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Featured Application: This paper develops an evidence-theory-based robustness optimization
(EBRO) method, which aims to provide a potential computational tool for engineering
problems with epistemic uncertainty. This method is especially suitable for robust designing
of micro-electromechanical systems (MEMS). On one hand, unlike traditional engineering
structural problems, the design of MEMS usually involves micro structure, novel materials,
and extreme operating conditions, where multi-source uncertainties inevitably exist. Evidence
theory is well suited to deal with such uncertainties. On the other hand, high performance
and insensitivity to uncertainties are the fundamental requirements for MEMS design. The
robust optimization can improve performance by minimizing the effects of uncertainties without
eliminating these causes.

Abstract: The conventional engineering robustness optimization approach considering uncertainties
is generally based on a probabilistic model. However, a probabilistic model faces obstacles when
handling problems with epistemic uncertainty. This paper presents an evidence-theory-based
robustness optimization (EBRO) model and a corresponding algorithm, which provide a potential
computational tool for engineering problems with multi-source uncertainty. An EBRO model with
the twin objectives of performance and robustness is formulated by introducing the performance
threshold. After providing multiple target belief measures (Bel), the original model is transformed
into a series of sub-problems, which are solved by the proposed iterative strategy driving the
robustness analysis and the deterministic optimization alternately. The proposed method is applied
to three problems of micro-electromechanical systems (MEMS), including a micro-force sensor,
an image sensor, and a capacitive accelerometer. In the applications, finite element simulation
models and surrogate models are both given. Numerical results show that the proposed method has
good engineering practicality due to comprehensive performance in terms of efficiency, accuracy,
and convergence.

Keywords: epistemic uncertainty; evidence theory; robust optimization; sensor design

1. Introduction

In practical engineering problems, various uncertainties exist in terms of the operating
environment, manufacturing process, material properties, etc. Under the combined action of these
uncertainties, the performance of engineering structures or products may fluctuate greatly. Robust
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optimization [1,2] is a methodology, and its fundamental principle is to improve the performance of
a product by minimizing the effects of uncertainties without eliminating these causes. The concept
of robustness optimization has long been embedded in engineering design. In recent years, thanks
to the rapid development of computer technology, it has been widely applied to many engineering
fields, such as electronic [3], vehicle [4], aerospace [5], and civil engineering [6]. The core of robustness
optimization lies in understanding, measuring, and controlling the uncertainty in the product design
process. In mechanical engineering disciplines, uncertainty is usually differentiated into objective
and subjective from an epistemological perspective [7]. The former, also called aleatory uncertainty,
comes from an inherently irreducible physical nature, e.g., material properties (elasticity modulus,
thermal conductivity, expansion coefficient) and operating conditions (temperature, humidity, wind
load). A probabilistic model [8–10] is an appropriate way to describe such uncertain parameters,
provided that sufficient samples are obtained for the construction of accurate random distribution.
Conventional robustness optimization methods [11–13] are based on probabilistic models, in which
the statistical moments (e.g., mean, variance) are employed to formulate the robustness function for
the performance assessment under uncertainties. On the other hand, designers may lack knowledge
about the issues of concern in practice, which leads to subjective uncertainty, also known as epistemic
uncertainty. The uncertainty is caused by cognitive limitation or a lack of information, which could
be reduced theoretically as effort is increased. At present, the methods of dealing with epistemic
uncertainty mainly include possibility theory [14,15], the fuzzy set [16,17], convex model [18,19],
and evidence theory [20,21]. Among them, evidence theory is an extension of probability theory,
which can properly model the information of incompleteness, uncertainty, unreliability and even
conflict [22]. When evidence theory treats a general structural problem, all possible values of an
uncertain variable are assigned to several sub-intervals, and the corresponding probability is assigned
to each sub-interval according to existing statistics and expert experience. After synthesizing the
probability of all the sub-intervals, the belief measure and plausibility measure are obtained, which
constitute the confidence interval of the proposition and show that the structural performance satisfies
a given requirement. Compared with other uncertainty analysis theories, evidence theory may be more
general. For example, when the sub-interval of each uncertain variable is infinitely small, evidence
theory is equivalent to probability theory; when the sub-interval is unique, it is equivalent to convex
model theory; when no conflict occurs to the information from different sources, it is equivalent to
possibility theory [23].

In the past decade, some progress has been made in evidence-theory-based robust optimization
(EBRO). For instance, Vasile [24] employed evidence theory to model the uncertainties of spacecraft
subsystems and trajectory parameters in the robust design of space trajectory and presented a hybrid
co-evolutionary algorithm to obtain the optimal results. For the preliminary design of a space mission,
Croisard et al. [25] formulated the robust optimization model using evidence theory and proposed
three practical solving technologies. Their features of efficiency and accuracy were discussed through
the application of a space mission. Zuiani et al. [26] presented a multi-objective robust optimization
approach for the deflection action design of near-Earth objects, and the uncertainties involved in
the orbital and system were qualified by evidence theory. A deflection design application of a
spacecraft swarm with Apophis verified the effectiveness of this approach. Hou et al. [27] introduced
evidence-theory-based robust optimization (EBRO) into multidisciplinary aerospace design, and the
strategy of an artificial neural network was used to establish surrogate models for the balance of
efficiency and accuracy during the optimization. This method was applied to two preliminary
designs of the micro entry probe and orbital debris removal system. The above studies employed
evidence theory to measure the epistemic uncertainties involved in engineering design, and expanded
robustness optimization into the design of complex systems. However, the studies of EBRO are
still in a preliminary stage. The existing research has mainly aimed at the preliminary design of
engineering systems. Most of them have been simplified and assumed to a great extent. In other
words, the performance functions are based on surrogate models and even empirical formulas. So far,
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EBRO applications in actual product design, with a time-consuming simulation model being created
for performance function, are actually quite few. After all, computational cost is a major technical
bottleneck limiting EBRO applications. First, evidence theory describes uncertainty through a series of
discontinuous sets, rather than a continuous function similar to a probability density function. This
usually leads to a combination explosion in a multidimensional robustness analysis, and finally results
in a heavy computational burden. Secondly, EBRO is essentially a nested optimization problem with
performance optimization in the outer layer and robustness analysis in the inner layer. The direct
solving strategy means a large number of robustness evaluations using evidence theory. As a result,
the issue of EBRO efficiency is further exacerbated. Therefore, there is a great engineering significance
in developing an efficient EBRO method in view of actual product design problems.

In this paper, a general EBRO model and an efficient algorithm are proposed, which provide a
computational tool for robust product optimization with epistemic uncertainty. The proposed method
is applied to three design problems of MEMS, in which its engineering practicability is discussed. The
remainder of this paper is organized as follows. Section 1 briefly introduces the basic concepts and
principles of robustness analysis using evidence theory. The EBRO model is formulated Section 2.
The corresponding algorithm is proposed in Section 3. In Section 4, this method is validated through
the three applications of MEMS—a micro-force sensor, a low-noise image sensor and a capacitive
accelerometer. Conclusions are drawn in Section 5.

2. Robustness Analysis Using Evidence Theory

Consider that uncertainty problem is given as f (Z), where Z represents the nZ-dimensional
uncertain vector, f is the performance function which is uncertain due to Z. Conventional
methods [16–18] of robust optimization employ probability theory to deal with the uncertainties.
The typical strategy is to consider the uncertain parameters of a problem as random variables,
and thereby the performance value is also a random variable. The mean and variance are used
to formulate the robustness model. In practical engineering, it is sometimes hard to construct accurate
probability models due to the limited information. Thus, evidence theory [20,21] is adopted to model
the robustness. In evidence theory, the frame of discernment (FD) needs to be established first,
which contains several independent basic propositions. It is similar to the sample space of a random
parameter in probability theory. Here, 2Θ denotes the power set of the FD (namely Θ), and 2Θ consists
of all possible propositions contained in Θ. For example, for a FD with the two basic propositions of
Θ1 and Θ2, the corresponding power set is 2Θ = {∅, {Θ1}, {Θ2}, {Θ1, Θ2}}. Evidence theory adopts
a basic probability assignment (BPA) to measure the confidence level of each proposition. For a certain
proposition A, the BPA is a mapping function that satisfies the following axioms:

0 ≤ m(A) ≤ 1, ∀A ∈ 2Θ

m(Φ) = 0
∑

A∈2Θ
m(A) = 1

(1)

where if m(A) ≥ 0, A is called a focal element of m. The BPA of m(A) denotes the extent to which the
evidence supports Proposition A. When the information comes from multiple sources, m(A) can be
obtained by evidence combination rules [28]. Evidence theory uses an interval consisting of the belief
measure (Bel) and the plausibility measure (Pl) to describe the true extent of the proposition. The two
measures are defined as:

Bel(A) = ∑
C⊆A

m(C)

Pl(A) = ∑
C∩A 6=Φ

m(C)
(2)

As can be seen from Equation (2), Bel(A) is the summary of all the BPA that totally support
Proposition A, while Pl(A) is the summary of the BPA that support Proposition A totally or partially.
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A two-dimensional design problem is taken as the example to illustrate the process of robustness
analysis using evidence theory. The performance function contains two uncertain parameters (a, b),
which are both considered as evidence variables. The FDs of a, b are the two closed intervals, i.e.,
A =

[
AL, AR] and B =

[
BL, BR]. A contains nA number of focal elements, and the subinterval of

Ai =
[
BL

i , BR
i
]

represents the i-th focal element of A. The definitions of nB and Bj are similar. Thus,
a Cartesian product can be constructed:

D = A× B =
{

Dk =
[
Ai, Bj

]
, Ai ∈ A, Bj ∈ B

}
(3)

where Dk is the k-th focal element of D, and the total number of focal elements is nA × nB. For ease of
presentation, assuming that a, b are independent, a two-dimensional joint BPA is obtained:

m(Dk) = m(Ai) ·m
(

Bj
)

(4)

More general problems with parametric correlation can be handled using the mathematical tool
of copula functions [29].

As analyzed above, the performance function of f is uncertain. The performance threshold of v is
given to evaluate its robustness. Given that the design objective is to minimize the value of f, the higher
the trueness of Proposition f ≤ v, the higher the robustness of f relative to v. Proposition f ≤ v is
defined as the feasible domain:

F = { f : f (a, b) ≤ v}, (a, b) ∈ Dk, Dk =
[
Ai, Bj

]
⊂ D (5)

Substituting A, C with F, Dk in Equation (2), the belief measure and plausibility measure of
Proposition f ≤ v are expressed as follows:

Bel(F) = ∑
Dk⊆F

m(Dk)

Pl(F) = ∑
Dk∩F 6=Φ

m(Dk)
(6)

In evidence theory, the probabilistic interval composed by the two measures can describe the
trueness of f ≤ v, written as R(F) ∈ [Bel(F), Pl(F)]. The accumulation of Bel, Pl needs to determine
the positional relationship between each focal element and the F domain. As a result, the performance
function extrema of each focal element must be searched. For this example, the nA × nB pairs of
extremum problems are established as:

f min
k = min

(a,b)∈Dk

f (a, b)

f max
k = max

(a,b)∈Dk

f (a, b)

 k = 1, 2, . . . , nA × nB (7)

where f min
k , f max

k are the minimum and maximum of the k-th focal element. The vertex method [30]
can efficiently solve the problems in Equation (7) one by one. If f max

k ≤ v, Dk ⊆ F, and m(Dk)

is simultaneously accounted into Bel(F) and Pl(F); If f min
k < v, Dk ∩ F 6= Φ, and m(Dk) is only

accounted into Pl(G). After calculating the extrema for all focal elements, the Bel and Pl can be totaled.

3. Formulation of the EBRO Model

As mentioned above, evidence theory uses a pair of probabilistic values [Bel, Pl] to measure the
robustness of the performance value related to the given threshold. However, engineers generally
tend to adopt conservative strategies to deal with uncertainties in the product design process. Thus,
the robustness objective of EBRO can be established as max Bel( f ≤ v). Meanwhile, in order to improve
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product performance, the performance threshold is minimized. The EBRO model is formulated as a
double-objective optimization problem:

min v, max Bel( f (d, X, P) ≤ v)
s.t. dl ≤ d ≤ du, Xl ≤ X ≤ Xu (8)

where d is the nd-dimensional deterministic design vector; X is the nX-dimensional uncertain design
vector; P is the nP-dimensional uncertain parameter vector; the superscripts of l, u represent the value
range of a design variable; and X represents the nominal value of X. Note that the threshold of v is
usually difficult to give a fixed value to, while it should be treated as a deterministic design variable.

The proposed model is an improvement on the existing model [24] because it can handle more
types of uncertainty, such as the perturbations of design variables resulting from production tolerances,
and the variations of parameters due to changing operating conditions. As for the solving process,
the EBDO involves the nested optimization of the double-objective optimization in the outer layer
and the robustness assessment in the inner layer. Due to the discreteness introduced by the evidence
variables, each of the robustness analyses need to calculate the performance extrema of all focal
elements. Essentially, extremum evaluation is an optimization problem involving the performance
function based on time-consuming simulation models, and therefore the robustness analysis bears a
high computational cost. More seriously, the double-objective optimization in the outer layer requires
a large number of robustness evaluations in the inner layer. Eventually, the EBDO solving becomes
extremely inefficient.

4. The Proposed Algorithm

To improve efficiency, this paper proposes a decoupling algorithm of EBRO, and its basic idea is
to convert the nested optimization into the sequence iteration process. Firstly, the original problem is
decomposed into a series of sub-problems. Secondly, the uncertainty analysis and the deterministic
optimization are driven alternately until convergence. The framework of the proposed method is
detailed below.

4.1. Decomposition into Sub-Problems

Robust optimization is essentially a multi-objective problem that increases product performance
at the expense of its robustness. Therefore, robust optimization generally does not have a unique
solution, but a set of solutions called the Pareto optimal set [2]. It is a family of solutions that is
optimal in the sense that no improvement can be achieved in any objective without degradation
in others for a multi-objective problem. The Pareto-optimal solutions can be obtained by solving
appropriately formulated single objective optimization problems on a one-at-a-time basis. At present,
a number of multi-objective genetic algorithms have been suggested. The primary reason for
this is their ability to find multiple Pareto-optimal solutions in parallel. From the viewpoint of
mathematical optimization, genetic algorithms are a kind of suitable method for solving a general
multi-objective optimization. However, the efficiency of a genetic algorithm is usually much lower
than the gradient-based optimization algorithms, which has become the main technical bottleneck
limiting its practical application [31,32]. Although a priori information is not required when using
genetic algorithms, most designers have some engineering experience in practice. Therefore, for the
specific problem shown in Equation(8), the robustness objective of Bel( f (d, X, P) ≤ v) is often handled
as a reliability constraint [2,33]. In this paper, the EBRO problem is transformed into a series of
sub-problems under the given target belief measures:

min v
s.t. Bel( f (d, X, P) ≤ v) ≥ BelT

j

dl ≤ d ≤ du, Xl ≤ X ≤ Xu

 j = 1, 2, . . . , nT (9)
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where BelT
j represents the j-th target belief measure; and Bel( f ≤ v) ≥ BelT

j is the reliability constraint
derived from the robust objective. In many cases, the designer may focus on the performance values
under some given conditions based on the experience or quality standard. This condition is usually a
certain probability of f ≤ v, namely BelT

j .

4.2. Iteration Framework

Theoretically, the EBDO problems in Equation (9) can be solved by existing methods [34].
However, the resulting computational burden will be extremely heavy. To address this issue, a novel
iteration framework is developed, in which the uncertainty analysis and design optimization alternate
until convergence.

In the k-th iteration, each optimization problem in Equation (9) requires the performance of an
uncertainty analysis at the previous design point:

Bel
(

f (Z) ≤ v(k−1)
j

)
, Z = (X, P), j = 1, 2, . . . , nT (10)

This mainly consists of two steps, illustrated by the example in Figure 1. Step 1 is to search
for the most probable focal element (MPFE) along the limit-state boundary of f (Z) ≤ v(k−1)

j . The
MPFE [35] is similar to the most probable point (MPP) in probability theory, which is the point with
the most probability density on the limit-state boundary. Compared to other points on the boundary,
the minimal error of reliability analysis can be achieved by establishing the linear approximation for
the performance function at the MPP [36]. Similarly, the MPFE contains the maximal BPA among
the focal elements that are crossed by the limit-state boundary. The searching process of MPFE is
formulated as:

max
Dk

m(Dk)

s.t. f (Z) = v(k−1)
j

j = 1, 2, . . . , nT (11)

where m(Dk) represents the BPA of the focal element where the Z point is located. Note that there is a
difference between v(k−1)

j , j = 1, 2, . . . , nT at each iteration step due to the minor difference of BelT
j .

Consequently, different MPFEs may be obtained for Equation (11). However, the difference between
the MPFEs is minor relative to the entire design domain. To ensure efficiency, the unique MPFE is
investigated at each iteration. Equation (11) can be rewritten as:

max
Dk

m(Dk)

s.t. f (Z) = v(k−1)
(12)

where v(k−1) represents the performance threshold that has not yet converged.

Step 2 is to establish linear approximation for the performance function at the central point

(
¯
Z

M
)

of MPFE:
L(k)(Z) = f

(
ZM(k)

)
+
(

Z− ZM(k)
)T
· ∇ f

(
ZM(k)

)
(13)

The L-function is used to replace the f -function to calculate Bel, and thereby the optimization
processes in Equation (7) no longer requires the calculation of any performance function.

The efficient calculation of Bel has been achieved in the iterative process, but the overall
process of EBDO still requires dozens or even hundreds of Bel evaluations due to the nested
optimization. To eliminate the nested optimization, a decoupling strategy is proposed similar to
that in the probabilistic method [37]. At each iteration step, the reliability constraint is transformed
into a deterministic constraint by constructing the shifting vector of S(k)

j ; and then a deterministic
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optimization is updated and solved to obtain the current solution. In the k-th iteration, the deterministic
optimization can be written as:

min v

s.t. f
(

d,
¯
Z− S(k)

j

)
≤ v

dl ≤ d ≤ du, Xl ≤ X ≤ Xu

 j = 1, 2, . . . , nT (14)

The shifting vector determines the deviation between the original reliability boundary and the
deterministic boundary at the k-th iteration step. For the j-th problem in Equation (14), the formulation
of the shifting vector is explained as in Figure 2. For convenience of presentation, the constraint

contains only two evidence variables Z = (a, b). F represents the domain of f ≤ v(k−1)
j .

¯
Z
(k−1)

j is the

previous design point, which is based on the previous equivalent boundary of f
(

Z− S(k−1)
j

)
= v(k−1)

j .
The rectangular domain represents the FD at the previous design point. F represents the domain of

f ≤ v(k−1)
j . If the FD is entirely in the F domain, Bel

(
f ≤ v(k−1)

j

)
= 100%. In Figure 2, the FD of

¯
Z
(k−1)

is partially in the F domain, and Bel
(

f ≤ v(k−1)
j

)
is still less than BelT

j . To satisfy Bel
(

f (Z) ≥ v(k−1)
j

)
≥

BelT
j ,

¯
Z
(k−1)

needs to move further into the F domain. Therefore, the equivalent boundary needs to
move further toward the F domain. The updated equivalent boundary is constructed as follows:

f
(

Z− S(k)
j

)
= v(k−1)

j , S(k)
j = S(k−1)

j + ∆S(k)
j (15)

where ∆S(k)
j denotes the increment of the previous shifting vector. The principle for calculating ∆S(k)

j

is set as Bel
(

f (Z) ≥ v(k−1)
j

)
≥ BelT

j and is just satisfied. Thus, the mathematical model of ∆S(k)
j is

created as:
min

s
‖ s ‖

s.t. Bel
(

f (Z + s ) ≤ v(k−1)
j

)
= BelT

j
(16)

Equation (16) can be solved by multivariable optimization methods [38]. To further improve
efficiency, the f -function is replaced by the L-function formulated in Equation (13).
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Uncertain analysis and design optimization are carried out alternatively until they meet the
following convergence criteria:

Bel(k)j ≥ BelT
j∣∣∣∣∣ v(k)j −v(k−1)

j

v(k)j

∣∣∣∣∣ ≤ εr

 j = 1, 2, . . . , nT (17)

where εr is the minimal error limit. The solutions of
(

d∗j ,
¯
X
∗

j

)
, j = 1, 2, . . . , nT form the final

optimal set.
The flowchart of the EBRO algorithm is summarized as Figure 3.

5. Application Discussion

In the previous sections, an EBDO method is developed for engineering problems with epistemic
uncertainty. This method is especially suitable for the robust design of micro-electromechanical systems
(MEMS). On one hand, unlike traditional engineering structural problems, the design of MEMS
usually involves micro structure, novel materials, and extreme operating conditions, where epistemic
uncertainties inevitably exist. Evidence theory is well suited to deal with such uncertainties. On the
other hand, high performance and insensitivity to uncertainties are the fundamental requirements for
MEMS design. Over the past two decades, robust optimization for MEMS has gradually attracted
the attention of both academics and engineering practice [39–41]. In this section, this method is
applied to three applications of MEMS: a micro-force sensor, a low-noise image sensor, and a capacitive
accelerometer. The features of the proposed approach are investigated in terms of efficiency and
accuracy. Performance function evaluations are accounted to indicate efficiency, and the reference
solution is compared to verify accuracy. The reference solution is obtained by the double-loop method,
where sequential quadratic programming [38] is employed for performance optimization, and a
Monte-Carlo simulation [42] is used for robust assessment.
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5.1. A Micro-Force Sensor

A piezoelectric micro-force sensor [43] has several advantages, including a reliable structure,
fast response, and simple driving circuits. It has been extensively applied in the fields of precision
positioning, ultrasonic devices, micro-force measurement, etc. Given that uncertainties are inevitable
in structural sizes and material parameters, robust optimization is essential to ensure the performance
of the sensor.

As shown in Figure 4, the core part of the micro-force sensor is a piezoelectric cantilever beam,
which consists of a piezoelectric film, a silicon-based layer, and two electrodes. The force at the free end
causes bending deformation on the beam, which drives the piezoelectric film to output polarization
charges through the piezoelectric effect. The charge is transmitted to the circuit by the electrodes and
converted into a voltage signal. According to the theoretical model proposed by Smits et al. [43], this
voltage can be formulated as:

U =
3 · dP

31 · SSi
11 · SP

11 · h · hP ·
(
h + hP) · L · F

K · εP
33 · w

(18)
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where
K = 4 · SSi

11 · SP
11 · h ·

(
hP)3

+ 4 · SSi
11 · SP

11 · h3 · hP

+
(
SP

11
)2 · h4 +

(
SSi

11
)2 ·

(
hP)4

+ 4 · SSi
11 · SP

11 ·
(
SSi

11
)2 ·

(
hP)2 (19)

where F is the concentration force; L, w represent the length and width of the beam; h, hP denote
the thickness of the silicon-base layer and piezoelectric film; SSi

11, SP
11 are the compliance coefficient

of the silicon-based layer and piezoelectric film; and dP
31, εP

33 is the piezoelectric coefficient and
dielectric constant of the piezoelectric film. The constants in Equation (18) include hP = 5× 10−4 mm,
SP

11 = 18.97× 10−12m2/N, and SSi
11 = 7.70 × 10−12m2/N, The structural sizes of L, w, h and the

material parameter of dP
31, εP

33 are viewed as evidence variables. The marginal BPAs of the variables
are shown in Figure 5, and the nominal values of dP

31, εP
33 are, respectively, 1.8 C/N, 1.6 F/m.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 18 
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In engineering, the greater the output voltage, the higher the theoretical accuracy of the sensor.
Thus, U is regarded as the objective function. The design variables are L, w and h. The constraints of
shape, stiffness and strength are considered, which are expressed as η ≥ 0.83, δ ≤ 2.5µm, and σ ≤
32.0 MPa, where η is the ratio of w to h, δ denotes the displacement at the free end of the beam, and σ

denotes the maximum stress of the beam. δ and σ can be written as [43].

σ =
6·F·L·SSi

11·(SP
11·h+SSi

11·h
P)·(h+hP)

K·w

δ =
4·F·L3·SSi

11·S
P
11·(SP

11·h+SSi
11·h

P)
K·w

(20)

Due to uncertainties in the structure, η, δ and σ are also uncertain. Theoretically, the three
constraints should be modeled as reliability constraints. To focus on the topic of robust optimization,
the constraints are considered as deterministic in this example. That is, the nominal values of the
uncertain variables are used to calculate η, δ and σ. In summary, the EBRO problem is formulated
as follows:

max U0, max Bel(U(X, P) ≥ U0)

s.t. w
h ≤ 0.83, δ

(
¯
X
)
≤ 2.5µm, σ

(
¯
X
)
≤ 32.0MPa

0.40mm ≤ L ≤ 1.20mm, 0.06mm ≤ w ≤ 0.10mm, 0.04mm ≤ h ≤ 0.10mm

(21)

where X = (L, w, h), P =
(
dP

31 , εP
33
)
; U0 represents the performance threshold, which is set as the

deterministic design variable.
The steps to solve this problem using the proposed method are detailed below. Firstly, according

to the marginal BPAs of the five variables in Figure 5, the joint BPAs of the focal elements (85 = 32768)
are calculated by Equation (4). Secondly, Equation (21) is converted into a series of sub-problems,
which are expressed as:

max U0

s.t. Bel(U(X, P) ≥ U0) ≥ BelT
j

}
j = 1, 2, . . . , 5

w
h ≤ 0.83, δ

(
¯
X
)
≤ 2.5µm, σ

(
¯
X
)
≤ 32.0MPa

0.40mm ≤ L ≤ 1.20mm, 0.06mm ≤ w ≤ 0.10mm, 0.04mm ≤ h ≤ 0.10mm
BelT

j = (80%, 85%, 90%, 95%, 99.9%)

(22)

where BelT
j represent a series of target Bel for the proposition of U ≥ U0, which are given by the

designer according to engineering experience or quality standards. Thirdly, the iteration starts from the

initial point of
(

L(0), w(0), h
(0)

, U(0)
0

)
= (0.60 mm, 0.08 mm, 0.06 mm, 35.6 mV), where L(0), w(0), h(0)

are selected by the designer and U(0)
0 is calculated by Equation (18). At each iteration step,

the approximate function of U is established as Equation (13), and then 10 numbers of ∆S(k)
j are

obtained through Equation (16). Correspondingly, the 10 optimization problems as Equation (14) are
updated. By solving them, the optimal set in the current iteration is obtained. After four iteration steps,
the optimal set is converged as listed in Table 1. The results show that the performance threshold
decreases gradually with increase in Bel. In engineering, a designer can intuitively select the optimal
design option from the optimal set by balancing the product performance and robustness. In term of
accuracy, the solutions of the proposed method are very close to the corresponding reference solutions,
and the maximal error is only 2.5% under the condition of BelT

j = 95%. In efficiency, the proposed
method calculates performance function only 248 times, and the computational cost is much less than
that of evolutionary algorithms [31]. From a mathematical point of view, it is unfair to compare the
efficiency of the proposed method with the evolutionary algorithms. From the view of engineering
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practicality, however, the solutions of the proposed method may help the designers create a relatively
clear picture of the problem with high efficiency and acceptable accuracy.

Table 1. Optimal set of the micro-force sensor problem.

Results BelT
1 = 80% BelT

2 = 85% BelT
3 = 90% BelT

4 = 95% BelT
5 = 99.9%

Proposed
method

X∗j (mm) 0.937, 0.086,
0.072

0.937, 0.086,
0.072

0.937, 0.086,
0.072

0.937, 0.086,
0.072

0.937, 0.086,
0.072

v∗j , Bel∗j 22.1 mV, 80.4% 20.0 mV, 85.3% 18.2 mV, 90.6% 15.7 mV, 95.5% 9.6 mV, 99.9%
Reference
solution

vr
j , Belr

j 22.4 mV, 80.0% 20.0 mV, 85.3% 18.5 mV, 90.0% 16.1 mV, 95.0% 9.6 mV, 99.9%

5.2. An Ultra-Low-Noise Image Sensor

Recently, a type of ultra-low-noise image sensor [44] was developed for applications requiring
high-quality imaging under extremely low light conditions. Such a type of sensor is ideally suited for a
variety of low light level cameras for surveillance, industrial, and medical applications. In application,
the sensor and other components are assembled on a printed circuit board (PCB). Due to the mismatch
in the thermal expansion coefficient of the various materials, thermal deformation occurs on the PCB
under the combined action of self-heating and thermal environment. As a result, the imaging quality
of the sensor is reduced. Moreover, to acquire more image information under low-light conditions,
the sensor is designed in a large format. Thus, the imaging quality is more susceptible to deformation.
This issue has become a challenging problem in this field and needs to be solved urgently.

A robust optimization problem is considered for the camera module as Figure 6, in which the
image-sensor-mounted PCB is fastened with the housing. The sensor is designed as a 4/3-inch optical
format and features an array of five transistor pixels on a 6.5 µm pitch with an active imaging area
of 2560(H)× 2160(V) pixels. It delivers extreme low light sensitivity with a read noise of less than
2.0 electrons root mean square (RMS) and a quantum efficiency above 55%. In order to analyze
the thermal deformation of the sensor under the operating temperature (20 ◦C ∼ 45 ◦C), the finite
element model (FEM) is created as shown in Figure 7, in which the power dissipation P = (P1, P2)

of the codec chip and the converter is given as 1.2 W and 0.2 W, according to the test data. It can be
observed that a certain deformation appears on the sensor die, and the peak–peak value (PPV) of
the displacement response achieves about 3.0 µm. Consequently, the image quality of the sensor will
decrease. To address the issue, the design objective is set to minimize the PPV, and the design variables
of X = (X1, X2, X3) are the normal positions of the PCB-fixed points. In engineering, manufacturing
errors are unavoidable and power dissipation fluctuates with changing loads, and thereby X and P are
treated as evidence variables. Their BPAs are summarized on the basis of limited samples, as listed in
Table 2. This robust optimization is constructed as follows:

min v, max Bel(PPV(X, P) ≤ v) (23)
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Table 2. The marginal BPA of variables in the image sensor problem.

Xi, i = 1, 2, 3 (mm) P1 (W) P2 (W)
Subinterval BPA Subinterval BPA Subinterval BPA[

Xi − 0.05, Xi − 0.03
]

6.7% [0.95, 1.1.05] 37.5% [0.55, 0.65] 6.5%[
Xi − 0.03, Xi − 0.01

]
24.2% [1.05, 1.15] 17.6% [0.65, 0.75] 23.8%[

Xi − 0.01, Xi + 0.01
]

38.3% [1.15, 1.25] 5.4% [0.75, 0.85] 32.2%[
Xi + 0.01, Xi + 0.03

]
24.2% [1.25, 1.35] 19.1% [0.85, 0.95] 12.5%[

Xi + 0.03, Xi + 0.05
]

6.7% [1.35, 1.45] 20.4% [0.95, 1.05] 24.9%

As mentioned above, the performance function of PPV is implicit and based on the
time-consuming FEM, which consists of 88,289 8-node thermally coupled hexahedron elements. The
computational time for solving the FEM is about 0.1 h, if using a computer with the i7-4710HQ CPU
and 8 G of RAM. To realize the parameterization and reduce the computational cost of obtaining
reference solutions, a second-order polynomial response surface is created for the performance function
by sampling 200 times on the FEM.

PPV = 2.396− 9.924X1 − 6.495X2 + 14.178X3 + 0.311P1 − 0.226P2 + 8.564X2
1 + 16.960X2

2
+14.104X2

3 − 0.019P2
1 + 0.794P2

2 − 1.540X1X2 − 13.168X1X3 − 13.822X2X3 − 0.074P1P2
(24)

In order to analyze the efficiency of the proposed method for problems with different dimensional
uncertainty, three cases are considered: only P is uncertain in Case 1; only X is uncertain in
Case 2; and both of them are uncertain in Case 3. The initial design option is selected as
¯
X

0
= (0.10 mm, 0.10 mm, 0.10 mm), and v0 = 2.92µmis obtained by PPV

(
¯
X

0
,

¯
P

)
. After giving

BelT
j = (85%, 95%, 99.9%), the original problem is converted into three sub-problems, as in Equation

(9). They are solved by the proposed method and the double-loop method; all results are listed in
Table 3. Firstly, the results of the proposed method and the reference solutions are almost identical
for all cases, and thus the validity of the results is presented. Secondly, each of the cases converges
into a stable optimal set after three or four iteration steps. For this problem, the convergence of the
proposed method is little affected by the number of uncertain variables. Thirdly, the performance
function evaluations (NF) increase with the increasing dimensional number of uncertainties, while
overall the efficiency of the proposed method is relatively high. Case 3 is taken as an example. Even if
the FEM is called directly by EBRO, NF = 198 means a computational time of only about 20 h.
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Table 3. The optimal set of the micro-force sensor problem.

Results Case 1:2
Dimensions

Case 2:3
Dimensions

Case 3:5
Dimensions

Proposed method

NF 128 142 198

Iterations 3 4 4

X∗j (mm)
(0.200, 0.185, 0.000)
(0.200, 0.186, 0.000)
(0.200, 0.188, 0.000)

(0.200, 0.185, 0.000)
(0.200, 0.186, 0.000)
(0.200, 0.187, 0.000)

(0.200, 0.187, 0.000)
(0.200, 0.188, 0.000)
(0.200, 0.190, 0.000)

v∗j , Bel∗j
(1.35 µm, 85.1%)
(1.70 µm, 96.5%)

(2.00 µm, 100.0%)

(1.41 µm, 85.8%)
(1.55 µm, 96.4%)

(1.65 µm, 100.0%)

(1.74 µm, 86.4%)
(2.06 µm, 96.1%)

(2.62 µm, 100.0%)

Reference solution vr
j , Belr

j

(1.35 µm, 85.1%)
(1.69 µm, 95.5%)

(2.00 µm, 100.0%)

(1.41 µm, 85.8%)
(1.55 µm, 96.4%)

(1.65 µm, 100.0%)

(1.71 µm, 85.8%)
(2.02 µm, 95.4%)
(2.56 µm, 99.9%)

5.3. A Capacitive Accelerometer

The capacitive accelerometer [45] has become very attractive for high-precision applications
due to its high sensitivity, low power consumption, wide dynamic range of operation, and simple
structure. The capacitive accelerometer is not only the central element of inertial guidance systems,
but also has applications in a wide variety of industrial and commercial problems, including crash
detection for vehicles, vibration analysis for industrial machinery, and hovering control for unmanned
aerial systems.

Most of the capacitive accelerometers consist of two main modules: the sensing structure and
the signal processing circuit; the former plays a critical role in the overall product performance. The
sensing structure in this example, as in Figure 8, mainly includes five parts: a fixed electrode, a movable
electrode, a coil, a counter weight, block 1, and block 2. The material they are made of is listed in
Table 4. The capacitance between the two electrodes varies with the vertical displacement of the
movable plate under the excitation of acceleration, which can be clearly presented through the finite
element simulation, as in Figure 9. The nodes in the effective area on the movable electrode have been
offset relative to the original position under the excitation of acceleration. The increment of capacitance
is expressed as [44]:

∆C = ε · A
A =

n
∑

i=1

(
Si

h+δi
− S

h

) (25)

where ε is the dielectric constant; h represents the original distance between the electrodes; S denotes
the effective area on the movable electrode; δi is the displacement response of the i-th node, and Si
is the area of corresponding element. Note that the performance function of A is based on the FEM,
which contains 114,517 8-node thermally coupled hexahedron elements in total, and it takes about 1/3
h to solve each time, when using a personal computer. The displacement of the movable electrode,
in addition to the response to acceleration, may be caused by varying ambient temperature. This can
be found from the simulation result in Figure 9, where the load is changed from acceleration to varying
temperature. Reducing the effect of thermal deformation on accuracy has become a problem that
must be faced in the design process. Therefore, the EBRO model of the capacitive accelerometer is
formulated as:

min v, maxBel
(

f =
A(X, α)

∆T
≤ v

)
(26)

where f represents the sensitivity of error to temperature at 35 ◦C; v denotes the performance threshold;
and X, P denote the design vector and parameter vector. The components of X, α are the structural
sizes, as shown in Figure 8, where α1, α2, α3 are the mounting angle of the counter weight, block
1 and block 2, respectively. The value ranges are given as 6.0 mm ≤ X1, X2 ≤ 12.0 mm, and the
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nominal values are αi = 0 mm, i = 1, 2, 3. All of them are uncertain variables, respectively caused by
machining errors and assembly errors. According to the existing samples, the marginal BPAs are listed
in Figure 10.
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After being given a series of BelT
j = 80%, 85%, 90%, 95%, 99.9%, Equation (26) can be rewritten

as Equation (27):
min v

st. Bel
(

f = A(X,α)
∆T ≤ v

)
≥ BelT

j

}
, j = 1, 2, . . . , 6 (27)
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For easy reproduction of results, the response surface of A(X, α) is constructed as follows:

A = 1.207X2
1 − 0.430X1X2 − 18.06X1 + 1.004X2

2 − 13.974X2

+100.9α2
1 − 9.0α1(α1 − 1) + 89.0α2

2 − 7.2α2 + 40.9α2
3 − 6.7α3 + 144.0

(28)

Next, the EBRO is performed by the proposed method and the double-loop method. The initial

design point is selected as
¯
X
(0)

= (9.6mm, 9.6mm), and f

(
¯
X
(0)
)

= 0.565µm/◦C. All results are

given in Table 5. The proposed method converges the optimal set after four iteration steps. Each
element of the optimal set is very close to that of the reference solution. This indicates to some
extent the convergence and accuracy of the proposed method. As for efficiency, the performance
function evaluations of the proposed method are done 171 times. Compared to the double-loop
method (12,842 times), the efficiency of this method has a definite advantage. Given that hundreds of
simulations or dozens of hours of computation are acceptable for most engineering applications, it is
feasible to directly call the time-consuming simulation model when performing the EBRO in practice.

Table 5. The optimal set of the accelerometer problem.

Results Proposed Method Reference Solution

X∗j (mm)

(9.0661, 8.9042)
(9.0659, 8.9040)
(9.0657, 8.9038)
(9.0653, 8.9035)
(9.0653, 8.9035)
(9.0653, 8.9035)

(9.0661, 8.9042)
(9.0660, 8.9040)
(9.0657, 8.9039)
(9.0654, 8.9036)
(9.0648, 8.9031)
(9.0644, 8.9028)

v∗j , Bel∗j

(0.244 µm, 81.8%)
(0.302 µm, 86.3%)
(0.350 µm, 90.8%)
(0.449 µm, 96.1%)
(0.607 µm, 99.4%)

(0.776 µm, 100.0%)

(0.244 µm, 81.8%)
(0.279 µm, 85.2%)
(0.338 µm, 90.1%)
(0.424 µm, 95.5%)
(0.594 µm, 99.2%)
(0.733 µm, 99.9%)

On the other hand, the proposed method provides six design options under different robustness
requirements in this example. The higher the robustness, the greater the performance threshold. From
a designer’s point of view, choosing a lower yield (i.e., Bel = 81.8%) means that a higher cost and
less error (i.e., v = 0.244µm/◦C) are introduced by temperature varying. Usually, the final design
option is selected from the optimal set after balancing the cost and performance of the accelerometer.
Objectively speaking, the proposed method does not provide a complete Pareto optimal set, but rather
solutions under the given conditions. However, for the design of an actual product, the information
of BelT

j can usually be obtained on the basis of the engineering experience or the quality standards.
Therefore, the proposed method is suitable for most product design problems.

6. Conclusions

Due to inevitable uncertainties from various sources, the concept of robust optimization has been
deeply rooted in engineering designs. Compared to traditional probability models, evidence theory
may be an alternative to model uncertainties in robustness optimization, especially in the cases of
limited samples or conflicting information. In this paper, an effective EBRO method is developed,
which can provide a computational tool for engineering problems with epistemic uncertainty. The
contribution of this study is summarized as follows. Firstly, the improved EBDO model is formulated
by introducing performance threshold as a newly-added design variable, and this model can handle the
uncertainties involved in design variables and parameters. Secondly, the original ERBO is transformed
into a series of sub-problems to avoid double-objective optimization, and thus the difficulty of solving
is reduced greatly. Thirdly, an iterative strategy is proposed to drive the robustness analysis and
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the optimization solution alternately, resulting in nested optimization in the sub-problems achieving
decoupling. The proposed method is applied to the three MEMS design problems, including a
micro-force sensor, an image sensor, and a capacitive accelerometer. In the applications, the finite
element simulation models and surrogate models are both given. Numerical results show that the
proposed method has good engineering practicality due to comprehensive performance in terms of
efficiency, accuracy, and convergence. Also, this work provides targeted engineering examples for
peers to develop novel algorithms. In the future, the proposed method may be extended to more
complex engineering problems with dynamic characteristics or coupled multiphysics.
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