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Abstract: We present a field-theory description of ultracold bosonic atoms in the presence of a
disordered external potential. By means of functional integration techniques, we aim to investigate
and review the interplay between disordered energy landscapes and fluctuations, both thermal and
quantum ones. Within the broken-symmetry phase, up to the Gaussian level of approximation,
the disorder contribution crucially modifies both the condensate depletion and the superfluid
response. Remarkably, it is found that the ordered (i.e., superfluid) phase can be destroyed also in
regimes where the random external potential is suitable for a perturbative analysis. We analyze the
simplest case of quenched disorder and then we move to present the implementation of the replica
trick for ultracold bosonic systems. In both cases, we discuss strengths and limitations of the reviewed
approach, paying specific attention to possible extensions and the most recent experimental outputs.
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1. Introduction

Ultracold atomic gases have been the cornerstone of atomic physics since 1995 [1,2],
when Bose–Einstein condensation was experimentally achieved for the first time. This groundbreaking
result was the starting point of an ongoing and intense research effort to improve atoms trapping
and cooling procedures [3]. Nowadays, modern laboratories have reached an exquisite control on the
relevant physical parameters for atomic gases, such as the number density or the strength and range
of atom–atom interaction. At the same time, it is also possible to tune the coupling with the external
environment, enabling the observation of quantum dynamics without spurious smearing effects [4].

It is then natural to think of ultracold atomic gases as an extremely effective platform to probe
quantum theories up to the macroscopic scale. One of the most striking examples is given by the
Bose–Hubbard model and its superfluid–insulator transition originally predicted in [5]. This quantum
phase transition was first observed in 2002 by loading a repulsive condensate in an optical lattice
confining potential [6]. Similar achievements have been reached for low-dimensional quantum gases
and their remarkable phenomenology [7,8]. Among a wide and interesting literature, it is worth
mentioning the first direct observation of the Tonks–Girardeau regime in an optical lattice filled with
alkali atoms [9,10] or the vortex proliferation associated with the Berezinskii–Kosterlitz–Thouless
physics in two-dimensional setups [11,12]. More recently, a growing interest has aroused on cold atoms
as a promising quantum simulation platform. Together with the refined experimental expertise, it has
been shown that, within peculiar setups, the superfluid dynamics of atoms obeys equations that can
be mapped to other ones appearing in high-energy physics or cosmology. For instance, Rabi-coupled
bosonic mixtures seem to be a burgeoning candidate to explore inflationary dynamics and space-time
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expansion in table top experiments [13–15]. Other proposals involve cold-atoms analog of quantum
gravity [16] or the implementation of system mimicking quantum chromodynamics features [17].

Restraining ourselves to the condensed matter domain, ultracold atoms offer the interesting
possibility to investigate the intriguing issue of quantum transport in a disordered environment [18].
Indeed, from the dawn of solid state theory, it was clear that a well-founded investigation has to
consider the multifaceted role played by microscopic impurities and disordered external potential. For
instance, a common incandescent lamp would not exist without a certain degree of impurity scattering.
At the same time, it is reasonable to expect a smearing of experimental data due to randomly wrinkled
substrate or the destruction of supertransport properties. Examples of this parasitic role can be traced
back to dirty superconductors or 4He diffusion in porous medium [19,20]. The complexity of this
problem lies in the interplay between superfluidity (i.e., the occuring of some kind of ordered phase)
and the localization phenomenon first theorized by Anderson in [21].

Given the broad interest and the cross-disciplinary relevance of this problem, it is reasonable
to turn towards cold atoms, since they offer reliable experimental protocols to engineer disordered
external potential and control the corresponding relevant parameters. The dirty bosons problem then
gathers all the investigations addressing the properties of ultracold bosons subject to an external
random potential. The interplay between superfluidity and localization may lead to the observation
of a new phase, the so-called Bose glass [5]. Similarly to the Bose–Hubbard model in the absence
of disorder, optical lattices have been proved again to be a reliable setup to explore these exotic
features [22]. While interfering counterpropagating beams create the first regular pattern, randomness
is added by superimposing a second optical lattice, providing a viable strategy to control the degree of
disorder [23–25]. An alternative is given by the speckle optical potential, generated by the interference
of waves with different phases and amplitudes but with the same frequency [26,27]. The resulting
wave varies randomly in space and can be used to study the transport properties of ultracold atoms in
the presence of static external disorder [28–30].

In order to tackle down the crucial aspects of the dirty bosons problem, the relevant theoretical
tools can be divided in two different subsets. At first, one can adopt the point of view of Bogoliubov
theory, treating disorder in a perturbative way, similarly to quantum and thermal fluctuations in the
pure system [31,32]. Since the first seminal work on this topic [33–35], this approach has led us to
a better understanding of the role played by disorder, no matter how small, in condensed bosonic
systems. The additional depletion to condensate and superfluid was computed in [33], while, in [34],
the authors investigated the modifications induced by a random external potential to the sound
propagation. At the same time, critical properties are investigated by focusing, for instance, on the
condensation temperature shift driven by the interplay of disorder and interaction [36,37].

A non-perturbative approach paves the way to the exploration of the superfluid-glass (quantum)
transition in bosonic ensembles. Moving from the seminal renormalization-group analysis for
one-dimensional systems [7,38], different strategies and methods have been used to understand
the phase diagram of dirty bosons in three and lower dimensions, such as the random-phase
approximation [39], stochastic field-theory techniques and the replica formalism [40–43].

The ambition of this review is obviously more limited, since it is not possible to handle all the
topics we have mentioned during this introduction in the main text. Nevertheless, we aim to present,
in a clear and pedagogical way, the crucial ingredients of a field-theory analysis of superfluid bosons.
Throughout the paper, we are going to adopt the functional integration framework, which is flexible
enough to enable the implementation of different approximation schemes [44]. Our discussion is
organized in the following way: in Section 2, we specify how one can build up a quantum field theory
for superfluid bosons subject to a random confinement. In particular, one needs to clarify the way in
which disorder is introduced and characterized. In Section 3, we compute, up to the Gaussian level of
approximation, the additional contribution to the condensate and the superfluid component due to
the presence of a quenched disordered potential. Moving to Section 4, we present the core ideas at
the foundation of the replica formalism, which allows for generalizing our analysis to more complex
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disorder realization and does not rely, in principle, upon the assumption of a perturbatively small
disorder. Within this scheme, we show how to compute the meaningful correlation functions and
describe the superfluid response of the system in Section 5. Further comments and future perspectives
are addressed in the Conclusions section.

2. Disorder in Field Theories

Let us begin by considering N interacting bosonic particles of mass m enclosed in a Ld volume
and subject to an external disordered potential UD(r). Thus, the Hamiltonian is simply given by

Ĥ =
N

∑
i=1

[
−

h̄2∇2
i

2m
+ ÛD(ri)

]
+

1
2 ∑

i 6=j
V̂
(
|ri − rj|

)
, (1)

with V̂
(
|ri − rj|

)
the two-body central interaction potential. The thermodynamic description of the

system can be derived from the partition function. Within the canonical ensemble, it is defined as

ZN = ∑
{n}

exp
(
− βEn

)
, (2)

where β ≡ (kBT)−1 and {n} denoting the bosonic states (i.e., totally symmetric with respect to particle
exchange) with eigenenergy En of the operator Ĥ in Equation (1). In order to adopt the functional
integration formalism [44], Equation (1) has to be expressed in second quantization. By adding −µN̂,
with µ the chemical potential and N̂ the number operator, we can also move to the grand canonical
ensemble. Here, a basis of coherent bosonic states can be chosen, leading to the imaginary-time
representation of the (grand canonical) partition function

Z =
∫
D[ψ, ψ∗] e−S[ψ,ψ∗ ]/h̄ . (3)

In the equation above, the Bose statistics is encoded in the periodic boundary condition for the
fields, namely ψ(0) = ψ(βh̄) and ψ∗(0) = ψ∗(βh̄). The Eucliden action appearing in Equation (3) is
given by

S[ψ, ψ∗] =
∫ βh̄

0
dτ
∫

ddr
{

ψ∗(r, τ)

[
h̄∂τ −

h̄2∇2

2m
− µ−UD(r, τ)

]
ψ(r, τ)

+
1
2

∫
ddr′|ψ(r, τ)|2V(|r− r′|)|ψ(r′, τ)|2

}
.

(4)

We have now to clarify what is meant by a (quantum) field theory for the disordered Bose gas.
Also in the simplest case of non-interacting bosons, given a certain realization of the disordered
confinement, an exact diagonalization of Equation (1) does not appear as a feasible task.

A statistical approach is certainly more reasonable, since it allows, in principle, to characterize
the system through a limited range of variables as, for instance, the strength of the impurity potential
leading to the disorder, or the scale of space-time potential fluctuations. This obviously implies that it is
possible to average (in a way to define) over different microscopic realization of the disorder potential.

This outline may seem very vague: how can we implement a theoretical description in statistical
terms? Apparently, it is simple to imagine a set of N impurities at {ri}i=1,...,N positions. When they
are assumed equivalent, the resulting disorder (i.e., impurity) potential takes the obvious form
UD(r) = ∑i U(r− ri). Within this recipe, the disorder average is equivalent to the integration over the
whole configuration space of impurities, namely

〈 . . . 〉dis ≡ L−Nd ∏
i=1

∫
ddri

(
. . .
)

, (5)

a technical task not easy to implement in a functional formalism.
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As pointed out throughtout a vast literature ([35–37,45–49], just to mention a few), a more fruitful
approach relies upon the statistical features of the disorder potential or, in other words, a description
in terms of probability density function (PDF) P(UD). It follows then that

〈 . . . 〉dis ≡
∫
D[UD]P[UD](. . .) . (6)

For instance, we can surely imagine a Gaussian distributed disorder, i.e.,

P[UD] = exp
{
− 1

2γ2

∫
dd+1s

∫
dd+1s′ UD(s)K−1(s− s′)UD(s′)

}
, (7)

where s = (r, τ) and dd+1s = dτ ddr. The expectation value of a central Gaussian distributed variable
is zero, i.e.,

〈UD(s)〉dis = 0, (8)

while its second (central) momentum corresponds to

〈UD(s)UD(s′)〉dis = γ2 K(s− s′) . (9)

For a δ-correlated disorder, where K(s − s′) = δ(d+1)(s − s′) with δ(d+1)(s) the Dirac delta
function in d + 1 dimensions, the above equation is further simplified in

P[UD] = exp
{
− 1

2γ2

∫ βh̄

0
dτ
∫

ddr U2
D(r, τ)

}
. (10)

If we deal with atomic bosons in the superfluid phase, the atomic wavelength is much larger than
the scattering range of impurities generating the disorder potential UD(s). This physical situation
clarifies the simplifying assumption of a δ-correlated disorder as in Equation (10). Moreover, in this
section, we explicitly consider the case of a quenched disorder, where the time scale of UD is much
longer than the thermodynamic one. From a technical point of view, this implies that UD retains only a
spatial dependence on r and that the disorder average in Equation (6) has to be performed after the
thermal one [37]. Thus, the average over a quenched disorder has to be intended as

〈O[ψ, ψ∗]〉dis+th =
∫
D[UD]P[UD] 〈O[ψ, ψ∗]〉th,UD

, (11)

where
〈O[ψ, ψ∗]〉th,UD

=
∫
D[ψ, ψ∗]

1
Z(UD)

O[ψ, ψ∗]e−S[ψ,ψ∗ ]/h̄ (12)

is the usual thermal average over the grand canonical ensemble for a given impurity configuration.
Within the scheme outlined by Equations (11) and (12), UD(r) and ψ(r, τ) are not being treated on
the same footing, since the random field UD is fixed when we average over the bosonic field ψ.
More precisely, Equation (12) is telling us to compute the partition function over a precise microscopic
realization of the system (i.e., with a given UD). Then, according to Equation (11), we have to average
all the partition functions obtained in this way over the disorder field.

The quenched average presented above is certainly a viable scheme to adopt when the disorder
can be treated in a perturbative way. However, this is not always the case. It can occur a physical
situation where one has to perform the disorder average early in the calculation and/or the random
field UD has to be considered at the same level of ψ. In order to highlight the eventual technical
obstacle, we make use of the source method to compute expectation values of physical observable.
According to this field-theory technique, the expectation value of a given observableO can be extracted
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by means of the source method [44,50]. Here, the source is intended as a term linear in the fields and
proportional to J(r, τ), namely

Z [J, J∗] =
∫
D[ψ, ψ∗] . exp

{
− h̄−1S[ψ, ψ∗] + h̄−1

∫ βh̄

0
dτ
∫

ddr
[

J∗(r, τ)ψ(r, τ) + J(r, τ)ψ∗(r, τ)
]}

.

A simple differentiation leads us to the pursued expectation value. The most immediate example
is the chemical potential, indeed 〈N〉 = β−1∂µ logZ . The thermal average of O is defined as

〈O〉th = − δ

δJ
logZ

∣∣∣∣
J=0

. (13)

As a consequence of Equation (6), the joint thermal and disorder average reads

〈O〉dis+th = − δ

δJ
〈logZ〉dis

∣∣∣∣
J=0

= −
∫
D[UD]

P(UD)

Z [J = 0, UD]

δ

δJ
Z [J, UD]

∣∣∣∣
J=0

. (14)

Since one has both to differentiate with respect to J and integrate over UD, the disorder field
appears both at the numerator and denominator. Consequently, Equation (14) can be challenging.

In the following sections, we approach both the situations: first, we consider the case of a quenched
disorder potential, then we move to a more general framework by presenting the implementation of
the replica trick for superfluid atomic bosons.

3. Perturbative Approach to Quenched Disorder

3.1. Thermodynamic Picture and Disorder-Driven Condensate Depletion

Let us consider the Euclidean action in Equation (4) and apply the saddle-point method by
stationarizing it, i.e.,[

h̄
∂

∂τ
− h̄2∇2

2m
− (µ + UD(r, τ)) +

∫
ddr′ |ψ(r′, τ)|2V(|r− r′|)

]
ψ(r, τ) = 0 . (15)

In the case of a two-body contact interaction, we have

V = g δ(d)(r), (16)

where g = Ṽ(q = 0) and Ṽ(q) is the Fourier transform of the two-body potential. For a uniform
configuration of the field, with

ψ(r, τ) = ψ0 (17)

not depending on r and τ, we get

[
− (µ + 〈UD〉dis) + gψ2

0
]
ψ0 = 0 =⇒


ψ2

0 = 0, for µ + 〈UD〉dis ≤ 0,

ψ2
0 = (µ + 〈UD〉dis)/g, for µ + 〈UD〉dis > 0 .

(18)

This approximation must not be underrated: actually, in the presence of an external potential,
ψ0 should not be uniform. However, at low temperatures, it seems reasonable to assume that the
wavelengths of atoms are much larger than the spatial variations caused by the impurity potential.

By comparing the equations above with the ones for a pure system [32], it is immediate to realize
that, in principle, the disorder may shift the critical point of the superfluid transition. However,
if UD follows a centered Gaussian distribution like the one in Equation (7), this shift equates to zero.
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From the saddle-point result, it descends that the total density n = ψ2
0. By identifying ψ2

0 with the
condensate density n0, this signals that, up to this (very rough) level of approximation, all the particles
take part in the condensate within the broken-symmetry phase.

In this phase, where a U(1) symmetry is spontaneously broken, fluctuations can be taken into
account by considering the following splitting of the field

ψ(r, τ) = ψ0 + η(r, τ) , (19)

with η(r, τ) ∈ C. Replacing the equation above in the Euclidean action of Equation (4), the disorder
contribution reads

Ldis[ψ, ψ∗, UD] = −UD(r)
∣∣ψ(r, τ)

∣∣2 = −UD(r)
[
ψ2

0 + |η(r, τ)|2 + vη(r, τ) + vη∗(r, τ)
]
, (20)

where L denotes the (Euclidean) Lagrangian density, i.e., S[ψ] =
∫

dτ
∫

ddr L[ψ]. The first two
terms give rise to an unobservable shift of the chemical potential, so we will neglect them. Moreover,
let us remark that we are considering fluctuations over the saddle-point non-trivial configuration
ψ2

0 = µ/g with 〈UD〉dis = 0, but this is not the true stationary point. Consequently, we are not allowed
to neglect the linear terms in Equation (20), not even up to the Gaussian order in the fluctuation fields.
By introducing the column vectors

Υ = ψ0

(
1
1

)
and χ =

(
η

η∗

)
, (21)

Equation (20) is brought to its more compact form

Ldis[η, η∗, UD] = −UD(r)ΥTχ . (22)

At this point, we can replace the field ψ(r, τ) with Equation (19). By retaining terms up to the
quadratic order in η and η∗, the grand canonical partition function reads

Z(UD) = e−Smf[ψ0,µ]/h̄
∫
D[χ] exp

{
− 1

h̄

∫ βh̄

0
dτ
∫

ddr
[
L(pure)

g + Ldis
]}

= eβLdµ2/(2g)
∫
D[χ] exp

{
− 1

h̄

∫
dd+1s

[
1
2

χ†G−1(∂τ ,∇)χ−UD(r)ΥTχ

]}
,

(23)

with s = (r, τ). In the equation above, the integral in χ is Gaussian and, consequently, can be computed
exactly, leading us to the following result

Z(UD) = e−βΩmf
(

detG−1)−1 exp
{

1
2

∫
dd+1s

∫
dd+1s′UD(r)ΥTG(s− s′)ΥUD(r′)

}
. (24)

Let us also recall that, from Equation (18), it is easy to realize that the mean-field grand potential
is simply Ωmf/Ld = −µ2/2g. The remaining steps of the calculation are easier in the Fourier space,
where the (inverse) Gaussian propagator is the following 2× 2 matrix

G−1(q, ω) =

−ih̄ωn + εq − µ + 2gψ2
0 gψ2

0

gψ2
0 +ih̄ωn + εq − µ + 2gψ2

0

 (25)

with ωn = 2πn/β the bosonic Matsubara frequencies and εq = h̄q2/(2m). The (functional) determinant
in Equation (24) can be handled more easily thanks to the identities(

detG−1)−1
= exp

(
− tr logG−1) = exp

(
− log detG−1) . (26)
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By putting all these pieces together, Equation (24) is built by three blocks, namely

Z(UD) = e−βΩmf exp
{
−1

2 ∑
q

∑
n

log detG−1(q, ωn)

}
︸ ︷︷ ︸

Pure Gaussian term

exp
{

1
2 ∑

q

∣∣UD(q)
∣∣2ΥTG(q, 0)Υ︸ ︷︷ ︸

disorder Gaussian term

}
. (27)

The disorder contribution in the equation above does not depend on the frequency, since the time
scales of the quenched disordered are frozen, implying that the corresponding frequencies goes to zero.
Concerning the pure Gaussian contribution, we have [32]

1
2β ∑

n
log detG−1(q, ωn) =

1
2β ∑

n
log
[
β2(h̄2ω2

n + E2
q
)]

=
1
2

Eq +
1
β

log
(
1− e−βEq

)
, (28)

where a crucial role is played by the excitation spectrum of collective excitations above the uniform
saddle-point configuration, i.e.,

Eq(µ, ψ0) =

√(
εq − µ + 2gψ2

0
)2 − g2ψ4

0 . (29)

Focusing on the zero-temperature case, we find

Z(UD) = e−β(Ωmf+Ω(0)
g ) exp

{
1
2 ∑

q

∣∣UD(q)
∣∣2ΥTG(q, 0)Υ

}
(30)

with
Ω(0)

g =
1
2 ∑

q
Eq(µ, ψ0) (31)

the zero-temperature Gaussian grand potential. At this point, by recalling the relation Ω = β−1 logZ ,
we are ready compute the quenched disorder average average of the grand potential. It is immediate
to realize the Ωmf and Ω(0)

g are transparent to this operation. On the contrary, from Equation (30),
we easily derive that

Ω(0)
dis(UD) = −

1
2 ∑

q

∣∣UD(q)
∣∣2ΥTG(q, 0)Υ (32)

whose quenched average reads

〈Ωdis〉th+dis = −
1
2 ∑

q
ΥTG(q, 0)Υ

∫
D[UD] P[UD]

∣∣UD(q)
∣∣2︸ ︷︷ ︸

=〈|UD(q)|2〉dis=γ2

(33)

thanks to Equation (10) (with only the spatial integration). Thus, we have now isolated the disorder
contribution to the zero-temperature grand potential, namely

〈Ωdis〉th+dis = −
γ2

2 ∑
q

ΥTG(q, 0)Υ

= −γ2ψ2
0 ∑

q

1
εq − µ + 3gψ2

0
.

(34)

Moving to the continuum limit, i.e., ∑q → Ld

(2π)d

∫
ddq, and performing the resulting integral with

the aid of dimensional regularization, we finally obtain, in agreement with [47,50], that

〈Ω(0)
dis〉th+dis

Ld = −Γ(1− d/2)
(2π)d/2

(
m
h̄2

)d/2

γ2ψ2
0
(
3gψ2

0 − µ
)(d−2)/2 (35)
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with Γ(x) being the Euler Gamma function. From the equation above we can compute the
corresponding disorder contribution to the total number density n as a function of the condensate one
n0. Indeed, from 〈Ωdis〉dis in Equation (35), we have

nγ(n0) = −
1
Ld

∂ 〈Ωdis〉th+dis (µ, ψ0)

∂µ

∣∣∣∣
µ=gψ2

0=gn0

(36)

resulting in

nγ(n0) =
Γ(2− d/2)

4πd/2

(
m
h̄2

)d/2

gd/2−2 nd/2−1
0 γ2 . (37)

Concerning physical values of d, for d = 3, we have g = 4πh̄2as/m with as the s-wave scattering
length. Consequently, one can verify that

d = 3 =⇒ nγ(n0) =
γ2

8π3/2

(
m
h̄2

)2√n0

as
. (38)

The two-dimensional case is much more complicated, since the zero-range coupling constant
displays a peculiar logarithmic dependence on the number density [51–54]. For two-spatial dimensions,
a separate investigation is then needed, in order to investigate the eventual divergences in the free energy
and the relation between the disorder potential and the prediction of the Mermin–Wagner–Hohenberg
theorem [55–57]. At T = 0, the total number density is then given by

n = n0 + n(0)
g (n0) + nγ(n0) , (39)

with n(0)
g being the pure Gaussian contribution, derived from Equation (31) as stated by Equation (39).

According to [52], we have

n(0)
g (n0) =

1
4π(d+1)/2

Γ
(
2− d

2
)
Γ
( d−1

2
)

Γ
( d

2 + 1
) (

m
h̄2

)d/2(
g n0

)d/2 . (40)

It is crucial to remark that Equations (37) and (39) imply that, for a given number of total particles
n, a smaller fraction of them resides in the condensate. Thus, we can conclude that a disorder potential
will cause an additional depletion of the condensate. In order to extract the condensate fraction
n0/n, Equation (39) has to be numerically solved. Thus, for d = 3, by replacing Equation (40) and
Equation (38) in Equation (39), we obtain

n = n0 +
8

3
√

π
(n0 as)

3/2 +
γ2

8π3/2

(
m
h̄2

)2√n0

as
. (41)

The equation above represents an implicit expression for the condensate fraction. At a given
number density n, we can numerically solve it in n0 to compute n0/n. Concerning Equation (41),
we have to underline another important detail. It seems that the disorder contribution to n (cfr.
Equation (38)) diverges in the very weakly interacting limit as → 0. However, the presence of a
random external potential implies the presence of another characteristic length scale. Following [37],
we define it in terms of the disorder correlator γ given by Equation (10), i.e.,

ldis ≡
4π2

γ2

(
h̄2

m

)2

. (42)

Now, we recall that our perturbative Gaussian scheme requires that n(0)
g in Equation (40) and nγ

from Equation (37) are both small compared to n0 ' n. Thus, by imposing n(0)
g � n0 ' n, we get the



Appl. Sci. 2019, 9, 1498 9 of 21

condition n1/3as � 1, the usual condition on the interaction strength. At the same time, we have to
require that nγ � n0 ' n, leading us (n1/3as)1/2 2(n1/3ldis)/

√
π � 1. The latter highlights the fact

that we have to require n1/3ldis � 1 in addition to the usual condition on the gas parameter. Provided
that both the constraints hold, Equation (41) can be perturbatively inverted, reading

n0

n
= 1− 8

3
√

π

(
n a3

s
)1/2 −

√
π

2(n1/3ldis)
√

n1/3 as
. (43)

It is worth remembering at the end of this section that, in the case of quenched disorder,
the additional contribution to the grand potential is effectively a zero-temperature one (or, in other
words, it does not depend on β). The reason is that, as we have stressed in the previous section,
we are considering an external random confinement whose time scale is much larger than the
thermodynamic one.

3.2. Superfluid Response and Quenched Disorder

Now, what can we say about the disorder influence on the superfluid motion of the system?
Actually, within the Landau–Khalatnikov two-fluid formulation [58,59], the calculation proceeds in a
similar fashion, provided that the theory is modified accordingly to the following points [50,52,54]:

• within the Landau two-fluid model, we assume that the normal part of the system is in motion
with velocity v, so ∂τ → ∂τ − iv · ∇;

• Superfluid and normal parts do not exchange momentum. This means that a superflow can
be imposed by means of phase twist of the field ψ(r, τ), i.e., ψ → exp

(
imvs · r/h̄

)
ψ with vs the

superfluid velocity [60,61];
• as a consequence of the previous points, we can redefine the chemical potential as

µeff = µ− 1
2

mvs · (vs − 2v) . (44)

The resulting Gaussian partition function (or grand potential) is formally similar to the one in
Equation (27), with the replacement µ→ µeff and the (inverse) Gaussian propagator given by

G−1(q, ω) =

−ih̄ωn + εq − µ + 2gψ2
0 + h̄q · (v− vs) gψ2

0

gψ2
0 +ih̄ωn + εq − µ + 2gψ2

0 − h̄q · (v− vs)

 (45)

whose determinant is given by

detG−1(q, ωn) = E2
q −

[
ih̄ωn − h̄ · q · (v− vs)

]2 , (46)

where Eq as in Equation (29) with µ→ µeff.
By following this prescription, the phase-twisted grand potential can be derived from

Equation (33), reading

〈Ωdis(µeff, v)〉th+dis = −γ2ψ2
0 ∑

q

εq − µeff + gψ2
0

E2
q −

[
h̄q · (v− vs)

]2 . (47)

We are interested in the linear-response regime, where the density current

g = − 1
Ld

Ω(µeff(v), v)
∂v

(48)
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is taken up to the first order in (v− vs). Therefore, we begin with an expansion of Equation (47) up
to the quadratic order in h̄q · (v− vs). For symmetry reasons, the linear term of this expansion is
identically zero, such that we have to deal with the following equation:

〈Ωdis(µeff, v)〉th+dis
Ld = −

γ2ψ2
0

(2π)d

∫
ddq

[
εq − µeff + gψ2

0
E2

q
+

h̄2q2

d

(
εq − µeff + gψ2

0
E4

q

)
(v− vs)

2
]

, (49)

where we have made use of the identity∫
ddq qiqj f (|q|) = d−1δij

∫
ddq |q|2 f (|q|) . (50)

Since the first term in the equation above depends only on µeff and it holds ∂µeff
∂v = mvs, it will

be the disorder contribution to the nvs term in g. More precisely, by considering also the thermal
depletion due to the quasiparticle excitations, Equation (48) reads

g = nvs +
1
d

∫ ddq
(2π)d

[
βh̄2q2

m
eβEq

(eβEq − 1)2
+ 4γ2ψ2

0
εq(εq − µ + gψ2

0)

E4
q

]
(v− vs) . (51)

At this point, we finally replace Equation (18) for the broken-symmetry case in the equation above.
A simple comparison between the resulting equation and the the two-fluid assumption g = nsvs + nnv
leads us to

nn(n0, T) =
β

d

∫ ddq
(2π)d

h̄2q2

m
eβEq

(eβEq − 1)2
+

4
d

nγ(n0) (52)

with nγ(n0) as in Equation (37).
In order to understand the relevance of Equation (52), one has to remember that, in the pure

system (i.e., γ = 0), all the particles belong to the superflow. On the contrary, a disorder potential
induce a superfluid depletion also at T = 0 and, in addition, the parameter γ may act as knob to
destroy the superflow since

n(0)
s (n0) = n− 4

d
nγ(n0) . (53)

In a similar way to the condensate fraction, we are not allowed to expand ns/n in the limit g→ 0
because Equation (37) is divergent in that regime. Obviously, the superfluid density can be computed
from the two-fluid assumption n = ns + nn where nn is given by Equation (52). In Figure 1, we report
the behaviour of the superfluid fraction in the presence of a disordered but uncorrelated external
potential with γ2 = 0.001 for two different values of the gas parameter na3

s . In order to highlight the
crucial contribution due to disorder, we also consider the case where γ2 = 0. It is immediate to realize
that, in pure system (γ2 = 0), the whole system is superfluid at T = 0, while the presence of a disorder
potential lowers the curves, since there is an additional depletion at T = 0. It is also interesting to
underline that, the more dilute the system, the more evident is the detachment from the pure system.
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Figure 1. Plot of superfluid fraction in presence and absence of an uncorrelated disordered potential.
The curve are derived from the two-fluid assumption n = ns + nn, with the normal contribution
nn given by Equation (52). The temperatures are in units of TBEC = 2πh̄2n2/3/(mkBζ(3/2)2/3),
i.e., the condensation temperature of an ideal Bose gas. The solid blue line and the dot-dashed violet
one represent the behaviour of ns/n in the presence of a disordered potential with γ2 = 0.001 for
two different values of the gas parameter na3

s = 10−6 and 10−5, respectively. For the same values
of na3

s , the dashed red line and the dotted green correspond the case where there is no disorder
contribution (γ2 = 0).

4. The Replicated Action for Superfluid Bosons

The previous section has been focused on the extension of usual field-theory techniques’
superfluid bosons subject to a random external confinement. Moreover, the whole calculation has
been carried out in the quenched regime, where we effectively average over different microscopic
realization of the system with a given disorder configuration.

We have already made clear that this is not the only viable strategy and that it does not handle
physical realizations where, for instance, the disorder potential also has a thermal component.
This means that, looking at Equation (14), it is not clear in which order integration and differentiation
have to be performed. In order to overcome this ambiguity, the replica trick represents one of the most
ingenious strategies. It was first developed in the context of spin glasses [62–64], but, in the following,
we are going to detail how it can be applied to describe the role of disorder in ultracold bosonic gases.

Let us begin by considering again Equation (14). The following three hypotheses represent the
starting of the replica formalism. Thus,

• We assume thatZ [J = 0] = 1, establishing a proper normalization and implying that Equation (14)
has no dependence on VD in the denominator;

• it holds 〈O〉th+dis = −δ 〈logZ〉dis /δJ |J=0;
• for J 6= 0, the partition function retains its algebraic properties.

Actually, the last point is a somewhat obscure way to state that the average procedure involves
functionals linear in the disorder potential, since VD has been linearly added to the action. The great
advantage provided by the replica trick can be understood from the formal relations reported below:

logZ [J] = lim
R→0

eR logZ − 1
R

= lim
R→0

ZR − 1
R

(54)
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with R ∈ N. The replacement of logZ with an algebraic function of Z strongly reduces the complexity.
Indeed, concerning the calculation of the expectation values, we have

〈O〉th+dis = − lim
R→0

δ

δJ
ZR

R
. (55)

Actually, within the replicated formalism, expectation values can be obtained by simply
considering R identical copies of the system under consideration. Concerning the functional
integration, it does not alter the linear dependence of the action on the disorder field
because [exp(

∫
dVD)]

R = exp(∑R ∫ dVD). Unfortunately, all this comes with a price. Looking at
Equation (55), we realize that, at the end, we should perform an analytical continuation R → 0.
The point is that there is no guarantee at all that the function δJ 〈ZR〉dis is analytic all the way down to
R = 0 [44]. This means that, from a mathematical standpoint, the replica trick is not a well-founded
technique. Surprisingly, it is also true that it seems to rarely fail, at least when the disorder can be
treated in a perturbative way [63,64].

Let us consider in the following the generalization of Equation (10), namely given by

P̃[UD] = exp
{
− 1

2

∫ βh̄

0
dτ
∫

ddr γ−2(r, τ)U2
D(r, τ)

}
, (56)

where, actually, the disorder is assumed translationally invariant in time and space. In order to
implement the replica trick within the context of superfluid bosonic systems, as an alternative to
Equation (19), we move to the phase-density representation, where

ψ(r, τ) =
√

n0 + π(r, τ) eiϕ(r,τ) (57)

with n0 = ψ2
0, ψ2

0 being given by Equation (18). From the equation above, we deduce that
n(r, τ) = n0 + π(r, τ) and a perturbative strategy is easily implemented by assuming the smallness of
density fluctuation. Thus, Equation (57) becomes

ψ(r, τ) '
√

n0

[
1 +

π(r, τ)

2n0

]
eiϕ(r,τ) . (58)

In order to understand the limitations of our approach, it is crucial to recall that 〈n(r, τ)〉th =

〈|ψ(r, τ)|2〉th, while we often set n ' n0 with n0 =
∣∣ 〈ψ(r, τ)〉th

∣∣2. Up to the Gaussian level, this is an
acceptable approximation since 〈π(r, τ)〉th ' 0. In the regime of small fluctuations, we can expand
the mean-field analysis by retaining only the quadratic terms in π(r, τ) and ϕ(r, τ). The change of
variables {ψ, ψ∗} → {π, ϕ} has a constant Jacobian determinant; therefore, Equation (3) reads

Z '
∫
D[π, ϕ] exp

{
− 1

h̄
Sg[π, ϕ]

}
(59)

with the periodic boundary conditions π(r, βh̄) = π(r, 0) and ϕ(r, βh̄) = ϕ(r, 0). The smallness
of fluctuations allows for extending the integration range of the phase variable from [−π,+π] to
[−∞,+∞]. This decompactification obviously has to be addressed with particular attention when
dealing with d ≤ 2, where the enhancement of fluctuations prevents the occurring of a true long-range
order and a more refined analysis is required [44,65–68]. The Gaussian action in Equation (59) is
given by

Sg[π, ϕ] =
∫ βh̄

0
dτ
∫

ddr
[

ih̄π
∂ϕ

∂τ
+

n0h̄2(∇ϕ)2

2m
+

h̄2(∇π)2

8mn0
−UD(r, τ)(n0 + π)

+
1
2

∫
ddr′π(r′, τ)V(|r− r′|)π(r, τ)

]
− 1

2
βh̄LdṼ(0)n2

0,
(60)
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where we have imposed Equation (18) to eliminate the dependence on the chemical potential and UD

is distributed according to Equation (56). The pertubative expansion up to the terms contained in
Equation (60) is equivalent to a one-loop expansion within a diagrammatic representation. Equivalently,
in the second-quantization formalism, this corresponds to the Bogoliubov approximation [69].

The implementation of the replica trick requires the calculation of 〈ZR〉dis. The (not-averaged)
partition function is simply

ZR =
∫
D[π, ϕ] exp

{
− 1

h̄

R

∑
α=1

Sg[πα, ϕα]

}
, (61)

where Sg[πα, ϕα] is provided by Equation (60) and D[π, ϕ] = ∏R
α=1D[πα, ϕα]. In case of a Gaussian

disorder obeying to Equation (56), Equation (6) reads

〈ZR〉dis =
∫
D[π, ϕ] exp

{
− 1

h̄

R

∑
α=1

S(pure)
g [πα, ϕα]

}
×

×
∫
D[UD] exp

{
− 1

2

∫ βh̄

0
dτ
∫

ddr γ−2(r, τ)U2
D(r, τ)

}
exp

{
− 1

h̄

R

∑
α=1

S(coup)
g [UD, πα]

}
︸ ︷︷ ︸

=(?)

,

(62)
where S(pure)

g [πα, ϕα] is Equation (60) with UD = 0 and S(coup)
g [UD, πα] is given by

S(coup)
g [UD, πα] =

∫ βh̄

0
dτ
∫

ddr UD(r, τ)
R

∑
α=1

πα(r, τ) . (63)

The second line of Equation (62) is a Gaussian integral in UD such that

(?) = exp
{

1
2h̄

∫ βh̄

0
dτ
∫

ddr γ2(r, τ)∑
α,β

πα(r, τ)πβ(r, τ)

}
. (64)

In this way, the replicated partition in Equation (62) results in

〈ZR〉dis =
∫
D[π, ϕ] exp

{
− 1

h̄

R

∑
α=1

S(pure)
g [πα, ϕα]−

1
h̄

R

∑
α,β=1

S(dis)
g [πα, πβ, ϕα, ϕβ]

}
. (65)

For the sake of clarity, we report below S(pure)
g and S(dis)

g , namely

S(pure)
g [πα, ϕα] =

∫
dd+1s

[
ih̄πα∂τ ϕα +

n0 h̄2(∇ϕα)2

2m
+

h̄2(∇πα)2

8mn0
+

1
2

∫
ddr′π(r′, τ)V(|r− r′|)π(r, τ)

]
(66)

S(dis)
g [πα, πβ, ϕα, ϕβ] = −

1
2

∫
dd+1s γ2(r, τ)πα(s)πβ(s) (67)

with s = (r, τ). It is crucial to underline the relevance of Equation (65). Indeed, it shows that also in the
presence of the simplest disorder potential (δ-correlated both in time and space), the outlined formalism
generates an effective quartic interaction between different replica indices. This fact can be understood
by recalling the physical meaning of Feynman’s path. Despite its complexity, and indifferent to
different replicas, the path integrals prefer to evolve towards the lowest possible potential. In other
words, they have a tendency to populate the same regions of the energy landscape.

Moving to the calculation of expectation values, the replicated formalism replaces the logarithm
of the partition function with, basically, Equation (65), where the Euclidean action of Equation (60) is
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split into Equations (66) and (67). According to Equation (55), the joint thermal and disorder average
is obtained through

〈 O 〉th+dis = − lim
R→0

δ

δJ
1
R
ZR[J] = lim

R→0

1
R
〈 O[ψα, ψ∗α ] 〉rep , (68)

where 〈•〉rep has to be intended as a thermal average over the replicated partition function in
Equation (65) or, equivalently, over the action given by the sum of Equations (66) and (67), i.e.,

〈 O 〉rep =

∫
D[π, ϕ]O exp{h̄−1(S(pure)

g [π, ϕ] + S(dis)
g [π, ϕ])}∫

D[π, ϕ] exp{h̄−1(S(pure)
g [π, ϕ] + S(dis)

g [π, ϕ])}
. (69)

It is useful to expand the fields in Fourier series such that Equation (66) reads

S(pure)
g [πα, ϕα] =

1
2βh̄Ld ∑

q
∑
n

χT
α (−q,−ωn)M−1(q, ωn)χα(q, ωn), (70)

where we have defined the vector χα as χα(q, ωn)T ≡
(

ϕα(q, ωn); πα(q, ωn)
)

The pure inverse
propagator in Equation (70) is given by

M−1(q, ωn) =

n0
h̄2q2

m
−h̄ωn

+h̄ωn
h̄2q2

4mn0
+ Ṽ(q)

 . (71)

On the other hand, for Equation (63), we have now

S(dis)
g [πα, πβ, ϕα, ϕβ] = −

1
2βh̄Ld ∑

q
∑
n

γ2(q, ωn)π
∗
α(q, ωn)πβ(q, ωn) . (72)

The equation above can be decomposed in its diagonal and off-diagonal contributions, leading us
to the final equation for the Euclidean action of Gaussian fluctuations. By renaming Q = (q, ωn) and
using the fact that x(−Q) = x∗(Q), we have

S(rep)
g [π, ϕ] =

1
2βh̄Ld ∑

Q
X†(Q)M−1(Q)X(Q) . (73)

In the equation above, the sum over the replicas is encoded in the (R× 2)-dimensional column vector

X(Q) =


χ1(Q)

χ2(Q)
...

χR(Q)

 . (74)

The R× 2 matrix M−1(Q) in Equation (73) is built as

M−1(Q) =



M̃−1(Q) B(γ) . . . . . . B(γ)
B(γ) M̃−1(Q) . . . . . . B(γ)

...
...

. . .
...

...
...

. . . B(γ)
B(γ) B(γ) . . . B(γ) M̃−1(Q)


(75)
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with the generating blocks

M̃−1(Q) =

n0
h̄2q2

m −h̄ωn

+h̄ωn
h̄2q2

4mn0
+ Ṽ(q)− γ2(q, ωn),

 (76)

B(γ) =
(

0 0
0 −γ2(q, ωn)

)
. (77)

5. Correlation Functions in the Replicated Formalism

As detailed in Appendix A, the matrix M in Equation (75) is diagonalized by a well-known
unitary transformation, reading

M̃−1(Q) = diag
{
M̃−1

R (Q),M̃−1(Q), . . . ,M̃−1(Q)︸ ︷︷ ︸
R−1 times

}
(78)

with

M−1
R (Q) =

n0
h̄2q2

m −h̄ωn

+h̄ωn
h̄2q2

4mn0
+ Ṽ(q)− Rγ2(q, ωn)

 . (79)

Up to this level of approximation, correlation functions are specified by the entries of the
fluctuation propagator. For the pure system, by assuming translational invariance both in time
and space, we have

〈χj(q, ωn)χk(q
′, ωn′)〉th =Mjk(q, ωn)δ(q + q′)βh̄δn,−n′ . (80)

On the other hand, according to Equation (68), the replicated formalism provides both the disorder
and the thermal average at the same time. For instance, concerning the density-density correlation
function, we have

〈π∗(q, ωn)π(q′, ωn′)〉dis+th = lim
R→0

1
R

R

∑
α=1
〈πα(q, ωn)πα(q′, ωn′)〉S(rep)

g

= lim
R→0

1
R

[
(R− 1)

n0h̄3q2/m
h̄2ω2

n + E2
q
+

n0h̄2q2/m

h̄2ω2
n + E2

q − Rγ2(q, ωn)n0
h̄2q2

m

]
δ(q + q′)βh̄δn,−n′

=

[
n0h̄3q2/m
h̄2ω2

n + E2
q
+ γ2(q, ωn)

n0h̄2q2q′2/m(
h̄2ω2

n + E2
q
)(

h̄2ω2
n′ + Eq′

)]δ(q + q′)βh̄δn,−n′ ,

(81)

where the final result is obtained by expanding the second line up to the first order in R. Moreover,
we have

Eq =
√

εq
[
εq + 2n0Ṽ(q)

]
, (82)

nothing else than Equation (29) with the saddle-point replacement µ = Ṽ(0) n0. The remaining
correlations are computed in the same way, leading to

〈ϕ∗(q, ωn)ϕ(q′, ωn′)〉dis+th =

[mE2
q/(n0h̄q2)

h̄2ω2
n′ + E2

q
+

h̄2ωnωn′(
h̄2ω2

n + E2
q
)(

h̄2ω2
n′ + Eq′

)γ2(q, ωn)

]
δ(q + q′)βh̄δn,−n′ ,

〈ϕ∗(q, ωn)π(q′, ωn′)〉dis+th =

[
h̄2ωn

h̄2ω2
n + E2

q
+

n0h̄3q′2ωn′/m(
h̄2ω2

n + E2
q
)(

h̄2ω2
n′ + Eq′

)γ2(q, ωn)

]
δ(q + q′)βh̄δn,−n′ .

(83)
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Besides the phase and density correlators, one of the most important correlation functions is the
current one, defined as

Cij(r, τ; r′, τ′) = m−1[ 〈gi(r, τ)gj(r′, τ′)〉 − 〈gi(r, τ)〉 〈gj(r′, τ′)〉
]

, (84)

where the notation 〈. . .〉 represents, for now, a general average procedure. In the phase-density
representation, from Equation (57), it is easy to verify that the current density g = h̄(n0 + π)∇ϕ/m.
Thus, by making use of the Wick theorem [70] to disentagle the four-field correlator in Equation (84),
in the Fourier space, one obtains [35]

Cij(q, ωn; q′, ωn′) = −h̄2mn2
0qiqj

〈
ϕ(q, ωn)ϕ(q′, ωn′)

〉
+

− 1
(βLd)2 ∑

k,ωm

∑
k′ ,ωm′

kik′j

[ 〈
π(q− k, ωl−m)π(q′ − k′, ωl′−m′)

〉 〈
ϕ(k, ωm)ϕ(k′, ωm′)

〉
+

+
〈
π(k− q, ωm−l)ϕ(k′, ωm′)

〉 〈
π(k′ − q′, ωm′−l′)ϕ(k, ωm)

〉 ]
.

(85)

Thanks to the replica trick, the disorder contribution is taken into account by considering the
correlators over the replicated Gaussian action, namely Equations (81) and (83).

The current response function in Equation (85) is crucial since it encodes the superfluid character
of the system. This point is clarified by noticing that Cij is a 2-rank tensor, so it can be decomposed in its
longitudinal and transverse components by means of the projectors P L

ij = qiqj/q2 and PT
ij = δij −P L

ij .
It has been shown (see [71,72] for a pedagogical review) that the static limit of transverse component of
Equation (85) CT

ij (q, ωn) ≡ (d− 1)−1 ∑ij PT
ij (q, ωn)Cij(q, ωn)/h̄ corresponds to the normal component

of the system. By replacing the replicated correlator given by Equations (81) and (83) into Equation
(85), after burdensome (but standard) algebra, we find

nn = lim
q→0
〈CT(q, 0)〉th+dis

=
1

dβLd ∑
k,ωm

[(
h̄2k2

m

)
E2

k − h̄2ω2
m

(h̄2ω2
m + E2

q)
2
+ n0

(
h̄2k2

m

)2 E2
k − 3h̄2ω2

m

(h̄2ω2
m + E2

k)
3

γ2(k, ωm)

]
.

(86)

When the time scale of the disorder potential is frozen, i.e., for

γ2(q, ωn) = γ2(q)βδn,0 , (87)

Equation (86) becomes

nn(n0, T) =
β

d

∫ ddq
(2π)d

h̄2q2

m
eβEq

(eβEq − 1)2
+

4n0

d

∫ ddq
(2π)d

(
h̄2q2

2m

)2
γ2(q)

E4
q

. (88)

With the further simplification of a constant disorder correlator γ2, the equation above equates to
Equation (52). Thus, Equation (88) reduces correctly to the quenched disorder regime and agrees with
results reported in [34,35,47].

In order to compute the condensate depletion through the replicated correlators in Equations (81)
and (83), we rely upon the equation [70]

n = n0 +
1

βh̄

∫ ddq
(2π)d ∑

n
eiωn0+[ 〈ψ(r, τ)ψ∗(r′, τ′)〉 − n0

]
. (89)
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Following the phase-density representation in Equation (57), we expand the fields ψ and ψ∗ up to
the linear order in the fluctuations ψ(r, τ) ' √n0[1 + π(r, τ)/(2n0) + iϕ(r, τ)], such that the resulting
correlators in Equation (89) are Gaussian. In the Fourier space, we have

〈ψ(q, ωn)ψ
∗(q′, ωn′)〉 − n0 '

1
4n0
〈ππ′〉 − i

2
〈πϕ′〉+ i

2
〈ϕπ′〉+ n0 〈ϕϕ′〉 , (90)

where the prime signal the dependence on Q′ = (q′, τ′) and, similarly to Equation (84), 〈. . .〉
corresponds to a general average procedure. In order to include the disorder contribution, one simply
has to consider the replicated correlators in Equations (81) and (83), where space-time translational
invariance is restored by assuming Equation (80).

We then have

n = n0 +
∫ ddq

(2π)d

[
εq + n0Ṽ(q)

2Eq
− 1

2
+

εq + n0Ṽ(q)
Eq

(
1

eβEq − 1

)
+

n0

βh̄ ∑
m

ε2
q − h̄2ωm

(h̄2ω2
m + E2

q)
2

γ2(q, ωm)

]
.

(91)

The first line represents the contribution coming from the pure system, reading Equation (40) at
T = 0K. On the other hand, the second line accounts for the disorder contribution. For a point-like
frozen disorder as in Equation (87), one can verify that

nγ(n0) = n0

∫ ddq
(2π)d

(
h̄2q2

2m

)2
γ2(q)

E4
q

. (92)

By comparing the equation above and Equation (88), at zero-temperature, the disorder
contribution to the condensate depletion and the normal component of the system are deeply
related, namely

nγ(n0) =
d
4

nn(n0, T = 0). (93)

6. Conclusions and Future Perspectives

In this review, we have reviewed the crucial aspects of a field-theory approach to superfluid
bosons moving in a random environment. Within the powerful framework of functional integration,
we have recovered the important result on the superfluid and condensate depletion in the presence
of an external disorder [33,34,47]. Moreover, we have shown how the theoretical description can be
generalized beyond the assumption of a static external disorder by using the replicated formalism [39].
Obviously, our pedagogical overview has to leave out other interesting and crucial issues. For instance,
we have pointed out in Section 3 that our perturbative approach lacks self-consistency, since we are
expanding above a uniform background also in the presence of an external potential. In order to
overcome this point, in [42,43], the authors present a self-consistent implementation relying upon
the Hartee–Fock mean-field theory within the replica formalism. Moreover, our review does not
include any discussion about the eventual occurring of the superfluid-glass transition in three or lower
dimensions. This is a crucial topic, deserving a separate investigation. Numerical simulations based
on quantum Monte Carlo methods are likewise important, since they are ab initio calculation and may
shed light on unexpected effects. For instance, in [73], the non-trivial relation between superfluidity and
condensation is numerically investigated, while, in [74], the worm algorithm provides an estimation
for critical exponents of the superfluid-glass transition in two-dimensions.

Another promising line of research concerns the possibility that disorder does not always act in a
parasitic way, generating, on the contrary, surprising dynamical effects. In the context of condensed
matter theory, one of the most striking example is given by the quantum Hall transition [75], where
impurity scattering plays a crucial role. On the other hand, very recently, it was shown that a
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certain degree of random fluctuations, such as thermal noise, may enhance the transport properties
of a particles ensemble. While Anderson localization [21] acts to halt the flow of a certain quantity,
in [76,77], the authors observe a boosting of transport through optical fibers and superconducting
circuits. The reason is the so-called environment-assisted quantum transport, which relies crucially
upon the presence of a certain degree of disorder. Indeed, while the coherence of the system is reduced
by propagating in a disordered medium, this also reduces the possibility of destructive interference
responsible for Anderson localization.

This phenomenon can pave the way to novel interesting protocol to engineer more efficient
quantum devices, by tuning the coupling with the environment to enhance the transport of a desired
quantity. Recent experimental confirmations have been produced by using a one-dimensional array of
trapped ions [78]. Thus, it would be extremely interesting to review to effect in the context of ultracold
atoms, both from an experimental and theoretical point of view.
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Appendix A. Diagonalization of a Block Circulant Matrix

It is possible to perform a block diagonalization of M−1 in Equation (75) by noticing its circulant
structure. Indeed, G−1 is generated by cyclically permuting the elements (in this case 2× 2 matrices)
of its first row. In this sense, we can formally write down

M−1(Q) = Circ
{
M̃−1(Q),B(Q), . . . ,B(Q)︸ ︷︷ ︸

R− 1 times

}
. (A1)

It has been shown [79,80] that, given R the number of the generating matrices and M their
dimension, every block circulant matrix A is block diagonalized by the same unitary transformation.
Indeed, one can verify that

(E†
R ⊗ 1M)A(ER ⊗ 1M) = diag{Λ1, . . . , ΛR}, (A2)

where the Λj are the 2× 2 eigenblocks, specified by Λj =M−1 + ∑R−1
α=1 B wαj

R . The ⊗ symbol denotes
the direct product of the two matrices. In Equation (A2), the key ingredient is the Fourier matrix,
defined as

ER =
1√
R



1 1 1 . . . . . . 1
1 wR w2

R . . . . . . wR−1
R

1 w2
R w4

R . . . . . . w2(R−1)
R

...
...

...
. . .

...
...

...
...

. . .
...

1 wR−1
R w2(R−1)

R . . . . . . w(R−1)2

R


(A3)

with wR = exp(2πi/R) the fundamental root of the unity.
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