG compression; and (f) 

illumination distortion. 

Table 2. Performance metrics. 

SIFT PCA-SIFT 
MDGHM-

SIFT 

MDGHM-

SURF 
MSIFT 
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Table 2 shows performance metric outcomes. MIFT F-score increased approximately 32.5%, 21.4%,
41.9%, 14.9%, 20.1%, and 57.8% for scale, rotation, viewpoint, blur, JPEG compression, and illumination
distortions, respectively, compared with conventional SIFT. The proposed MIFT method exhibited
significantly superior performance compared with the other SIFT based algorithms for F-score. Thus,
MIFT was the most effective method tested, which attributed to employing the MDGHM based
pyramid and MDGHM based feature description. The MDGHM pyramid generated more distinctive
keypoints from scale space extrema detection, producing stronger histogram peaks during MIFT
orientation assignment. Therefore, MIFT extracted more distinguishable final keypoints and, hence,
achieved superior matching accuracy.
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Table 2. Performance metrics.

Deformation

Algorithm/Metric SIFT PCA-SIFT MDGHM-SIFT MDGHM-SURF MSIFT

Recall Precision F-score Recall Precision F-score Recall Precision F-score Recall Precision F-score Recall Precision F-score

Scale 0.283 0.284 0.283 0.095 0.095 0.095 0.307 0.307 0.307 0.241 0.243 0.242 0.375 0.376 0.375

Rotation 0.628 0.633 0.630 0.534 0.539 0.537 0.700 0.707 0.703 0.615 0.618 0.417 0.765 0.766 0.765

Viewpoint 0.436 0.439 0.437 0.322 0.287 0.303 0.541 0.546 0.544 0.511 0.518 0.516 0.620 0.621 0.620

Blur 0.659 0.659 0.659 0.511 0.512 0.511 0.685 0.685 0.685 0.670 0.672 0.671 0.754 0.759 0.757

Compression 0.656 0.656 0.656 0.641 0.641 0.641 0.710 0.710 0.710 0.699 0.700 0.700 0.787 0.790 0.788

Illumination 0.512 0.523 0.517 0.384 0.381 0.383 0.616 0.620 0.618 0.546 0.550 0.548 0.815 0.817 0.816
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4.1.4. MDGHM Parameter Effects on Performance

We examined the effects due to MDGHM parameters standard deviation and derivative degree by
fixing the MDGHM mask size, using F-score, as shown in Figure 9. The lower plane in each subfigure
represents the SIFT F-score, the curve represents the MIFT F-score. Although the performance results
exhibit some oscillation, MIFT outperformed SIFT for most parameter settings. In particular, MIFT
achieved high F-scores for rotation, viewpoint, and illumination deformations for all parameter settings,
with margin > 0.1 between MIFT and SIFT. For scale, blur and JPEG compression deformations, MIFT
F-score was higher than SIFT for most parameter cases.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 
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image blur; (e) JPEG-compression; and (f) illumination distortions.

Thus, the proposed MIFT method always provided superior performance than SIFT for
appropriate parameter choices. MIFT exhibited the best efficiency in terms of matching accuracy
when derivative order ≈ 3–7 and sigma ≈ 0.3–0.5.

4.2. Motion Compensation Application

We applied MIFT to ego-motion compensation for a humanoid robot. Vision information obtained
from a humanoid robot exhibits deformations while walking, hence compensation is mandatory to
recognize the walking environment.

We first simulated an ego-motion image sequence from ideal data by including x and y axis
displacement and rotation, and then calculated the apparent displacement using MIFT and SIFT, as
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shown in Figure 10, where the left images show the estimation, and the right images show the error.
We calculated error by comparing SIFT and MIFT algorithm outcomes with ideal data. MIFT achieved
significantly superior performance than SIFT, as shown in Figure 10 and summarized in Table 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 
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displacement, and (e,f) y axis displacement distortions. 

Table 3. Distorted ideal image ego-motion estimation error. 

Method Variable Mean error Variance of Errors 

MIFT 
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x axis  0.512 0.436 

y axis 0.509 0.411 

SIFT 
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x axis  0.966 1.264 

y axis 0.976 1.218 

Figure 10. Motion compensation for distorted ideal images, where left images are the recovered
displacement, and right images show the error for (a,b) rotation angle (theta), (c,d) x axis displacement,
and (e,f) y axis displacement distortions.
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Table 3. Distorted ideal image ego-motion estimation error.

Method Variable Mean Error Variance of Errors

MIFT
Rotation 0.168 0.031

x axis 0.512 0.436

y axis 0.509 0.411

SIFT
Rotation 0.357 0.103

x axis 0.966 1.264

y axis 0.976 1.218

Finally, we mounted an SR4000 camera on a humanoid robot and evaluated algorithm errors
using real image sequences, as summarized in Table 4. Figure 11 shows a sample image sequence
from the humanoid robot and Figure 12 shows the corresponding image sequence after ego-motion
compensation calculated using the proposed MIFT method.

Table 4. Humanoid robot [16] and camera specifications.

SR-4000 Camera Humanoid Robot
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Figure 11. Image sequence obtained from the humanoid robot. Sequence timeline proceeds left to 
right and top to bottom. 

Pixel array size 176 × 144 Height 60 cm

Modulation frequency 30 MHz Weight 6.0 kg

Non-ambiguity range 5.0 m Degrees of freedom 25

Field of view 44◦ × 35◦
Sensors

8 FSRs

Dimensions 65 × 65 × 68 mm 1 six axis gyro
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5. Conclusions 
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Figure 12. Image sequence of Figure 11 after ego-motion compensation using the proposed
MIFT method.

The proposed MIFT method provided significantly superior compensation and was practically
useful and applicable to a real-world humanoid robot.

5. Conclusions

We proposed MIFT, an MDGHM based invariant feature transform descriptor. The SIFT-based
descritpors are still sensitive to more complicated deformations because of the property of DoG used
for the construction of scale-space. We proposed an MDGHM based pyramid which is less sensitive
to noise and can provide more distinctive feature information than DoG, and calculated MDGHM
based magnitude, orientation, and keypoint descriptors to improve the robustness of local features.
We then performed experiment to compare the proposed MIFT method with various conventional SIFT
approaches and parameter settings for six deformation types. The results confirmed that the proposed
MIFT method provided significantly improved matching accuracy compared with conventional SIFT
algorithms. We also evaluated performance effects for MDGHM parameter selections and showed that
the proposed MIFT method outperformed conventional SIFT algorithms for most parameter settings.
We then applied MIFT to ego-motion compensation for a humanoid robot.

However, adaptive parameter tuning for derivative orders, mask size, and MDGHM variance;
and applying the proposed MIFT method to particular areas, such as image stitching and robot
environment recognition, remain to be considered in future studies.
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